登录注册
请使用微信扫一扫
关注公众号完成登录
1)根据表 1 可知,某发电集团下属 22 家火电厂外排废水执行《污水综合排放标准》( GB8978—1996)一级标准。
2)其下属 37 家火电厂主要执行电厂所在地的地方排放标准。相对于《污水综合排放标准》(GB8978—1996),地方排放标准排放限值更低且均增加了总氮的限值要求。此外,辽宁省地方排放标准
增加了氯化物排放要求,山东省地方排放标准增加了含盐量排放要求。
3)其下属 8 家位于市区火电厂的外排废水排入市政污水处理厂,执行《污水排入城镇下水道水质标准》(GB/T 31962—2015)C 级标准。该标准对常规污染物悬浮物、化学需氧量(COD)、氨氮、总氮和磷排放要求低,但是对含盐量有限值要求。
4)其下属 2 家位于沿海地区的电厂外排废水排入海洋,执行《海水水质标准》(GB 3097—1997)三类标准。
2 水处理系统典型问题
2.1 脱硫废水处理系统
脱硫废水处理系统绝大部分采用传统三联箱工艺,少数电厂采用电絮凝工艺。脱硫废水处理系统主要存在的问题如下。
1)出力不足 实施烟气超净排放改造后,脱硫吸收塔入口烟温降低,吸收塔蒸发水量降低[2],但是部分电厂脱硫吸收塔补充水水量没有相应降低,导致脱硫吸收塔排水水量增大,脱硫废水量超过原有脱硫废水处理系统出力。
2)进水含固量超过设计值 由于脱硫系统常出现废水旋流器设计容量和旋流子喷嘴尺寸选型不当,或旋流子喷嘴磨损废水旋流效果差,废水旋流器顶流含固量达到 4%以上,超过三联箱系统进水含固量设计值。因此,脱硫废水处理系统普遍存在连接管道沉积堵塞、搅拌机扭矩过大烧毁搅拌电机,以及污泥压滤系统超负荷运行等问题[3]。
3)三联箱和澄清器设计缺陷 常有因脱硫系统三联箱和澄清器设计反应停留时间太短,絮凝反应效果差,形成的矾花粒径小,导致泥水分离效果差,出水浊度和悬浮物含量高,水质差等问题[4]。
4)加药系统缺陷 部分电厂脱硫废水来水氟离子质量浓度较高,但加药系统只投加 NaOH 溶液,只能调节 pH 值,对氟离子不具有去除能力,造成脱硫废水处理系统出水氟离子不达标。另外,部分电厂石灰加药系统采用机械振打和气压流化出料方式,存在出料困难和计量不准等问题。
5)污泥脱水系统缺陷 部分电厂采用离心脱水机作为脱硫废水处理系统污泥脱水设备,运行时不能正常工作。脱硫废水处理污泥硬度较大,离心脱水机耐磨性较差,容易磨损;同时离心脱水机要求进料含固率稳定,含固率波动会造成离心机转动不平衡,易损坏。此外,相对于进口板框压滤机,国产板框压滤机故障率高、污泥含水率高且容易吡泥。
2.2 循环水系统
循环水补充水水源为中水的火电厂,循环水补充水一般采用石灰混凝澄清工艺处理,主要去除暂时硬度、悬浮物、磷和部分有机物;循环水补充水为地表水的火电厂,循环水补充水一般采用混凝澄清工艺处理,主要去除悬浮物。
带冷却塔的湿冷火电厂中约 50%的电厂使用城市中水作为循环水补充水水源,但是还有部分电厂没有城市中水处理设施或城市中水处理设施运行不正常,导致循环水浓缩倍率低(低于 3.0 倍),电厂取水量和排污量较大,循环水浓缩倍率有待进一步提高。
少数电厂已开展循环水排污水深度处理回用工作,在采用“混凝澄清—过滤—反渗透”工艺处理循环水排污水时,常存在反渗透膜污堵、保安过滤器压差迅速上升和系统回收率达不到设计要求等问题[5-7]。
2.3 其他废水处理系统
2.3.1 工业废水处理系统
火电厂工业废水处理系统一般采用混凝澄清、混凝澄清—过滤、混凝澄清—气浮—过滤工艺。工业废水处理系统存在的主要问题有:1)加药系统腐蚀泄漏严重;2)曝气风机、搅拌电机和澄清池刮泥
机设备老化,故障率高;3)工业废水池容积小,无法完全储存机组启停机排水、锅炉酸洗废水和空气预热器冲洗水等非经常性工业废水;4)工业废水未回用,直接或间接外排,造成了水资源浪费。
2.3.2 生活污水处理系统
目前,火电厂生活污水大部分采用地埋式接触氧化和曝气生物滤池工艺[3]。生活污水处理系统存在的主要问题有:1)雨水、工业水和工业废水等混入生活污水处理系统,生活污水处理系统进水水量大,有机物质量浓度低,生活污水处理系统微生物活性低,处理效果差;2)地埋式设备运行状况差、检修困难;3)生活污水中大块的悬浮性杂质没有被拦截去除,导致处理系统堵塞淤积;3)生活污水未回用,直接或间接外排,造成水资源的浪费。
