登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
动力电池组的一致性问题是导致电池组快速衰减、发生热失控故障、使用寿命远低于设计寿命的主要原因。提前报废的电池组,很多单元电池还处于健康状态,仍具有较高的利用价值,通过合理的梯次利用,可继续发挥其余热。但一致性问题不解决,新组装的梯次利用电池组仍会在较短的时间内同样发生一致性问题,研究和实验表明,高效解决一致性问题才是电池组安全运行和耐用的根本。
本文来源:动力电池网 微信公众号 ID:sd-dldc
一、梯次利用的必要性
锂电池使用量最大的设备是电动汽车,随着第一批电动汽车使用年限的逐渐到来,大量车用锂电池组面临退役和报废处理,数量以万吨为单位,如此庞大数量的锂电池,直接按报废程序和流程处理显然是不合适的。
这是因为退役或报废电池组中并非所有电池都处于报废状态,由于不一致性原因,通常只是个别单元的电池报废,组内的很多电池还处于良好的生命周期内,仍有较高的梯次利用价值,可以通过合适的梯次利用方案继续发挥余热。
近些年来,电池组梯次利用的呼声与研讨一直在持续,这种声音,是积极的、正面的,是环保意识、资源再利用意识得到进一步增强的体现,一些企业已经开展了这方面的尝试。
二、梯次利用的现状
理想很丰满,现实很残酷,是退役电池组梯次利用的真实写照。为了延长退役电池的使用寿命和剩余价值,国家、政府鼓励企业和社会力量开展对大量退役电池进行梯次利用,减少报废电池数量、减少环境污染,然而梯次电池的利用现实却非常残酷,特别是其安全问题。
由于电池组的一致性问题在全世界都是一个技术难题,尚没有高效、彻底和经济的解决方案和技术,使得梯次利用电池组的运行安全性远远低于原电池组,并且梯次利用的安全、循环寿命和再利用价值无法得到保证。所以,电池组梯次利用在具体应用层面和市场反应远不如预期的好。下面通过几个案例进行进一步说明。
据报道,自2018年5月以来,韩国储能行业发生23起严重火灾。2019年6月11日,韩国政府正式公布调查结果,所有23起储能系统火灾事故中有14起在充电后发生, 6起发生在充放电过程中,3件是在安装和施工途中发生火灾。从火灾事故起数可以看出,因电池充放电原因发生的事故数量和比例占了绝大多数,可见电池安全管理在电池组的安全运行中是多么的重要。
根据官方机构统计,2018年我国新能源汽车起火事件至少发生40起。而今年以来,新能源汽车起火事件依然频发,在4月21日至4月24日的四天时间内连续发生三起起火事故。与此同时新能源整车召回事件也频发,其中因电池安全而引起的召回较2018年明显增多。
业内人士认为,电池安全是新能源汽车起火最关键的因素,电池安全管理缺陷,特别是一致性管理难题会导致车辆在使用过程中可能发生电池包内部过热的现象,存在热失控起火的安全隐患,是需要重点攻克和解决的难题、课题。
锂电池虽然具有其它二次电池所不具有的优势,比如能量密度大,循环使用寿命长等优势,但其弱点也非常明显,特别是对充放电电流和电压非常敏感,耐过充和过放能力非常差,既不允许过充,也不允许过放,否则会对锂电池的容量、性能、使用寿命造成不可恢复的损伤,因此单锂电池(包括多块锂电池并联)模块通常都配备独立的锂电池保护板,防止锂电池在使用期间发生过充电或过放电故障,但这种保护方式不适合串联锂电池组。
大量的研究和试验表明,要解决锂电池组的安全运行问题,必须解决锂电池的一致性及其引发的“热失控”管理问题,而解决一致性问题的关键技术则是电池均衡技术,因此,研发高效的电池均衡技术是当前及今后一段时间内需要重点攻关的课题,是保障电池组安全运行的核心技术。
三、电池均衡技术难点
国内外在高功率、大容量电池梯次利用方面,主要应用在储能电站,用于调峰,其次是用于通讯基站,逐渐取代传统的铅酸蓄电池。为了获得需要的电压和功率,储能电池组的锂电池全部采用多并多串的方式,容量更大,串数更多,安全管理难度更大,因此对电池均衡的要求也更高,特别是在均衡电流和均衡效率方面,需要解决快速均衡的问题。
