北极星

搜索历史清空

  • 水处理
您的位置:电力风电风电运维技术正文

风能专委会:风电机组轴承“跑圈”问题的分析及建议

2018-02-07 10:03来源:风能委员会作者:风能专委会关键词:风电技术风电机组风机运维收藏点赞

投稿

我要投稿

2. 变速箱轴承

变速箱中高速轴侧轴承发生跑圈的比例高于行星轮轴承。两者发生的原因是不同的。

高速轴侧轴承

(1)轴承与轴承座的配合公差选择不合理,导致过盈量不足。由于风电机组运行的外部环境差别很大,选用标准公差带很可能不能适应运行条件。

(2)装配时工艺控制不严格,造成轴承与轴承座的极限上偏差与极限下偏差的配合。在装配现场实际上已经发现装配工选择过盈量小的轴承进行配装的现象。

行星轮轴承

(1)风电机组变速箱实际使用时的最大功率可能达到名义功率的3倍以上,特别是增长叶片情况下,风轮惯性矩大大增加,在机组启动和停机过程中对传动系造成的冲击载荷也极大增加。国内机组在原型机基础上增长叶片后,并未对变速箱进行相应的再设计,造成刚度相对较差的变速箱行星轴系和中间轴系出现偏载的情况,偏载则加剧轴承应力集中现象的发生,进而引发轴承跑圈。

(2)行星轮系结构设计薄弱。国家标准GB/T19073 风力发电机组齿轮箱中规定:行星齿轮轮毂厚度应不小于3倍模数,是为了保证齿轮座圈具有足够的刚度抵抗齿轮受力产生的变形。而行星齿轮的变形是轴承跑圈的重要原因之一。国内变速箱厂批量的行星齿轮轴承跑圈故障发生,恰恰是设计没有满足标准提出的齿轮轮毂厚度要求。

针对行星轴系偏载国外采用了浮动行星变速机构,以达到均载的目的。但是此类结构在变速箱装配和调整时比较复杂。

针对风电机组空间限制导致行星齿轮结构尺寸难以满足刚性要求的现状,国外提出行星齿轮与轴承外圈一体化的解决方案和铁姆肯类似的集成式柔性销方案(见图1)。国内杭齿和南高齿分别采用一体化结构和集成柔性销结构试制了几台变速箱。由于行星齿轮要根据加工工序分别在变速箱厂和轴承厂完成机械加工、热处理和产品检测,变速箱的成本大幅度提高。国内风电整机企业在目前的市场价格下,难以接受。而国外整机企业已经批量采用此类结构的变速箱。

图1 铁姆肯集成式柔性销组件

三、几点建议

根据目前的现实情况提出几点建议:

1. 从目前各方面反映的情况看,对于已经投产在运的风电机组如何在破坏性事故发生前及时发现轴承跑圈的先兆是当务之急。这样可以把事故消除在萌芽之中。但是,由于风电机组的结构不同,运行环境不同,轴承位置不同,技术上尚未掌握各类轴承跑圈的振动特征谱。目前可以做的就是搜集已经发生事故的风电机组的振动监测记录,组织专业队伍进行分析,尽快从中找出规律性的东西,然后在运行风电场进行验证、推广。目前已经有若干制造企业、开发运行企业和研究机构表示愿意参与,并提供验证条件。

2. 本报告前面的分析仅仅在以往的理论、经验和可以得到的案例基础上进行的。对于当前大量发生的事故尚未全面掌握。为了进行事故分析,各变速箱制造厂不应再以保守所谓“商业秘密”为借口,而拒绝公开事故。这样做的结果只能对我国风电产业造成更深的伤害。只有行业内全面地掌握事故真实情况,针对可能的原因深入分析,才能找出缺陷根源并采取行之有效的措施加以解决。同时,为掌握事故监测预警技术提供基础数据。建议各涉及类似事故的企业应如实向整机企业、开发运行企业以及研究机构如实提供事故情况。

3. 轴承装配时应配备足够的工装器具,防止组装中的隐形损坏。过盈配合的装配最好用封闭的加热装置对轴承整体均匀加热,加热温度不宜过高,在升温过程中处于正游隙状态,不会挤压滚子而发生变形。在有条件的情况下,建议采用冷冻轴的方式装配轴承。对轴承的润滑要高度重视,除了保证充分润滑以外,还要采取足够措施确保油液的清洁度。

4. 在轴承及其配合的选用上,主机和部件以及轴承供应单位之间应密切协作,及时交流和反馈,合理选择轴承及配合。装置轴承的轴和孔应按照轴承圈直径公差选择合理的公差带,注意适当收紧公差范围以确保配合的过盈量。

5. 加强专业技术工人的培养和训练,以确保轴承的装配和游隙调整符合技术要求。

6. 装配过程中,轴系应反复对中,减轻额外载荷的影响。

7. 强化变速箱加工、装配现场的工艺规程、工艺卫生管理,确保变速箱加工、装配过程在严格的工艺条件下进行。

8. 编制风电机组与主轴的运输和保管相关的技术指南,防止在运输及非运行阶段,主轴轴承下端滚道和滚子由于承受主轴巨大重力引起变形情况的发生。

9. 增强风电机组机架的刚性,防止变形引起各轴承的非正常偏载。

10. 加强风电机组日常维护保养,严格遵守安全操作规范,对机组运转的启动、制动、停转、停用等不同过程产生的影响要有足够的应对措施。

11. 风电机组应配备相关的检测装置,对传动系统的振动、温度状态实施瞬时监控,对测量数据进行分析,准确查找原因,提前发布预警,避免因故障停机。

12. 强化风电机组设计研究,以可靠性分析为基础,针对机组所处的恶劣工况,系统分析传动系统关键部位所受的异常瞬间负荷的影响,编制更为符合实际工况的载荷谱,充分保证系统及零部件的安全裕度。改进传动系统的布局和结构,降低瞬间异常冲击载荷的影响。

13. 在积累经验的基础上合理选择机组传动系统的结构形式,尽可能采用成熟的经过论证的传动形式,对新的传动形式和结构布置,未经论证不要轻易采用。

14. 原有的轴承寿命计算理论已难以满足现代风力机齿轮箱轴承计算的要求,国际著名轴承公司提出的新的轴承寿命计算方法的相关资料制造商一般较少公开。目前,轴承寿命的计算一般根据各轴承厂商提出的寿命计算方法进行估算。轴承寿命的计算方法繁多,影响因素复杂,载荷数据匮乏、复杂载荷处理方法不完善,对机组在使用过程中经常出现的瞬间载荷、制动载荷、极限载荷等的处理完全凭经验估算。此外,在变载荷处理过程中运用的线性积累损伤理论也并不能真实反映实际破坏情况,这将导致设计计算与实际应用的差距增大。为此,建议结合风电机组的实际需要加强国内轴承寿命理论的研究。

15. 建议尽早加强满足风电高载荷容量、高可靠度、长寿命这一特殊领域的轴承设计、材料、工艺、检验技术的研究。轴承行业与风电机组制造企业、风电传动装置制造企业联合开展研究工作,为风电轴承的设计、制造积累经验,争取尽早取得突破。

原标题:“风电技术·专家研讨”第一期成果发布——关于风力发电机组轴承“跑圈”问题的分析与建议报告
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

风电技术查看更多>风电机组查看更多>风机运维查看更多>