登录注册
请使用微信扫一扫
关注公众号完成登录
我们针对从网上调研的2018年中国发生的电动汽车安全事故数据进行了一个简单的统计。我们发现这些事故与地域没关系,与车型没关系,与电池的结构和化学体系,例如是软包还是硬壳、三元还是磷酸铁锂,都没有必然的相关性。这些事故唯一的共同点就是差不多都在夏季发生的,外界温度对于电池失效来讲,我们称为自燃事件我们称之为安全失效还是有一定的季节分布。这张图刚刚也展示过了,发现尽管季节上有一定的共通性,材料的体系,电池的类型,车辆的状态来讲并没有一致的规律性。大家最关心的问题是电池在静止状态下的自燃事件,另外可以观察到电池在充电过程中,以及充电后比较高的荷电状态失效的几率比较高。
我们测试了国内和国外的很多电池,发现从电池的设计来讲热特性会有一定的规律,但这个取决于电池的制造水平。因此我们认为抛开其他的东西孤立来讲是软包安全还是钢壳安全,是磷酸铁锂安全还是三元安全这个都是不对的,因为这样讲的一个重要前提是,电池的热特性不受制造水平干扰。刚刚说了高比能量电池本质上是容易不安全的,如果电池制造水平差,电池产品的质量就是引起电池失效的一个重要原因。我们的研究发现,由于对电池产品设计的认识不足和对电池产品的控制不足,电池产品在实际应用中会呈现不同的热安全特性。对于电池包设计,包括制造过程和使用过程参数设计的不合理也会导致安全失效。
还有车辆使用过程当中可靠性的恶化,就是老化过程当中因为力学保护、还有能量管理等方面不是很合理的时候——因为我们对电池的认识到目前都还是非常有限的,合理与不合理是相对于当前的能力和认知水平而言的——电池的结构、化学体系等积累的变化会使得电池的热特性发生显著改变,并由此改变电池的安全性。仅就目前来看,很多情况下设计和应用的参数设置得并不是完全合理,就是说并没有让电池始终处在比较稳定的状态下,这些都会造成电池的安全性没有在一个合理的区间。考虑到现在国家在大力推300wh/kg的动力电池,毫无疑问要使用高镍材料,而高镍材料的热稳定性不好,因此电池的安全性问题就会更加突出。
下面,我将就电池包的热失控问题,从电池的热失控诱发、热失控演变过程,以及热失控在模组内或者电池包当中如何蔓延,这三个角度进行介绍。我们将热失控分解为基于电池层面的热失控,以及基于模组和电池包层面的热失控。开始热失控话题之前,我们首先先澄清一个概念:什么是安全性。国家标准测试与我们的目的之间有一个小小的差异。我们目前的国家标准测试的安全性我们称之为滥用条件下的安全性。按理说作为安全性标准,测试的目的应该能够展现电池在全生命周期过程当中每个时刻、每个状态时,电池或这电池体系的安全水平。但是这有一个前提,就是这个测试方法能够模拟电池所在的所有环境和状态才可能。滥用条件不能够完全覆盖电池生命周期遇到的各种情况,因此滥用安全性即便都通过了,这个电池或电池包的安全性仍然不能够得到保障,这个差距就是在这儿。
目前对于汽车产品来讲,最大的或者说公众最为恐慌的事情是自燃,我们称之为自引发热失控。这与滥用条件下的热失控是有区别的,如果我们看这个滥用安全性就可以发现这些滥用条件是可以被复制的,因为电池热失控可以由外界条件刺激的而触发,因此触发条件处在合理范围的时候目前的电池就一定会出事,例如把电池扔进火堆。但结合事故情形,让电池在一定外界触发条件下不发生热失控,这是现实对电池性能的需求,是必须要满足的。我们希望用个别电池代表所有相同电池的行为,所以我们称之为是该电池的固有安全性。就是排除制造瑕疵的波动干扰,这个电池体系和电池设计在特定条件下的热行为应该是可再现的。但是,我们更关心的是自引发热失控。自引发热失控目前表现为概率事件,这个概率怎么引起的,有很多种可能。第一是材料不均匀,例如这个隔膜前30米都没事,忽然到40米的时候出现了一个微小的破洞。第二是制造过程,例如刀具可以使用五千次,但是没有考量过1000次跟4999次的时候有什么差别,是否可能会引起一些金属的毛刺、导致毛刺产生的几率不一样,这个也是引起电池安全性事故的重大隐患。