2.3.3 含煤废水处理系统
目前,火电厂含煤废水处理一般采用化学絮凝和电絮凝工艺[8]。含煤废水处理系统存在的主要问题有:1)火电厂产生含煤废水的源头较多且分散,部分火电厂煤水收集系统不完善;2)初沉池容量
设计不足,反应装置进水悬浮物高于设计值,导致后续处理装置堵塞、运行压力大;3)高盐废水用于输煤系统,造成设备腐蚀,导致设备不能运行;4)含煤废水处理设施可正常运行,但暴雨季时系
统出力无法满足处理初期含煤雨水。
3 某发电集团火电厂废水治理对策
对某发电集团下属火电厂用水现状及存在问题进行了系统调研,并结合相关法律法规、标准及文献制定了《火电厂废水排放控制指导意见》(以下简称《指导意见》),以指导其火电厂开展废水治理工作。废水治理步骤:第一步开展水务查定,完善废水监测系统;第二步加强节水管理,优化废水治理方案设计;第三步强化立项和工程管理及加强运行维护。
3.1 开展水平衡试验和完善用排水监测系统
火电厂应在总结积累日常节水管理相关数据的基础上,按相关技术标准规定开展水平衡试验工作,梳理全厂和各系统水量平衡关系,找准废水治理的关键点。
火电厂应完善现有全厂水系统的计量仪表,实现主要水量的在线监测和主要供、排水流量(关口流量计)的监视及数据记录,及时发现并消除电厂的非正常用水。所有计量仪表应接入控制系统,并同步到厂级监控信息系统,使全厂水系统在线数据与离线数据紧密结合。计量仪表的记录、采集周期、定期维护校验和存储方式要满足运行分析和技术监督的需要。
加强对全厂水系统主要水质的监测,监测对象包括全厂水源、处理后的生活污水、工业废水、脱硫废水和全厂废水总排口废水。根据相关技术标准和管理制度,对上述水质采取定期或不定期监测分析,结果须及时录入运行管理系统。监测手段以采样化验为主,可根据环保风险等具体情况,配置必要的在线监测设备。
3.2 加强节水管理和优化废水治理方案设计
3.2.1 加强节水管理
1)优化全厂用水流程。具体措施包括:避免设备冷却水直排,可回收至冷却塔;消除输煤系统、灰渣系统、脱硫系统使用新鲜水等水的“高质低用”现象;确保正常情况下消防水系统不耗水;将生活用水量控制在合理范围等。
2)调整运行方式。具体措施有:过滤设备自用水,仅悬浮物质量浓度 1 项高于原水,可回收至原水预处理系统或工业废水系统处理回用;化学车间反渗透浓水可作为脱硫工艺用水;精处理及化学再生废水可按高盐和低盐废水分类收集,低盐废水送至工业废水系统处理回用,高盐废水与脱硫废水一并处置;调整输煤及除渣系统补水量,实现含煤废水和渣溢水循环利用不外排;绿化用水不使用工业水,可采用达标处理后的生活污水等[3,9]。
3.2.2 优化废水治理方案设计
开展可行性研究。根据电厂所在当地环保政策趋势和现实要求,结合电厂实际,经充分技术经济比选后,设计具有适度前瞻性的改造方案,并视情况对方案中涉及的循环水、循环水排污水回用处理工艺、末端废水浓缩等核心工艺进行试验论证。
3.3 强化立项和工程管理及加强运行维护
按照该集团立项审批相关要求对可行性研究方案进行评审,评审专家涉及电力规划院、电力设计院、发电公司等不同单位,电厂化学、环保、技经等多个专业,严格把关。
选择行业工程经验丰富的设计单位进行废水处理工艺初步设计;加强对设备供货的控制,尤其是关键设备与核心工艺包的供货;注重工程实施管理,选择信誉好、实力强的承包商,加强施工管理、保障工程质量;项目投产后,选择经验丰富、有咨询资质的第三方单位对项目进行性能考核,考察工程质量、系统性能,保障工程达到预期效果。各电厂应加强设施运行维护,具体维护措施包括:及时更换腐蚀严重的管路和配件,避免管路泄漏;应根据运行数据,对膜处理设备进行定期维护性清洗或者离线化学清洗,以提高膜元件寿命和设备出力;应根据实际情况及时更换过滤器滤芯、滤料等耗材;做好运行维护日志的记录工作。
4 火电厂高盐废水治理技术
高盐废水治理是火电厂废水治理的难点和关键。火电厂高盐废水主要包括:脱硫废水、精处理系统再生废水、化学除盐系统再生废水、循环排污水膜处理系统浓水等。高盐废水水质复杂,以脱硫废水为例,其水质具有高硬度、高盐分、高浊度、强腐蚀性的特征[10],经过达标处理之后环保指标如重金属、悬浮物、pH 值等指标得到控制,但离子质量浓度基本不变,因此还需进行深度处理。在进行深度处理和浓缩干化时,必须考虑工艺设备的防垢、防腐蚀及防生物污染等特性。