锂电池组的使用过程包括充电期、充电结束后的恢复期、静止期、放电期、放电结束后的恢复期、静止期、再充电,反复循环,如图1所示,其中影响电池使用寿命的最重要的两个环节是充电和放电,也是最容易引发电池“热失控”事故的阶段。
充电期最容易发生的问题是过充电,通常并不是每一个单元电池都被过充电,而是组内容量最小的电池极易被过充电,并且是长时间被过充电,大部分电池的电压通常都处于正常电压区间,特别是到了充电末期,电压差异非常明显;放电期最容易发生的问题是过放电。
同样,通常也不是每一个单元电池都被过放电,而是组内容量最小的电池极易被过放电,大部分电池的电压通常都处于正常电压区间,特别是到了放电末期,电压差异非常明显;而在其它期间不再发生充放电行为,小容量电池与其它电池的电压差异通常并不十分明显,通过电压识别容易造成误判。这里我们发现,容量最小的电池既容易被过充电,又容易被过放电,两种状态都加速其衰减,需要重点解决小容量电池被过充电和被过放电的问题。
锂电池的容量衰减有一个渐进和积累的过程,如果从电池组启用后就通过电池均衡功能介入和干预。那么,锂电池因外界因素造成衰减差异速度就会降低,通过外部均衡硬件的主动控制和干预将所有电池的衰减速度差异控制在相同区间,即等速度或等速率衰减,就可以最大限度地提高整个电池组的循环使用寿命,这就需要通过电池均衡技术来实现。
通过电池使用期间示意图不难发现,充电期和放电期只是其中的两个环节。因此,仅仅依靠充电期和放电期来实现电池组的均衡并不是最理想的方案,即使能够实现,对电池均衡器的性能要求必然非常高,随之带来的是高成本,难以普及。
通过电池组的实际使用情况来看,按照时间比例,充电期和放电期的累计时间远远小于恢复期和静止期的时间和。因此,多利用电池组的恢复期和静止期进行电池均衡,可以快速缩短衰减电池和正常电池之间的差异,所以,从实用的角度出发,实用的电池均衡技术最好要支持静态均衡,只有支持静态均衡,才能降低充电期和放电期的均衡压力,才能更好地提高电池组的充电均衡和放电均衡效率。
需要注意的是,静态均衡的启动条件是电压差大于均衡设备的设定基准电压差,直至平衡,为了防止均衡器一直无休止地进行静态均衡,需要均衡器支持均衡结束进入休眠或者微功耗检测状态功能,减少不必要的电能损耗。
目前,电池PACK包模块化的趋势越来越明显,通过电池PACK包可以构成更大容量和功率的大电池PACK组,尽管PACK包内安装了锂电池保护板,但电池包的循环使用寿命短的问题却几乎没有改观,安全事故依然频出,根源都是因为一致性问题没能得到解决造成的,可见对电池包内电池组进行实时高速均衡的需求是非常迫切的。
在电池组发生一致性问题的情况下,电压差异特征的表现最为明显,也是电池组一致性检测的常用和关键量化指标,从电压检测、均衡控制和设备成本控制的角度出发,通过控制电压的方式进行均衡是最经济、最有效和最容易实现的方案,为广大研发人员采用。
基于此,电池均衡技术主要有三种类型,分别是电阻耗能式均衡、充电均衡和转移式电池均衡,其中电阻耗能式均衡是典型的的被动均衡,类外两种为主动均衡。开发成本和均衡效率方面由低至高的顺序为:电阻耗能式均衡<充电均衡<转移式电池均衡。
充电均衡其实是一种过渡的电池均衡技术,主要解决了电阻耗能式均衡的均衡电流小、发热严重的问题,而转移式电池均衡才是真正意义上的实用的电池均衡技术,是电池均衡技术的未来发展方向,三种电池均衡技术的主要性能差异详见表1。
通过对照可以发现,虽然转移式电池均衡技术具有性能优势,但其弱点也很多,例如成本高、技术复杂、实现难度大,都是目前研发需要面对的难题,需要通过广大科技工作者的不懈努力进一步进行技术攻关来解决。
四、实时电池均衡技术的研发难点
基于实时电池均衡技术的研发难度之大,市场上这种电池均衡器的研发进展非常缓慢,掌握这项技术的研发机构和企业非常少,特别是高效的转移式实时电池均衡技术,从市场上的相应产品的销售、普及情况就可以证明,只存在少数几种电池均衡器在销售中,但因成本原因,销售并不理想。