更大的风险会在电池使用过程当中逐渐积累。为什么使用过程当中会发生变化?我自己是做材料化学研究的,我们几乎只考虑充放电循环性能,用电信号评判材料或者电极的状态好还是不好,但有一点我们忽略了:几乎所有的电池负极材料体积变化都是明显的,由于体积变化、应力积累引起电池形变,且大倍率情况下这种形变是不均一的,因此这个应力积累会给安全性造成很大的隐患,例如会引起析锂,也会引起局部的结构缺陷,甚至会造成内短路,这个是安全性能耐久性,这是之前我们没有考虑到的。这是我们测试标准和测试方法目前没有覆盖的情形或状态。如果考虑不到耐久性对电池可能造成的影响,我们也就没有办法复制这样的场景,也就检测不到这样的性能。
当我们研究失效问题的时候,我们先要把所有的信息都搜集全,再去分析这些信息背后可能的原因是什么,然后才能进行后面的分析与研究。我们就是这么多年积累到很多事实,总结起来就是引起电池自引发热失控的有这些缺陷,有一些是制造过程或者原材料引起的,还有一些是电池使用不当引起的。客观地看待这个问题,这是因为我们对电池的认识不足导致的。我们的电池设计和使用要求是否照顾到了电池全生命周期的性能,特别是安全性能,这个是电池厂商需要提供给电池用户的。作为使用人,在电池全生命周期当中是否需要进行电池的维护这也是一个话题,因为通过维护之后我们可以消除掉一部分应力。
局部过热是引发安全失效的最直接的因素。我们统计了2018年的21个安全失效事件,大多数都发生在夏季,说明温度控制还是很重要的,这个是直接引发电池内部反应的一个最直接的因素,这里就不多说了。
析锂也是引发电池安全失效的重要原因。如果这个电池电化学反应完美地进行,是不应该有析锂的,但是很不幸在极片形变过程中电解液的量发生改变了就可能会导致在极片厚度方向上存在着电化学反应的不均匀性,这时表面就可能产生析锂。在大倍率充电的时候,这种反应的不均匀性也会体现在极片的平面方向上,造成析锂。负极析锂,在正极就会是过充,那这两个不安全因素同时发生了,一个电池体系本来脾气就不好,通过一定的保护措施让它在这个范围内安全了,可是使用过程当中变得脾气更不好、更不安全了,原有的安全框架对它来说可能就没有用了。引起短路的原因还有一个,就是异物颗粒。这里举了几个例子,比如说在电池的制造环境当中我们可能会引入一些粉尘,如果是不导电的还好,可能要经过很长时间才能体现出来,如果是导电的颗粒直接就会造成短路。还有就是我们在用正极材料的时候,刚刚一直说高镍材料,其循环稳定性,温度特性不好,不好的机理就是有过渡金属离子溶解,镍、钴、锰都有溶解。溶解之后是否会迁移到负极被还原,形成金属枝晶,至少在理论上是成立的。还有隔膜的品质,我是做学术的,也许观点会有点太过于偏执,国产的隔膜价格很便宜但是市场未必好用可能也是这个原因,就是会造成电池的成品率不高。可能这1000米都没事,但是1000.01米的时候出现了一个洞,那这个电池就毁掉了。所以在选择材料供应商时,产品的一致性和可靠性是电池企业肯定要慎重考虑的。
还有一个引发电池安全失效的原因是电池的设计和制造缺陷,这个是可以避免的。应力积累也是很可怕的,我们把所有导致变化的因素称之为应力,不断的积累称之为应力积累,之前谈到有热积累,电积累,还有化学积累。当电池循环之后,其实我们可以看到电池的结构内部会发生一些改变,这些地方空隙变大就意味着有一些地方会被压缩,考虑到极片有一定的粗糙度,这个时候是否会发生短路就是个问题。还有,因为电池制造、使用和设计的原因可能会导致意想不到的事情发生。我们把电池叠好了之后边缘应该是齐的,但是当放到铝塑膜中,铝塑膜外壳的边缘是弯的。所有极片都会在这个地方弯折时,如果极片的留白不够大、或者隔膜富余的宽度不够宽,一个稍微的倾斜负极集流体就会与正极或正极集流体接触,或者暂时没有接触上,但我们不知道使用过程中当受力或者应力积累条件下是否就会接触。这种短路是比较容易引发电池安全失效的。