高盐废水浓缩可分为软化预处理阶段与浓缩减量阶段,浓缩减量阶段又包括膜法浓缩和热法浓缩2 类技术。按蒸发热源的不同,末端高盐废水蒸发干化技术分为蒸发结晶和烟气余热干燥 2 大类。高盐废水浓缩干化处理后的固体物包括杂盐、混盐、工业盐、含盐粉煤灰等,其综合利用的途径、费用等直接影响高盐废水零排放技术路线的选择[10-14]。
4.1 高盐废水软化预处理工艺
高盐废水的软化处理包括石灰—碳酸钠软化、氢氧化钠—碳酸钠软化、化学反应—管式微滤过滤软化、硫酸钠软化、离子交换软化、纳滤膜软化等。
石灰—碳酸钠软化、氢氧化钠—碳酸钠软化工艺均为两级化学反应加沉淀澄清处理,是通过投加化学药剂反应,去除高盐废水中的钙、镁离子及硅酸盐,以满足后续膜浓缩工艺防垢的要求。化学反应—管式微滤过滤软化是一种集化学反应软化和膜过滤技术于一体的软化分离工艺,在某些条件下可替代两级化学反应软化澄清工艺[15]。硫酸钠软化是利用同离子效应和硫酸钙溶解度较低的特点,进一步增大水中硫酸钙的过饱和度,诱导硫酸钙过饱和溶液自发结晶,从而在一定程度上降低钙离子质量浓度,达到软化的目的[16]。纳滤膜对离子有选择分离性,可将其用于高盐废水的软化预处理,纳滤膜包括卷式纳滤膜和振动膜 2 种类型。振动膜是近年来出现的一种新型膜分离工艺,该技术的核心特点是采用振动剪切增强过滤工艺,解决了静态膜分离中的膜污染和堵塞问题。离子交换软化是非常成熟的软化除盐工艺,在电厂水处理系统中有广泛的应用,但高盐废水的硬度很高,若直接使用离子交换软化,会导致树脂快速失效,需要频繁再生,因而只能与其他软化工艺联合运用,将其布置在化学药剂软化之后,作为系统软化保障设备,以保证软化工艺出水水质稳定。
4.2 高盐废水浓缩处理工艺
4.2.1 膜法浓缩减量处理工艺
膜法浓缩工艺包括纳滤、反渗透、电渗析、正渗透(FO)以及膜蒸馏(MD)等[17]。在对高盐废水浓缩减量过程中,尤其是后面需要进行分盐结晶时,纳滤工艺就是一种比较适用的浓缩工艺。纳滤膜对二价离子的分离效率很高,因此可对氯化钠和硫酸钠混合溶液进行分离,纳滤产水中主要成分为氯化钠,送至结晶系统可生产精制工业盐。
目前,用于高盐废水浓缩的反渗透工艺主要有:海水反渗透(SWRO)、碟管式反渗透(DTRO)以及高效反渗透(HERO)等。DTRO 适用于分离高浓度料液,具有适合高浓度、高含盐量污水处理的膜组件,对于处理垃圾渗滤液已经有多年的工程应用经验,但用于高盐废水处理时仍需解决废水的结垢问题。
电渗析(ED)是膜分离技术的一种,是在外加直流电场作用下,利用离子交换膜的选择透过性,实现对溶液的浓缩和分离。与反渗透技术相比,电渗析对废水的浓缩程度更高,可将溶液浓缩至含盐量 15%以上,最高甚至可以达到 20%。FO 是利用溶液间的渗透压差为推动力的自发性渗透驱动新型膜分离过程。正渗透浓缩工艺包括正渗透膜处理和汲取液回收循环两大系统,且回收汲取液所需的能量占整个系统耗能的绝大部分。FO主要适用于处理超出反渗透经济处理范围,或者反渗透无法处理的极高含盐废水。
MD 是膜分离与蒸馏过程相结合的分离过程,即热侧溶液中水分在膜面处汽化并透过膜进入冷侧后被冷凝成蒸馏水。该技术目前还处于实验室或小规模工厂试验阶段。
4.2.2 热法浓缩减量处理工艺
热法浓缩是一种传统的化工工艺过程,包括蒸汽加热蒸发、烟气蒸发、自然蒸发、增湿去湿等方式。其中,蒸汽加热蒸发包括多效蒸发(MED)、机械蒸汽再压缩(MVR)、热力蒸汽再压缩(TVR)等[15];自然蒸发主要包括蒸发塘和机械喷雾蒸发;烟气蒸发是火电厂特有的一种蒸发浓缩方式,主要是利用烟气的余热蒸发浓缩;增湿去湿主要有自然蒸发除盐(NED)、低温蒸发结晶(LTEC)和载气萃取(CGE)等方式。为了降低高盐废水热法浓缩预处理药剂成本,提出了硫酸钙晶种法降膜蒸发技术,该工艺的核心是在蒸发料液中添加硫酸钙“结晶种子”,以提供硫酸钙析出结晶生长的晶核,达到防止硫酸钙结垢的目的。