在很多人眼里,转移式实时电池均衡技术几乎是一项不可能实现的技术,事实上,它的研发难度超乎很多人的想象,需要攻克的技术难点非常多,往往是一个技术难点攻克了又出现了新的技术难点,而且有些技术难点之间又相互牵制和干扰,想要找到一种满足多个指标要求的技术方案都需要进行大量的计算和试验,确定设计方案是非常困难的。
甚至是,一个太正常不过的参数调整都会导致系统紊乱、工作异常,社会上很多当初信心满满的研发机构、团体和企业大多都是因为研发难度过大、研发周期长、设备成本过高,在投入大量研发资金无果后选择了放弃研发。
真正实用的电池均衡应具有成本适中、电能转换效率高、均衡速度快、电压控制精度高、实时均衡的特点,这些特有的指标要求,实际上在成本控制与性能要求之间形成了矛盾,必须通过经济、合理的软硬件设计来解决。
五、实例与分析
为了实现上述均衡目标,作者历时多年开发出高效实时电池均衡技术,成功解决了成本与性能之间的矛盾问题,已在各种一致性严重失衡锂电池组上开展并完成均衡应用实验,达到设计指标。通过在多达13串18650型号梯次利用锂电池组上的连续充放电均衡实验,各项性能指标都达到预期要求。
实验期间,最小容量电池未发生过充和过放问题、所有电池容量都得到最大化利用,在整组表现上,无论是充电容量还是放电容量都远远超过组内最差电池的容量,全过程中,所有电池的电压都处于安全值以内,特别是在充放电的末期,电压差始终非常小,所有电池的温升都在合理区间,最差电池的温升反而是最低的,这种温升的表现对于控制“热失控”是非常有利的。
本文以13串18650型号梯次利用锂电池组的标准放电和均衡放电为例进行对比和阐述,13块锂电池的实际容量相差悬殊、内阻各异,放电标准为1A恒流放电,当总电压放电至39.0V或任意电池的放电电压降至3.0V时停止放电。为确保对比放电公平,每次放电前,每一块电池都通过均衡充电模式充电至相同的电压。
在常规放电模式下,有效安全放电时间35分钟,10#电池就到达放电终止电压3.0V,如图2所示,其它电池的电压普遍较高,电压的一致性表现得非常差,最大电压差达到0.581V,非常严重,放电总电压仍高达44.876V,远高于规定的39.0V,平均电压高达3.452V,远远高于平均放电截止电压,从剩余平均电压来看,还有较多电能没有得到利用,闲置了很多容量,容量利用率较低,浪费严重;
而当全程使用高效电池均衡器的情况下,在相同的放电标准情况下,有效安全放电时间延长至58分钟,是标准放电容量和时间的1.66倍,此时,10#电池的电压仍高达3.0V以上,如图3所示,其它电池的放电电压也都接近于3.0V,电压的一致性表现的非常好,最大电压差只有70mv,基本正常,放电总电压39.377V,接近39.0V,平均电压只有3.029V,非常接近平均放电截止电压3.0V,有效电量基本都释放完毕。10#电池的电压之所以不是最低,与实验用梯次电池具有不同放电曲线有关,最重要的是高效电池均衡器的介入,对其它电池电量进行了充分的调整和再分配,电池的电能得到充分利用。
为便于对比,制作了两种放电模式下结束时刻电压对照表,见表2,及两种放电模式下结束时刻电压一致性对照图,如图4所示。本文所使用的高效电池均衡器支持BMS联控,可按需启动和关闭均衡功能,既可以独立控制某个单元,也可以控制整个均衡器组。
两种放电模式模式下的实验结果对比,充分说明了均衡放电的作用和效果是非常明显的。均衡放电不仅仅实现了不同容量电池电压的同步下降,防止小容量电池发生过放电、预防热失控故障发生,提高电池组的循环使用寿命,更重要的是实现了差异电池容量的安全、充分利用,提高电池组的平均容量利用率,稳定续航时间。
本文所述转移式实时电池均衡器高效支持静态均衡和充电均衡,限于篇幅,相应的对比实验抓图及相关数据分析略。
六、结束语
锂电池梯次利用所遇到的问题,不仅限于配组时一致性较难控制的退役电池组的梯次利用,也包括配组时一致性较好的标准电池组。锂电池梯次利用,最需要注意和解决的是电池组的运行安全问题,没有了安全这个前提,梯次利用无从谈起。
