北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻风电风电设备与材料报道正文

【格林大家谈】"湍流"那些事儿

2015-12-03 13:48来源:格林云关键词:风机风电机组风电设备收藏点赞

投稿

我要投稿

在风电业内,湍流是个神奇的概念,经常出现在诸如风机齿轮箱损坏,叶片开裂,基础开缝,发电量不达标的分析报告中。可这个神乎其神的湍流到底是什么呢?

百科中的标准答案解释,湍流又称紊流,指的是流体的非均匀流动。

湍流的复杂,使得它几乎不可能用任何数学方法准确描述,在过去的一个世纪里,科学家们先后发明了涡粘性和混合长度理论、能量级串理论、流动稳定性理论等等理论来对它进行说明和解释,但始终没有实现对湍流的完全模拟,它也因而成为流体力学的世纪难题。

风机安全性和实际性能表现是风电场开发尤为关注的,却不得不时时刻刻和湍流这个大家伙斗智斗勇。本期小编将和大家一起了解下什么是风机设计湍流等级及湍流对风机安全性和发电量的影响。

什么是风机设计湍流的等级标准

前面已经说了,很难用数学方法准确描述湍流,那么风机设计是如何界定湍流的呢?专家们想到了万能的统计学方法,根据IEC61400(由IEC制定的风力发电机组系列标准)规定,湍流强度(turbulenceintensity,简写为TI)是指10分钟内风速随机变化幅度大小,是10分钟平均风速的标准偏差与同期平均风速的比率,是风电机组运行中承受的正常疲劳载荷,是IEC61400-1风机安全等级分级的重要参数之一。

湍流产生的原因主要有两个,一个是当气流流动时,气流会受到地面粗糙度的摩擦或者阻滞作用,另一个原因是由于空气密度差异和大气温度差异引起的气流垂直运动。通常情况下,上述两个原因往往同时导致湍流的发生。在中性大气中,空气会随着自身的上升而发生绝热冷却,并与周围环境温度达到热平衡,因此在中性大气中,湍流强度大小完全取决于地表粗糙度情况。

最新的IEC61400对风力发电机组的安全等级分类表如下:

注:Vref=风电场50年一遇的10分钟最大风速;Iref=15m/s时的湍流强度的平均值;A=高湍流强度等级,B=中等湍流等级,C=低等湍流强度。

湍流对风机安全性的影响

风机设计有标准可循,可是大自然的风却并不那么懂规矩,我们就需要在根据特定风场的湍流条件来选择风机。

在风场湍流水平超过风机设计水平的情况下,按设计标准制造出来的风机就很难达到预期寿命,原本设计寿命20年的风机,在10年甚至8年的时候,叶根、主轴、机舱底板等结构件就可能因为长期疲劳超出设计标准而导致的损坏,这样风电场收益将难以实现。

那么湍流超标的情况下,风机是否就一定不能适用呢?考虑到风机设计参数一般高于现场风况指标,通常可以在经验范围内提出做载荷仿真以确认安全性的需求。比如设计年均风速为8m/s,湍流为A类的风机。当某风机位湍流0.162,但年平均风速只有7m/s的情况下,我们就可以尝试将机位处的参数加入到风机设计的模型中,通过仿真,来判断风机是否能够满足这种风场条件下的安全性要求。如果可以满足,那么这款风机就可以适用于该风电场。

湍流对发电量的影响

归根结底,大家最在意的还是咱们风场能发多少“真金白银”。但说到湍流对风场实际发电量的影响,不得不首先提到静态功率曲线和动态功率曲线。

目前行业内很多场合下,在评估发电量的时候所使用的功率曲线仍然为“静态功率曲线”,这是非常不科学的,因为静态功率曲线是假设环境湍流为0的情况下绘制出来的理想条件功率曲线,在现实环境中是不可能存在的,这会造成对发电量评估的严重高估。科学的方法应该是根据评估场址的实际环境湍流,采用与之相应的“动态功率曲线”,为评估电量提供更明确和真实的参考。

以下是对这两种功率曲线的简要说明:

1静态功率曲线

静态功率曲线,是理论值,它无法体现风机本身的性能特点。它是假设风速为恒定,即湍流为0的情况下,在给定不同的恒定风速,机组所对应的静态输出功率。这个功率曲线反映的是机组的发电性能在理论上的最大发电能力。静态曲线基本上由所采用的叶片翼型的Cp决定的,完全无法体现风机本身在真实环境中如何应对湍流的动态性能特点。

实践经验也证明,该理论值的参考意义不强。运行的实际经验可以看到,即使安装完全相同的叶片,在不同的厂家的机组上所表现的发电性能差异显著的。即使同一厂家的相同机型,采用的相同叶片,在湍流条件不同的情况下,其发电效率的差异也是显著的。因此,静态功率曲线仅仅能够反映该机组在理论上的极限最大发电能力,因为不存在风速恒定,湍流为0的风资源。

2动态功率曲线

动态功率曲线,是实际功率输出及真实发电性能的表现。是指在考虑湍流条件下,即风速不是恒定不变的情况下,机组的实际功率输出,这个功率输出是通过风速在设定湍流条件下,机组控制系统实际响应下的功率输出,是机组的真实发电性能表现。

能够用于客观科学评价风场发电量水平的动态功率曲线一定是和当地实际风资源状态相对应的考虑的实际空气密度和具体湍流下的动态功率曲线。这条曲线明确了该机组在该风场的实际发电性能,以及达到额定功率时的必要风速。基于实际湍流环境下的动态功率曲线不仅考虑了风的波动,还通过风速的10分钟概率平均绘制功率曲线,这样才符合IEC标准关于功率曲线的定义。

一般用于评价发电量的典型动态功率曲线在标准空气密度(1.225kg/m3)下三条动态功率曲线,分别代表了低湍流的功率曲线(Ti<10%)、中湍流的功率曲线(10%15%)下,机组的时间功率输出。在接近额定风速时,湍流越大,机组能够输出的功率相对越小,这是因为风速的剧烈波动使得机组将风能转换为电能的过程越困难,转换效率越低,需要更多的智能控制方法,提升机组在风速波动下的能量转化性能。

事实上,不同风机的发电性能差异恰恰是体现在湍流环境下,目前很多行业的文章在静态条件下做的各种关于技术路线的效率分析实际上都舍本逐末,没有认识到决定风机发电量的主要矛盾和关键因素。因此,动态功率曲线能够准确地体现不同风机在动态变化中的智能化水平和先进控制策略。

为了能够更好地理解本文中所提出的动态功率曲线,还需要对动态功率曲线和静态功率曲线最大差异的地方做进一步阐述。大家可以通过上图看到,动态功率曲线和静态功率曲线最大的差异是在额定风速附近,静态功率曲线在额定风速上是一个生硬的拐点,而动态功率曲线在额定风速附近都会显著低于静态功率曲线,这恰恰就是实际风能转换效率和理论风能转换效率偏差发生最大的风速区间。

原因很简单,风电机组在这个风速区间正是风机额定风速上下的范围,这个时候的机组控制面临着一个尴尬的境地。

理想情况是,当超过额定风速时,机组的控制目标是将风能卸掉,但不能多也不能少,正好够满发;而当风速低于额定风速时,机组的控制目标是尽量捕获最多的能量。

但现实情况是,风速在瞬态会时而高于额定风速,时而低于额定风速,如果不采用激光雷达技术,我们很难预见下一时刻的风速。机组可能在风速高于额定风速时过度变桨而卸掉了更多的风能,导致不能满发。相反,当风速低于额定风速时,机组也可能还处于上一时刻卸掉风能的变桨状态,导致风能转换效率进一步降低,而大风轮惯量的增加,也加剧了这种低能量转化在传统风机的常态化。

这就是为什么有些使用了大风轮传统风机的业主抱怨机组过度偏离理论发电性能的原因吧。

由此可以看出,湍流才是风机作为风能转换效率达到最优的最根本的挑战,战胜湍流这个大恶魔,智能风机将会是一把利刃,那到底什么是智能风机呢,咱们下次再约,不见不散哦!

原标题:"湍流"那些事儿
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

风机查看更多>风电机组查看更多>风电设备查看更多>