热法浓缩减量处理工艺的蒸发过程是将含有不挥发溶质的溶液加热沸腾,使溶剂部分汽化,从而达到浓缩溶液的目的。要保障蒸发连续进行,必须不断地向溶液提供热能,为了提高蒸发能效,发展出了 MED、MVR、TVR 等节能技术,可根据工程项目具体条件择优选用。降低高盐废水热法浓缩减量工艺热能消耗的另一条技术路线是采用电厂锅炉尾部烟气余热蒸发废水,主要包括低温烟气蒸发工艺和烟气余热闪蒸工艺。低温烟气蒸发工艺将脱硫废水浓缩塔连接至电厂电除尘器与脱硫塔之间,使脱硫废水在浓缩塔中循环蒸发;烟气余热闪蒸工艺利用电厂锅炉尾部除尘器入口的烟气余热蒸发废水,采用多效强制循环蒸发器,按“晶种法”工艺操作运行。
此外,采用自然蒸发原理的蒸发塘工艺、采用机械喷雾蒸发的强化自然蒸发工艺、利用载气的增湿—去湿工艺等,均在高盐废水浓缩减量处理中得到不同程度的研究和应用。
4.3 高盐废水干化处理工艺
末端高盐废水的干化处理,均需使用外加热能,将废水中剩余水分蒸发,产出固体盐分。按蒸发热源的不同,可将末端高盐废水蒸发干化技术分为蒸汽热源和烟气余热 2 类。
4.3.1 蒸汽热源蒸发结晶工艺
蒸汽热源蒸发结晶工艺采用蒸发结晶器,将末端高盐废水进一步蒸发浓缩析出固体并分离,经干燥处理后打包封装为固体盐。当选用不同的结晶方法时,可采用不同的结晶器,如真空冷却结晶器、强制循环蒸发结晶器、奥斯陆(OSLO)蒸发结晶器、导流筒加挡板(DTB)蒸发结晶器等。火电厂末端高盐废水的结晶过程,通常使用强制循环蒸发结晶器。
根据预处理及浓缩阶段工艺选择的不同,蒸发结晶工艺最终产物固体盐可能为杂盐、混盐或工业盐。从目前国内盐业市场情况看,回收盐受法规、标准、技术等制约,难以实现良好的资源化和市场化。回收盐的定性,也存在不确定性,若被判定为固废甚至危废,处理成本太高,影响主业可持续发展。此外,回收盐若作为产品销售,还需得到盐业及环保部门的许可。因此,在选择高盐废水干化处理工艺时,需进行充分的技术经济论证。
4.3.2 烟气余热蒸发干燥工艺
烟气余热蒸发干燥工艺利用电厂锅炉尾部烟气热量,将烟气与末端废水直接接触换热,使末端废水中的水分快速蒸发,析出的固体盐与烟气飞灰混合后收集处置。烟气余热蒸发干燥工艺将末端废水雾化为细微液滴,直接喷入空气预热器与电除尘器之间的烟道内干燥;或喷入单独设置的旁路烟气蒸发器内,与从空气预热器前抽取的少量烟气直接接触加热蒸发干燥。将末端废水直接喷入烟道内的工艺过程,受锅炉负荷波动、水量波动、烟道布置、流场变化等影响,易出现烟道结垢、喷头堵塞等问题,存在一定的技术风险[12, 17]。旁路烟气蒸发干燥工艺单独设置烟气蒸发器,与主烟道系统相对独立,可靠性高,该工艺系统简单,设备少,投资与运行费用低,能量消耗少,不需额外的热能输入,无液体排放,不会造成二次污染,废水蒸发盐分进入粉煤灰,不产生多余的固体。但是,旁路烟气余
热蒸发干燥工艺存在高温条件下含结晶水氯化镁分解产生氯化氢气体造成后续脱硫吸收塔氯离子升高,破坏原有吸收塔氯平衡[18],以及结晶盐进入粉煤灰影响其质量等问题,因此选用该工艺时需要加以论证。旁路烟气余热蒸发干燥技术在国内已完成现场工业试验,大规模工程建设也在快速推进中,具备良好的应用前景。
5 结 语
某发电集团在对下属火电厂用水现状及存在问题充分调研的基础上,结合相关法律法规、标准及文献资料,编制了《火电厂废水排放控制指导意见》,使火电厂开展废水治理工作有章可循。火电厂废水治理项目应遵循以下步骤:第一步开展水务查定,完善废水监测系统;第二步加强节水管理,优化方案设计;第三步强化立项和工程管理及加强运行维护。高盐废水治理是火电厂废水治理的难点,该集团对各类预处理、浓缩和干化工艺进行了大量研究,但由于各厂情况不同,还未形成统一的技术路线,需根据各电厂实际情况,选择经济合理的技术方案。
[参 考 文 献]
[1] 马淑杰, 朱黎阳, 王雅慧. 我国高耗水工业行业节水现状分析及政策建议[J]. 中国资源综合利用, 2017,35(2): 43-47.MA Shujie, ZHU Liyang, WANG Yahui. Analysis and suggestions on water conservation of high water-intensive industries in China[J]. China Resources Comprehensive Utilization, 2017, 35(2): 43-47.