而对安全威胁最大的是一致性问题及其引发的“热失控”,有效的电池均衡技术是目前唯一的选择,而转移式实时电池均衡技术性能最好,但它仍无法消灭电池的衰减,只是将不同差异电池的衰减速度进行了优化和调节,使之具有近似相同的衰减速率,同步衰减,通过高效均衡管理实现电池组的长寿命安全运行。
参考文献:
[1]周宝林,周全:一种具有双向同步整流功能的转移式实时电池均衡器
[2]周宝林,周全:转移式电池均衡技术对电池电压与荷电量影响的研究
[3]周宝林,周全:转移式实时电池均衡技术对衰减电池组容量和温升的影响
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星电池网获悉,11月13日,梅赛德斯-奔驰在北京举办第12届中国可持续发展对话会。会上,梅赛德斯-奔驰宣布与江苏华友能源科技有限公司(华友能源)在福建奔驰汽车有限公司(福建奔驰)开展动力电池梯次利用试点项目。项目部署了一套500kWh的储能系统和8台智能充电桩,能够储存太阳能发电和电网波谷
北极星储能网获悉,11月9日,许继电气公告称,为有效集聚要素资源优势,推进许继智慧能源业务发展,许继电气拟通过公开挂牌的方式对子公司许继智慧能源增资扩股,引进战略投资者;并计划于近日在产权交易所进行预挂牌。公开资料显示,本次交易的标的许继智慧能源(河南)有限公司,原名许昌许继电动汽
北极星电池网获悉,11月1日,云南昆明工信局印发《昆明市支持新能源汽车废旧动力蓄电池综合利用产业高质量发展若干政策措施(征求意见稿)》。文件提出:支持梯次利用、有价金属再生循环利用等关键环节制造项目落地。自2025年至2027年三年内,市级每年对全市动力电池综合利用产业发展情况实行动态绩效
北极星储能网获悉,10月8日,福建省发展和改革委员会等8单位关于加快构建废弃物循环利用体系有关工作的函,文件提出,推进废旧动力电池循环利用。鼓励动力电池企业积极开展产品碳足迹认证,引导龙头企业积极参与制定动力电池循环利用国际标准。完善新能源汽车动力电池回收利用溯源管理体系,引导新能源
北极星电池网获悉,近日,总投资3.5亿元的冰川锂电池全产业链绿色综合利用项目顺利投产,项目位于福建省龙岩市新罗区能源互联网产业园,新建锂电池梯次拆解回收、破碎分选回收生产线及相应的配套设施设备,实现年拆解回收、生产2万吨锂电池。
北极星储能网获悉,8月16日,江苏常州市政府办公室关于印发《常州市关于加快构建废弃物循环利用体系行动方案》(以下简称《方案》)的通知。《方案》指出,到2027年,覆盖各领域、各环节的废弃物循环利用体系基本建立,主要废弃物循环利用取得积极进展。本地车籍报废机动车回收量1.5万辆左右,废旧家电
北极星储能网获悉,8月14日,工信部发布《新能源汽车废旧动力电池综合利用行业规范条件(2024年本)》公开征求意见,明确梯次利用从业要求。文件明确,梯次利用企业应核实废旧动力电池来源,具备废旧动力电池拆分的技术手段和能力与拆分电池自动化重组和梯次产品质量检验的技术手段和能力。并且,应按
北极星电池网获悉,7月19日,天津市人民政府印发《天津市加快废弃物循环利用体系建设实施方案》,方案指出,推进新型废旧产品设备梯次利用。加强新能源汽车动力电池溯源管理,推广应用在用动力电池检测评估系统,提高余能检测、残值评估、重组利用等技术水平。加强新能源汽车动力电池梯次利用管理,落
北极星储能网获悉,7月18日,江苏省政府办公厅关于加快构建废弃物循环利用体系的实施意见。文件提出,加强废旧动力电池循环利用。电动汽车及动力电池生产企业应负责建立废旧电池回收网络,利用售后服务网络回收废旧电池,确保废旧电池规范回收利用和安全处置。完善新能源汽车动力电池全产业链溯源管理
7月16日,陕西交控绿色发展集团有限公司(以下简称“绿色发展集团”)与宁德时代举行战略合作签约仪式。绿色发展集团党委书记、董事长王小雄,宁德时代商用事业部执行总裁来永杰出席并见证签约;绿色发展集团党委副书记、总经理魏锋,宁德时代重卡及工程机械主机厂销售总经理王静竹代表双方签约。根据
