北极星

搜索历史清空

  • 水处理
您的位置:电力风电风电设备与材料报道正文

远景为什么

2017-10-11 09:00来源:《风能》作者:张博 夏云峰关键词:远景能源风电机组低风速收藏点赞

投稿

我要投稿

从掌握风电机组核心控制系统开始,这家公司一路向前,依次打开了变频器、变桨、叶片、发电机和齿轮箱的黑匣子。而这,或将引发连锁反应,加快中国风电走向世界强国的步伐。

10 年前,业内把掌握风电整机的核心控制比作打开制约中国风电发展的黑匣子,那时远景已经打开了这个黑匣子,但同时也意识到,打开变频器等关键大部件的黑匣子并掌握其核心技术,才是持续推动中国风电发展的根本所在。

到2017 年9 月,远景已经打开了风电整机所有关键大部件的黑匣子,且将最先进的技术用于这些部件的设计和制造中——这无疑会为这家公司在风电行业一路向前增加重量级砝码,关键大部件技术在风电领域的重要作用或将引发连锁反应,加快中国风电走向世界强国的步伐。

为什么要打开变频器的黑匣子

远景早在2009 年10 月就开始自研风电机组变频器了,即便已经量产实现了规模化应用,也还是刻意在低调行事。事实上,这家公司研发和扩产变频器的脚步从未停歇。

远景能源副总经理王晓宇博士回忆说,2010 年,中国市场上的风电机组采用的变频器大多来自外资品牌,它们掌握了中国风电变频器市场的话语权,而中国整机厂商也为此付出了较高的成本。但即便如此,变频器故障率仍是整机厂商挥之不去的痛点。

远景自研变频器项目团队在对国内市场变频器故障率及故障类型进行深度研究后,得出一个重要结论:变频器与机组控制系统的协同不畅,不仅会诱发变频器故障,还会影响机组的发电量。正是受此启发,站在系统优化的层面上,远景不仅仅将变频器定位成一个实现电能变换的独立子部件,而是更多地考虑如何使其帮助提高系统性能和寿命。

2011 年3 月, 远景自研的首台1.5MW标准变频器样品在启东风电场成功并网,后经安徽鲁山等风电场的批量化运行业绩验证,远景自研变频器正式步入产业化进程。

来自远景产品质量部门的数据显示,2014年,远景自研变频器导致的停机平均1 年2 次,到了2017 年,自研变频器导致的停机平均3年才有1 次。远景智慧电气卓越中心负责人李磊博士解释:“对自己的产品做改进能快速闭环,因为深入理解风机和变频器产品的机理,对系统的精准改善可以实现事半功倍。”

正是得益于从风机整机系统层面对变频功能组件的深刻理解,远景的变频器还拥有自行开发的寿命模型,可以对一系列关键子部件的寿命做出预测和实时状态监测,这些模型输出的动态边界能力不仅能够最大程度地帮助风机在过速过载等危险工况下安全运行和停机,更在机型设计之初即成为整机系统优化设计不可分割的一部分。

“远景在设计变频器的同时,也自主开发了自动化仿真控制软件平台,其全息模型可以定义现场所有可能出现的电压、电流、功率、频率以及工况场景,仿真精度和现场运行实况完全吻合。先进的高精度全息仿真模型,为自研变频器配置先进的控制算法提供了技术支持。”从仿真模型的角度出发,远景自研变频器项目团队王晓钰博士解释了自研变频器高性能背后的技术逻辑。

实际上,远景的高精度全息仿真系统为变频器设计注入了优质基因,这就不难理解为什么自研变频器具有协同机组优化控制系统的能力——变频器是距离发电机最近的智能单元,作为机组最底层的控制单元,其性能好坏和智能程度直接决定了机组能在何种场景及尺度下进行整机运行控制。

从设计层面看,作为控制单元,变频器在执行机组指令时的协同配合,不仅能实现电气传动链的效率优化,也可从整体上保证远景智能风机控制策略的执行。王晓钰博士强调,“自研变频器与风机的集成设计,提高了风机的并网友好性,减少了因涉网特性差导致的风电场弃风损失。”