[2] 李亚娟, 王正江, 余耀宏, 等. 烟气超净排放改造对废水零排放水量平衡体系影响的处理措施[J]. 热力发电,2015, 44(12): 129-132.LI Yajuan, WANG Zhengjiang, YU Yaohong, et al. Effect of super-clean emission retrofitting on water balancesystem of coal-fired power plants with zero wastewater disge[J]. Thermal Power Generation, 2015, 44(12):129-132.
[3] 胡大龙, 于学斌, 余耀宏, 等. 直流冷却型火电厂深度节水方案[J]. 热力发电, 2016, 45(9): 134-139.HU Dalong, YU Xuebin, YU Yaohong, et al. Depth water conservation technology in coal-fired power plant with once-through cooling system[J]. Thermal Power Generation,2016, 45(9): 134-139.
[4] 王冬梅, 夏春雷, 崔伟强, 等. 脱硫废水处理系统设计问题和运行难点对策分析[J]. 水处理技术, 2015(12):126-128.WANG Dongmei, XIA Chunlei, CUI Weiqiang, et al. The ermeasure analysis of desulfurization wastewater treatment system design and operation problems[J].Technology of Water Treatment, 2015(12): 126-128.
[5] 龙潇, 何彩燕, 石景燕, 等. 循环水排污水回用工艺中反渗透系统污堵原因分析[J]. 中国电力, 2012, 45(7):43-46.LONG Xiao, HE Caiyan, SHI Jingyan, et al. Analysis on fouling of reverse osmosis systems in reuse process for blowdown of circulating water[J]. Electric Power, 2012,45(7): 43-46.
[6] 张志国, 胡大龙, 王璟, 等. 燃气电厂深度节水及废水零排放方案[J]. 中国电力, 2017, 50(7): 127-132.ZHANG Zhiguo, HU Dalong, WANG Jing, et al. The in-depth water conservation and zero disge technology for gas turbine power plants[J]. Electric Power, 2017,50(7): 127-132.
[7] 李瑞瑞, 毛进, 李乐, 等. 中水水源循环水排污水高回收率回用工艺应用研究[J]. 水处理技术, 2016, 42(5):100-105.LI Ruirui, MAO Jin, LI Le, et al. Research on high recovery treatment process of circulating sewage for the reclaimed water sources[J]. Technology of Water Treatment, 2016, 42(5): 100-105.
[8] 朱学兵, 韩东浩, 徐忠明, 等. 火电厂含煤废水处理及回用系统设计[J]. 热力发电, 2008, 37(1): 104-105.ZHU Xuebing, HAN Donghao, XU Zhongming, et al.Design of the treatment and reuse system for coal contained wastewater in power plants[J]. Thermal Power Generation, 2008, 37(1): 104-105.
[9] 郭安祥, 王立立, 白晓春. 火力发电厂生活污水处理回用于循环冷却水的中试研究[J]. 工业水处理, 2004,24(12): 43-45.GUO Anxiang, WANG Lili, BAI Xiaochun. Pilot-scale study on reclaiming domestic wastewater as circulatingcooling water in a heat power plant[J]. Industrial Water Treatment, 2004, 24(12): 43-45.
[10]王冬梅, 程家庆, 孔繁军. 脱硫废水零排放技术与工艺路线[J]. 工业水处理, 2017, 37(8): 109-112.WANG Dongmei, CHENG Jiaqing, KONG Fanjun. Zero disge technology and process route of desulfurization wastewater[J]. Industrial Water Treatment,2017, 37(8): 109-112.
[11]张广文, 孙墨杰, 张蒲璇, 等. 燃煤火力电厂脱硫废水零排放可行性研究[J]. 东北电力大学学报, 2014,34(5): 87-91.ZHANG Guangwen, SUN Mojie, ZHANG Puxuan, et al.The study of the feasibility of zero disge of desulfurization wastewater in coal-fired power plant[J].Journal of Northeast Dianli University, 2014, 34(5):87-91.