北极星储能网获悉,7月16日,中国一汽首座“虚拟电厂”梯次电池储能电站在NBD园区正式落成并投入运营。据悉,一汽动能为该项目的承接与实施单位,基于退役的红旗E-HS9动力电池为核心,通过梯次储能技术的创新应用,实现废旧电池等资源的循环利用,有效降低了环境污染和资源浪费。该储能电站利用峰、谷
北极星储能网获悉,11月20日,申昊科技披露公司签订日常经营合同、控股子公司收到成交通知书的公告。公告显示,杭州申昊科技股份有限公司及控股子公司杭州申昊储能科技有限责任公司与湖南恒宇签订《购销合同》,本次签署的合同金额(含税)为人民币4,300万元整。除此之外,申昊储能近日收到中国能源建
北极星储能网获悉,在努力争取救助资金失败后,瑞典电池制造商Northvolt在美国申请破产保护。该公司周四在一份声明中表示,将根据破产法第11章寻求重组,获得约2.45亿美元的新融资。Northvolt在文件中表示,Northvolt将在重组期间继续照常运营,公司拥有约3000万美元的可用现金,但背负58.4亿美元的债
北极星储能网获悉,冠盛股份11月20日在投资者互动平台表示,浙江冠盛东驰能源科技有限公司将生产的半固态锂电池产品适宜于户用储能、工商业储能和风能太阳能等大型储能领域,在准固态锂电池技术上已有技术储备,可适用于电动飞行器、电动乘用车。
北极星储能网获悉,11月19日,河南郑州航空港经济综合实验区管理委员会印发《郑州航空港经济综合实验区关于促进锂电新能源产业发展若干措施(试行)》(以下简称《方案》)的通知。《措施》指出,支持重大项目建设。针对锂离子电池正负极材料、隔膜、电芯模组、储能变流器、电池管理系统、系统集成等环
传统旺季“金九银十”已过,而锂电产业的高景气度得以延续,并且出现结构性好转的迹象。上周,碳酸锂期货价格多次上行,主力合约2501一度冲高至87600元,带动其他月份合约集体升高至8万元区间。部分机构的碳酸锂现货报价亦同步回弹,由雅保举办的最新一批碳酸锂现货拍卖,以83400元/吨的价格成交。按照
北极星储能网获悉,融捷股份11月19日晚间发布公告称,根据战略规划和经营发展的需要,为进一步打通锂电材料上下游产业链,充分发挥产业链协同优势,公司拟投资1亿元设立全资子公司兰州融捷材料科技有限公司,从事锂离子电池负极材料相关业务。融捷股份表示,近年来,负极材料行业处于快速发展阶段,扩
北极星储能网获悉,11月19日,宁德时代动力型锂电池铁路试运首发仪式在贵阳、宜宾两地同时举行。这是全国首例锂电池铁路运输,中国动力锂电池铁路运输实现“零的突破”。此前,动力锂电池铁路运输尚未在国内开放,符合中国国家铁路集团标准、高安全的动力锂电池产品,是实现铁路运输零突破的关键。据了
北极星储能网获悉,11月15日,上海市经济和信息化委员会等印发《上海市加快培育材料智能引擎发展专项方案(2025-2027年)》(以下简称《方案》)的通知。《方案》指出,定位更轻的合金、更高效的太阳能电池、更安全的锂电池材料、更快的晶体管等前景方向,谋划“研试产用”全链条应用场景,推进“人工
北极星储能网获悉,日前,有投资者在投资者互动平台提问德尔股份:目前大量涉及电池行业的公司都对固态电池的研发和推广进行了布局。有的已推出了半成品和验证品。因此,谁能在这一领域率先实现产品的定型和量产,那么就具有绝对的先发优势,这对公司的市场占有率、业绩和股价都将产生深远和重大的影响
北极星储能网获悉,11月15日,工业和信息化部、生态环境部、应急管理部与国家标准化管理委员会四部门印发《国家锂电池产业标准体系建设指南(2024版)》。文件指出,锂电池产业是推动新型智能终端、电动交通工具、新能源储能等产业发展的中坚力量,也是推广新型储能、发展未来产业的重点领域。储能型锂
北极星储能网获悉,10月30日,湖南省工业和信息化厅发布对省政协十三届二次会议第0009号提案的答复。文件提出,下一步,我们将按照省委省政府关于“4×4”现代化产业体系建设的要求,加快推动全省稀有金属产业高质量发展。其中,着力推进有色产业结构调整。一是依托湖南在钨、铋、锑、锡等稀有金属领域
