风电技术论坛之风电叶片技术——北京国际风能大会展中报道(4)

主要的问题:如果我们想要做疲劳测试,对大规模复合材料进行测试的话,热相关的性能是需要考虑特别的重点。复合材料的样本,非常缓慢,8周才可以完成,是不是可以在更高的赫兹情况下完成呢?低载荷情况下室温的情况,高载荷情况下可能升温会达到20度,所以我们是不是要把频率降低?还是怎么样?或者说我们都要把这些考虑进来?这些是我们必须要结合考虑的问题。这个图是循环热效果的情况,有一些热成像的图片,1分钟到8分钟,到最后16分钟的测试,随着时间和温度的推移这个情况变得越来越糟。是不是有什么解决办法可以控制样本中的温度?热效率是不是和频率相关?热的损失也是仅仅依赖于样本的这些温度和环境,所以我们怎么办?如果我们改变频率的话,我们可以平衡加热和冷却的比例,达到一种平衡,同时以一种我们需要样本温度下进行。但是它不是这么简单的问题,测试过程中是很复杂的,我们必须要处理好和温度相关的问题,关系既不是线性的也不是恒定的。这里可以看到应用的张力,包括热效率的情况,包括损失,包括样本温度的升高,以及对于环境的热损失等等,所有这些都形成了一个复杂的环境。

我们在测试刚才当中要根据这些不同的变化来进行调整,随着温度的变化,其他的相关指数也会出现相关的变化。在不同的温度情况下,我们的样本损失的情况,破坏的情况也是不太一样的。随着温度的不断提升,疲劳寿命肯定也会得到减少。

看一些例子和我们可以采取的一些办法,如果改变频率,保持平衡的话,这个虚线可以设为频率,我们建议是5赫兹的情况下,在这个区间当中可以看到这个坐标轴上不同的情况,横轴是时间,随着时间的推移温度出现了不同的情况。从最开始到后面持续的过程,最后达到了15赫兹出现三倍频率变化情况下,仍可以使温度保持比较稳定。甚至有些情况下温度还出现了降低。整个过程通过频率的变化保证温度的平衡。当样本变得太热之前,我们要避免过热的情况出现。(图)这个图上可以看到起始频率可能太高了,系统出现了极大的频率降低,以便于温度不至于升的过高。这是一个比较可靠的测试结果。

看一下我们所担忧的问题和所得到的成果进行比较,低载荷情况下,即使频率非常小的变化也会给我们进行测试的时间得到大量的节省,不用做很多无用的工作。另外我们过去可能用几周的时间做测试,通过这样的控制节省了大量的时间成本。

另外得到控制的温度也可以减少数据的偏差,使得数据结果能够更好的反应真实的情况。比较一下之前相关标准,会发现并没有严重遵从ASTM或者ISO的标准。另外我们的数据有可能和现存的一些办法是不太一样的,有一些差别。但是我们的情况不同,所以具体问题还得具体分析。我们的数据应该是更加可靠的。

固定频率需要55天,用了新的系统整个测试40天就够了,节省了四分之一的时间也节省了大量的资金成本。

2013年Instron发布了新的WaveMatrix版本,它内含适应性频率控制的功能,整个软件中内置的,首先是测试更加简单、可靠,同时温度的控制、衡量也可以通过控制器进行调整,同时我们也可以节省大量的成本,同时也可以通过我们自己的调节适应自己的情况。这样的一种做法,对整个业界来讲都是带来了很大的利益。所以我们把现有的结果和实际测试结果相比较,就可以在测试过程中频率等相关控制变得更加的简单和有效。

主持人:下面有请国电联合动力的张东灿工程师给大家带来关于海上风机叶片根部强度分析的报告。

张东灿:我是国电联合动力的张东灿,我的演讲题目是“大型海上风机叶片根部强度分了报告”。研究背景是由于近年来海上风机发展比较迅猛,2012年全球海上风机装机量达到1131MW欧洲2012年新的海上风机项目主要在英国、德国和比利时,2012年还在建设的海上风机项目分布在丹麦、德国、瑞典、美国、中国、日本和韩国,总容量超过了4000MW。中国海上风机发展,2012年中国海上风机新增装机量46台,容量达到127MW,潮间带装机量为113MW,中国海上风电发展方面的主要成该集中在江苏和东潮间带1期50MW,增容项目和东潮间带50MW实验增容项目。(表)表中可以看到目前2012年中国海上风电项目的情况,江苏响水和如东和上海东海大桥二期。

主要从三个方面简单介绍一下:一个是叶片根部有元模型建立;二是叶根螺栓静强度分析;三是叶根疲劳分析。

国内联合动力是6兆瓦风机,叶片采用负荷材料制造,叶片根部是呈规则的圆筒状,通过T型螺栓将其固定于轮毂上,T型螺栓对叶片来讲作用非常大,它决定了叶片连接强度和使用寿命。

这两个图是展示了叶片根部的有限元模型,由于有限元模型以及它的载荷和边际条件具有对称性,所以为了减少建模的工作量,缩短计算时间,所以采取一半的有限元设计,采用的是APDL,好处是计算过程中便于修改模型的尺寸,因为我们选用的叶根螺栓直径不一定是同时满足叶根连接的静强度,也就是极限强度和疲劳强度两方面的要求,所以计算过程中我们需要反复的修改螺栓的尺寸,通过APDL建立的模型便于快速的修改螺栓尺寸的大小,可以大大的减少工作量。

这个图是叶片有限元模型加载和边界条件,下面是轮毂的假体,堆积面是防止它进行平面移动,约束点是在叶根叶片建立一个质量点,通过RB3和叶片相连接。因为静强分析过程中有两个主要的工作载荷部位,第一个是加预紧力,采用第一主用力,大概是500多兆帕,因为连接的螺栓主要承接的是拉力,我们关注第一主用力大概是520多兆帕。这个图展示的是外在,加在最大的叶根处的扭矩,扭矩产生的拉应力结果是700多兆帕,这个螺栓受到的强度最大,如果这个螺栓满足了,这可以说明这一组叶根螺栓它的强度是满足要求的。

叶根疲劳强度分析:因为螺栓连接在里面承接了交变载荷作用,它主要问题就是疲劳破坏,疲劳强度保证在循环载荷情况下不会出现损坏。由于螺栓呈现非规律性变应力的影响,所以要通过一定的专业软件把它的载荷转化为横幅的疲劳载荷。通利用雨流统计法得到各个应力幅对应的循环次数,按照疲劳损伤累计假说,即Miner法则,进行计算。可以得到一个规律的变化,在应力幅的变化值,最后得到的是一个应力变化的趋势图。

根据国际标准,最终选择的是S/N曲线DCN50。

在ANSYS软件中采用APDL进行参数化建立有限元模型,有限元模型在多个载荷步作用下,进行接触非线性计算。通过有限元方法计算确定螺栓应力范围及最大应力值,最大应力值有754兆帕,螺栓要求应力是850兆帕,它的静强度是满足静里要求的。利用线性累计损伤方法,计算得出最大损伤小于1,疲劳强度满足设计要求,该研究为叶片根端连接的设计。

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 在线帮助 | 联系我们 |

版权所有 © 1999-2013 北极星电力网(Bjx.Com.Cn) 运营:北京火山动力网络技术有限公司

京ICP证080169号 京ICP备09003304号-2 京公网安备:1101052752电子公告服务专项备案