不止如此,远景自研变频器中的机组传动链振荡抑制算法,还可以更有效地抑制机组传动链在运行过程中出现的低频振荡,防止传动链部件疲劳,从而保证传动链部件的使用寿命。在李磊博士看来,通过变频器的控制算法保护传动链部件全生命周期的安全,也是自研变频器的价值所在。但他也强调,客户对服务响应更为敏感,由于自研变频器不存在技术壁垒,研发人员可直接面对现场,并在3 小时内给出解决方案、24 小时内给出根因分析,不但能快速闭环,还可将一些现场问题输入产品设计中,最终实现产品性能的优化。

须提及的是,由于远景自研变频器与整机系统的协同优化,在远景机组内,传统分立的主控柜和变频柜已合并成一个柜体,但更为重要的在于,从系统设计层面,传统的主控柜和变频器的边界已经模糊了,在软件系统设计上,也已经成为不可分割的整体。

那么,远景自研变频器的直接结果是什么呢?

据远景电气系统采购负责人许智强透露,2015 年以后,远景陆上全系列机组已经全部配备为远景自主知识产权的变频器。2018 年以后,远景海上全系列机组也将全部配备远景变频器。许智强进一步说,“远景通过掌握变频器产品的全部知识产权,包括所有的软硬件设计,然后通过发包给类似富士康这样的代工企业生产,使得变频器的采购成本得到了大幅的降低。”

更重要的在于,自研变频器对整机的开发和演进产生更多可能的自由度。正是由于对变频器技术完全的自主知识产权,远景的机组整机开发团队才可以根据新的机组特性,在程序设计、参数设计等算法开发的核心环节进行系统整合,更好更快地推出引领市场的创新机型。

远景智能双模机组和中压机组都是基于其变频器技术的创新。远景2012 年7 月推出的双模机组不但兼具直驱全功率和双馈机组的优势,还有最好的风能捕获优势,在高风速工况和低风速工况下均有较高的发电效率。它是一款机型,也是一项应用技术,已在多个风电场批量应用。从运行数据来看,经双模技术改造后,机组的年发电量比未改造的双馈机组最高可提升近2%。

为什么要突破叶片技术理论

要知道,远景设立在美国科罗拉多的全球叶片创新中心汇聚了全球叶片领域的顶尖人才,当空气动力学的资深科学家遇上复合材料结构学的顶尖工程师,下一代更轻更具捕风效率的叶片就出现在人们的眼前——射阳风电场就运行了这样的叶片。

这款叶片采用了全三维叶片设计技术,从借鉴V22 鱼鹰机翼设计理论到下一代风机叶片技术突破,远景付出了3 年的艰苦努力。

在远景,中国叶片工程集成中心研发总监、前LM 研发总监Peter Grabau 先生曾经主导开发了LM 近 1/3 的专利,美国全球叶片创新中心负责人、前西门子叶片研发中心首席工程师Kevin Standish 先生在叶片设计上的独特建树也为远景最新的叶片技术注入了全球最新的研发思想。一份内部文件显示,远景自研叶片团队的全球顶级专家已达55 人,涉及叶片气动、结构设计及载荷、材料及工艺、测试与验证等多个领域。

这是一个关乎风电整机开发的本质问题。

风电整机设计开发,本质上是一个基于叶片空气动力学应用的流体和结构反复迭代寻优的过程,其中机组结构载荷、叶片气动性能和核心控制手段是风机设计寻优的三大变量,也就是设计工程师所说的LAC 风机设计寻优。

关键在于,风机设计工程师要真正掌控这些变量,而不是面对仅能输出或输入设计参数的黑匣子。也正因此,远景执意要打开叶片设计的黑匣子,让叶片气动成为一个可寻优的变量。叶片是把风能转化成机械能的核心部件,成本约占风机成本的30%,其气动载荷主导了风机另外70% 的主要成本。这意味着,如果叶片通过自身的气动外形卸掉某些风况带来的有害载荷,就会相应降低传动链上其他部件的载荷,那么降低整机用材成本也就水到渠成。

但这取决于远景叶片研发团队对叶片空气动力学未知的认知程度。在远景全球叶片创新中心负责人Kevin 先生看来,“这几乎就是向叶片的基础理论发起挑战!”

原标题:封面故事 | 远景为什么
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

远景能源查看更多>风电机组查看更多>低风速查看更多>