北极星储能网获悉,11月22日,国家能源局综合司发布《关于公示第四批能源领域首台(套)重大技术装备的通知》,拟将77项技术装备列入第四批能源领域首台(套)重大技术装备名单,其中储能领域12个项目入选,涉及到压缩空气储能、二氧化碳储能系统、钠离子电池储能系统、智能组串式构网型储能系统、液态
11月21日,EESIA在“加快构建新型电力系统:需求侧革新”研讨会上发布了《中国节能与综合能源服务产业发展研究》报告。报告认为,综合能源服务业务是一种业态,主要由两条传统的能源服务业务线延伸而来,一是单一能源供给利用的供能服务企业的业务拓展,如电力企业、电网企业、售电售气企业等,为拓宽
作为我国西部最重要的国际光储盛会,11月18日,2024第七届中国国际光伏与储能产业大会在成都世纪城新国际会展中心隆重举行。十一届、十二届全国人大常委会副委员长,民建中央原主席陈昌智出席大会并宣布开幕。四川省人民政府副省长李文清,成都市委副书记、市长王凤朝出席大会并致辞。重要领导、全球光
近一周,多座储能电站获最新进展,北极星储能网特将11月18日-11月22日发布的储能项目动态整理如下:陕西西安首个用户侧储能项目并网运行近日,由国机集团中联西北院承揽的西安市北石桥污水处理厂1725kW/5505kWh储能EPC项目如期并网,并通过国网西安供电公司验收,各项运行参数均符合预期,标志着西安市
近日,中建二局三公司中标阳江市阳西县程村镇500MW/1000MWh独立储能电站项目EPC总承包。项目位于广东省阳江市,总建筑面积约4.7万平方米。主要建设内容包括一座220KV升压站、一次设备舱、二次设备舱、运维舱、水泵房等。项目新建220kV升压站,接入500KV回隆变电站。储能电池采用磷酸铁锂电池,新建线路
11月20日,国网天津电科院完成2024年度新能源消纳能力测算集中工作。据了解,本次集中工作历时近一个月,电科院支撑公司调控中心主要开展新能源消纳能力测算、新型储能利用分析及配置测算、分布式电源承载力评估等三个专题工作,同时配合华北网调完成新能源预测误差分析及日前平衡风险评估专题工作。本
北极星储能网获悉,11月21日,金鑫新能董事会审议通过了公司控股子公司中钠储能新能源科技(甘肃)有限公司根据业务发展需要,拟投资设立全资子公司的提案。据了解,新公司名称为中誉宸新能源科技(甘肃)有限公司,注册资本10,000万元,法定代表人为张晓红。主要经营范围包括:储能技术服务、电池制造
北极星储能网获悉,11月20日,申昊科技披露公司签订日常经营合同、控股子公司收到成交通知书的公告。公告显示,杭州申昊科技股份有限公司及控股子公司杭州申昊储能科技有限责任公司与湖南恒宇签订《购销合同》,本次签署的合同金额(含税)为人民币4,300万元整。除此之外,申昊储能近日收到中国能源建
观海方知深邃,瞻天始见宏大。近日,2024年“福布斯中国·出海全球化30&30”榜单隆重揭晓,古瑞瓦特凭借卓越的全球化实力与强大的品牌影响力,荣登“出海全球化旗舰品牌TOP30”之列。这一殊荣不仅彰显了国际权威机构对古瑞瓦特在全球市场中的认可,也为光储行业树立了出海发展的崭新标杆。作为福布斯品
在构建全球清洁能源体系的进程中,储能的可靠性至关重要。作为行业领先的储能系统及解决方案提供商,天合储能聚焦电芯安全、电气安全及结构安全这三大产品安全基石,累计实现超7.5GWh的全球交付,覆盖100多个国家与地区。无论是高海拔、海岛、雨林,还是雪域、沙漠等极端环境,天合储能以高可靠性产品
北极星储能网获悉,近日,电建电投临潭新能源开发有限公司成立,公司位于甘肃省甘南藏族自治州。法定代表人为杨东曜,注经营范围包含:新兴能源技术研发;风力发电技术服务;太阳能发电技术服务;合同能源管理;发电技术服务;储能技术服务等。据天眼查股权穿透显示,该公司由中国电建间接全资持股。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!