[12]佘晓利, 潘卫国, 郭士义, 等. 燃煤电厂湿法烟气脱硫废水零排放技术进展 [J]. 应用化工 , 2018, 47(1):160-164.SHE Xiaoli, PAN Weiguo, GUO Shiyi, et al. Advances in zero-disge technology for wet flue gas desulfurizationwastewater from coal-fired power plants[J]. AppliedChemical Industry, 2018, 47(1): 160-164.
[13]王广珠, 柴紫仪, 王旭初, 等. 水处理用粉末离子交换树脂质量指标探讨[J]. 热力发电, 2010, 39(4): 23-27.WANG Guangzhu, CHAI Ziyi, WANG Xuchu, et al. An approach to quality indices of powdered ion-exchange resion used for water treatment[J]. Thermal Power Generation, 2010, 39(4): 23-27.
[14]毛进, 王璟, 张江涛, 等. 新型絮凝反应器工艺性能试验研究[J]. 热力发电, 2010, 39(5): 105-107.MAO Jin, WANG Jing, ZHANG Jiangtao, et al. Study on performance test of new flocculation reactor process[J].Thermal Power Generation, 2010, 39(5): 105-107.
[15]刘亚鹏, 王金磊, 陈景硕, 等. 火电厂脱硫废水预处理工艺优化及管式微滤膜实验研究[J]. 中国电力, 2016,49(2): 153-158.LIU Yapeng, WANG Jinlei, CHEN Jingshuo, et al.Optimization of FGD wastewater pretreatment technique for thermal power plant and test studies on tubular crossflow microfiltration process[J]. Electric Power,2016, 49(2): 153-158.
[16]汪岚, 蔡井刚, 胡治平. 石灰-芒硝-烟道气法软化脱硫废水的可行性分析[J]. 浙江电力, 2016, 35(2): 48-50.WANG Lan, CAI Jinggang, HU Zhiping. Feasibility analysis of desulphurization wastewater softening through limemirabilite-flue gas method[J]. Zhejiang Electric Power, 2016, 35(2): 48-50.
[17]叶春松, 罗珊, 张弦, 等. 燃煤电厂脱硫废水零排放处理工艺[J]. 热力发电, 2016, 45(9): 105-108.YE Chunsong, LUO Shan, ZHANG Xian, et al. Key problems and developing trend of zero disge technology of desulfurization wastewater[J]. Thermal Power Generation, 2016, 45(9): 105-108.
[18]马双忱, 武凯, 万忠诚, 等. 旁路蒸发系统对燃煤电厂脱硫系统水平衡和氯平衡的影响[J]. 动力工程学报,2018, 38(4): 298-307.MA Shuangchen, WU Kai, WAN Zhongcheng, et al.Effect of evaporation bypass on water and chlorine balance in desulfurization system of a coal fired power plant[J]. Journal of Chinese Society of Power Engineering, 2018, 38(4): 298-307.
林 勇 1,王正江 2,胡大龙 2,许 臻 2,王 璟 2
(1.中国华能集团有限公司,北京 100031;2.西安热工研究院有限公司,陕西 西安 710054)
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
河北建投河北省石家庄市西柏坡四期工程(2×66万千瓦热电联产机组扩建)EPC总承包项目脱硫工程EPC项目建筑安装施工中标候选人公示(招标编号:CWEME-202507XBPAZ-S001)第一中标候选人:中国能源建设集团北京电力建设有限公司,投标报价:66998889.00元,工期:2026.08.28,质量:良好;第二中标候选人:
中煤靖远发电有限公司7、8号机组脱硫废水零排放改造EPC总承包项目建筑安装工程中标候选人公示(招标编号:CWEME-202507SCLTL-S001)第一中标候选人:北京首钢建设集团有限公司,投标报价:12587321.00元,工期:2026年1月30日,质量:良好;第二中标候选人:甘肃省安装建设集团有限公司,投标报价:136
华润电力(渤海新区)有限公司1号机组脱硫提效改造工程中标候选人公示公示编号:SZBHX202507100030号第一中标候选人:南京华尔锦电气有限公司,投标价格:4186560.00元第二中标候选人:武汉立为工程技术有限公司,投标价格:4591000.00元
山东公司石横公司脱硫废水零排放改造公开招标中标候选人公示第一中标候选人:郑州恒博环境科技股份有限公司,投标报价:4080.000000万元第二中标候选人:北京北科欧远科技有限公司,投标报价:4080.000000万元科环集团国能水务南京分公司国能锦界2×600MW二期脱硫废水零排放改造EPC项目建安工程公开招
近日,大唐集团官网公布中央生态环境保护督察群众信访举报转办和边督边改公开情况一览表(第八批)。经核查,巩义项目部存在对环保设备运行维护不到位的问题,2024年7月9日19:00-20:00,2号机组发生一起因设备故障导致的二氧化硫排放浓度小时均值超标1小时的情况。2024年7月9日2号机组二氧化硫排放浓度小
中煤西北能源乌审旗2×660MW煤电一体化工程脱硫EPC系统工程项目项目公告项目编号:CCTC20251330招标方式:公开招标开标时间:2025年07月09日10时00分1.招标条件本招标项目中煤西北能源乌审旗2×660MW煤电一体化工程脱硫EPC系统工程项目,招标人为中煤鄂尔多斯能源化工有限公司。该项目资金来源已落实,
华能长江环保公司西热锅炉环保公司德州电厂高灵活性清洁高效2台660兆瓦热电联产项目脱硫系统安装施工招标公告(招标编号:HNZB2025-06-1-141)项目所在地区:山东省,德州市1.招标条件本华能长江环保公司西热锅炉环保公司德州电厂高灵活性清洁高效2台660兆瓦热电联产项目脱硫系统安装施工已由项目审批机关
6月12日,国家电投集团党组书记、董事长刘明胜到五凌电力黔东电厂调研贵州区域煤电企业生态环境保护工作,督导前期调研发现问题整改工作,主持召开系统生态环境保护整改推进专题会。刘明胜首先来到黔东电厂贮灰场,实地查看前期调研发现有关生态环境保护问题整改情况,详细了解固废堆放、新灰场增容建
中煤西安设计工程有限责任公司大别山电厂三期2×1000MW清洁煤电扩建工程脱硫系统安装工程项目项目公告项目编号:CCTC20251281招标方式:公开招标开标时间:2025年07月02日10时00分1.招标条件本招标项目中煤西安设计工程有限责任公司大别山电厂三期2×1000MW清洁煤电扩建工程脱硫系统安装工程项目,招标
金元公司鸭溪电厂1、2号机组烟气脱硫超低排放改造招标公告
(黑龙江公司)大唐哈尔滨第一热电厂1X660MW超超临界热电联产项目脱硫EP中标候选人公示(招标编号:CWEME-202505HYRTL-W001)第一中标候选人:同方环境股份有限公司,投标报价:30960000.00元,交货期:满足招标文件要求,质量:良好;第二中标候选人:浙江菲达环保科技股份有限公司,投标报价:33910000
产地煤价稳中小幅探涨,全国多地高温,电力负荷增长明显,“迎峰度夏”特征显著,市场情绪持续提振。上周,环渤海港口发热量5500、5000和4500大卡市场煤价格分别上涨了8、8、9元/吨。本周,市场流通环节采购意愿有所增强,电厂和站台拉运需求较为平稳,大部分煤矿库存有序下降,煤价调整以小幅上涨为主
十四五以来,国家发改委和国家能源局相继印发三批大型风光大基地建设项目清单,依托西北地区禀赋的风光资源,积极推动新能源产业升级、地区效益回报及沙戈荒生态治理的高质量融合,依据最新规划布局方案推算,截至2030年,以沙漠、戈壁、荒漠地区为重点的新能源总装机容量将突破455GW,低碳经济蓬勃发
在构建全国统一电力市场的战略背景下,售电侧市场化改革持续深化,售电主体多元化格局加速形成。作为直接联系电力用户的关键环节,售电市场的健康发展对优化资源配置、激发市场活力、保障能源安全和服务经济社会发展具有重要意义。然而,伴随市场规模的扩大与规则的演进,售电市场也面临新的形势与挑战
截至2025年7月11日,广西电力市场经营主体数量突破2万家,达到20120家,同比增长33%,其中发电企业334家,售电公司157家,电力用户19629家,用户计量点达4.2万个,较2024年增长100%,市场活力持续释放。广西电力交易中心坚持“开门办市场,共商谋发展”的理念,不断优化市场机制,创新交易品种,扩容绿
发挥省间市场作用筑牢电力保供基石——访北京电力交易中心党总支书记、副总经理常青当前,我国多地电力负荷持续攀升,能源资源逆向分布的国情与新能源波动性、负荷尖峰化带来的供需挑战交织,省区电力资源调配作用的重要性凸显。作为推动全国电力资源优化配置的关键平台,北京电力交易中心如何利用省间
当前,我国新能源产业正以前所未有的速度重塑能源版图。2025年上半年,一系列以系统性改革为引擎的政策密集出台,通过市场化机制激活、基础设施跃升、技术创新驱动、数字智能赋能四大支柱,合力构建能源新生态,形成覆盖能源全链条的战略布局。2025年7月10-11日,由榆林市发展和改革委员会、榆林市国有
7月16日,硅业分户公布最新多晶硅价格。本周硅料价格涨势进一步巩固,相较于上周企业普遍提价但实际成交寥寥的局面,本周成交活跃度显著提升,约6家企业达成新订单,整体成交量环比大幅增长。本周成交区间在4.0-4.9万元/吨,订单价格大多落在区间两端,有较为明显的价格分化。造成价格分化的主要原因在
为进一步加强煤电节能减排监管,根据《节约能源法》《大气污染防治法》以及能源监管统计报表制度等相关规定和要求,福建能源监管办汇总统计了2025年上半年福建省统调燃煤电厂节能减排信息,现予公布。一、总体情况2025年上半年,福建省统调燃煤电厂加权(下同)平均供电标准煤耗294.15g/kWh,同比降低1
7月16日,青海省能源局发布关于印发《青海省绿电直连实施方案》的通知。文件明确,有序推进以下4种类型的绿电直连项目:1.新增负荷可配套建设新能源项目。2.存量负荷在已有燃煤燃气自备电厂足额清缴可再生能源发展基金的前提下开展绿电直连,通过压减自备电厂出力,实现清洁能源替代。3.有降碳刚性需求
北极星售电网获悉,7月16日,青海省能源局发布关于印发《青海省绿电直连实施方案》的通知。文件明确,有序推进以下4种类型的绿电直连项目:1.新增负荷可配套建设新能源项目。2.存量负荷在已有燃煤燃气自备电厂足额清缴可再生能源发展基金的前提下开展绿电直连,通过压减自备电厂出力,实现清洁能源替代
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
近日,中国企业联合会公布了“2024全国健康企业建设特色案例、健康班组案例企业家和职工健康达人案例以及优秀组织案例”名单,以推广我国企联组织、全国性行业协会和各类型企业在开展健康企业建设方面的积极探索和成功实践。国家能源集团共有67项健康企业建设特色案例,28个健康班组案例,13位企业家和
十四五以来,国家发改委和国家能源局相继印发三批大型风光大基地建设项目清单,依托西北地区禀赋的风光资源,积极推动新能源产业升级、地区效益回报及沙戈荒生态治理的高质量融合,依据最新规划布局方案推算,截至2030年,以沙漠、戈壁、荒漠地区为重点的新能源总装机容量将突破455GW,低碳经济蓬勃发
国家能源集团近日发布四川公司(四川能源)江油热电公司#31、#32机组汽轮机通流改造EPC公开招标项目中标候选人公示。项目名称:四川公司(四川能源)江油热电公司#31、#32机组汽轮机通流改造EPC公开招标招标编号及包号:CEZB250504232001第一中标候选人北京国能龙威发电技术有限公司,投标报价10750.5
国家能源集团近日发布江苏公司淮安公司2×20MW机组主体工程建安施工工程公开招标项目中标候选人公示。项目名称:江苏公司淮安公司2×20MW机组主体工程建安施工工程公开招标招标编号及包号:CEZB250604051001第一中标候选人中国能源建设集团江苏省电力建设第三工程有限公司,投标报价18573.1004万元。第
7月4日,由中国能建广东火电承建的世界首个城市中心全户内紧凑化柔性直换流站——广州220千伏天河棠下柔直背靠背工程正式开工。项目位于广东省广州市天河区天河智谷广棠片区,是南方电网2025年新型电力系统建设“十大工程”之一。本期新建1组700兆瓦直流线路和3组450兆瓦直流线路,新建电缆长0.18千米
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
对光伏人来说,2025年又是一个让人心惊肉跳的5·31。2018年的5·31,因为累计20年待支付光伏发电补贴费用超过1万亿元,中央政府对光伏新建项目急刹车。在政策的影响下,光伏装机容量装机大跌、产业链大量企业倒逼,投资商资金链断裂。这段光伏项目业主和光伏产业链上生产企业遭受灭顶之灾的历史,让广
北极星售电网获悉,7月15日,重庆电力交易中心发布6月发电装机及分类型总体情况,截止6月底,统调发电机组装机容量(含储能)2829.05万千瓦。截止6月底,统调火电发电机组装机容量1646.01万千瓦,水电发电机组装机容量618.8万千瓦,风电发电机组装机容量282.85万千瓦,太阳能发电机组装机容量141.18万
选择接受市场价格的分布式光伏只有全部上网电量按照实时市场价格结算这一个场内结算项。具体是如何结算的我们通过上文接受市场价格:量价双不报的分布式光伏如何结算进行了专项分析。要视计量条件而定,终局都将是分时段计量电量的日清月结。大部分地区的存量分布式项目因为全部电量都在机制范围内,所
近日,江苏省生态环境厅印发《江苏省2025年大气污染防治工作计划》的通知,其中提出,加快推进煤电机组深度脱硝改造,年底前全面完成煤电机组深度脱硝改造任务。推进能源结构调整优化。在保障能源安全供应的前提下,严格合理控制煤炭消费总量,2025年煤炭消费量较2020下降5%左右。大力发展新能源和清洁
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!