如果把安全性看作是电池的一个性能,把它过程当中所有的失效看成是一种可靠性之外的一个事件,那么电池的安全性研究实质上是可靠性的研究,这个跟我们目前对于电池的安全性的研究就完全不是一回事了。可靠性研究不是我的研究范畴,我只是举一个例子,说明可靠性的研究方法是一个挺复杂的事情。上述引起电池安全失效的因素如果可以避免,比如说像空气当中引入杂质,或者如果能够事先检测出来,在电池失效之前进行预警,例如这里展示的,我们把引起电池失效最主要的四种原因罗列在这儿,它们有的通过在线无损的测试方法可以检测到,有的通过离线甚至破坏的方法才可以检测到。我们希望对于电池的安全风险能够进行评估,不同的厂家、不同的批次、还有电池的不同生命状态时,电池的安全性处在一个什么样的水平,我们希望能够做这样的一种探索。我们就利用刚才四个触发原因的测试方法,加入一定的加权因子给出来一个热失控的风险评估,下面是对不同品牌的电池进行的研究,这里面得到的结论是日本某电池安全可靠性相对较高,这个跟市场上的实际表现还是比较吻合的,当然我们还需要更多的机会来验证我们的评估方法。
我们研究了安全失效的产生原因,接下来就想这些原因我们能不能够给消除掉;或者说这个原因不可避免的发生了,那么变成热失控之前电池中演变发生什么,这个过程可不可以停止掉。第一,我们能看到的在电池单体的层面,电池在热失控的演变过程当中经历了不同的加热阶段。由此我们首先建立了对电池安全性的描述,我们发展了用T1、T2、T3进行电池安全性描述的方法,在这个基础之上又采用了不同阶段的电池的升温速率来定量描述热特性,这个有一部分也变成了国家标准。我们会发现,其实针对不同的电池体系,在抛开所有制造因素干扰的情况下,其热特征还是具有相对明显的分布。例如仅就升温速率而言,除了钴酸锂-钛酸锂电池体系之外,所有的电池都不安全,尽管这些电池有的最高温度到400度、有的最高温度到800度。
在模组层面上,我们研究了热失控的扩展模型,这是电池为电孤立的情况,这是串联和并联模组的情况,因为有电信号的参与,三种情况下热失控的扩展机制就会不一样。在这个基础之上我们进行了模组的3D模型的研究。基于前面这些机理的认识,我们希望对电池的热失控过程进行阻断干预。首先我们把这个过程分解成了不同的材料反应,针对这些材料进行改性。原则就是把这个链式反应中断掉,或者前面的反应放热不能够引发后面的反应,反应中间某一个环节放热量足够的小或者足够的慢,使得后面的链式反应不能发生。这是一个我们研发的阻燃添加剂,当电解液达到热触发的温度,这个添加剂就把正极表面包住了,使得正极表面放热速度降低。还有阻燃的溶剂,目的是减少反应的数量、减缓升温的速率。隔膜失效导致正负极短路是一个重要的热失控演变的环节,让隔膜的稳定性提高就会令热失控演变过程有所改变。为什么现有动力电池安全性比很多年前可以改善,跟陶瓷隔膜的引入还是有很大关系的。这个介绍的是安全性的粘接剂,正极材料的失氧反应是电池在温度达到300度左右以后温度继续升高的重要原因。除了电解液,粘结剂也可以被用来在正极表面发生反应而抑制正极的界面会反应。最后我们尝试做了动力电池,50安时的,通过了各项滥用安全测试。我们也是近两年才认识到电池非滥用条件下的安全性是可靠性研究,因此这个安全电池的后续结果还有待实验去验证。
我们基于之前电池模组的测试还有模型,建立了基于pack的三维仿真,经过实验验证证明是具有可行性的。基于仿真模型可以得到各种热参数,进而进行了pack的冷却设计,在极端条件下可以对电池包内的热失控蔓延进行阻断。安全性和电池产品可靠性之间的关系,我之前有过论述,这已经不是一个简单的课题。其实我们的测试方法要提高到可靠性的论证,提到这个层次之后我们的认识就会有很大的不同。另外提高锂离子电池本身的安全性,从材料角度有很多事情可以去做,从系统层面让这个电池包不燃也有很多工作可以做,主要的问题是消费者和厂商是否愿意付出代价。
我们运用系统工程的想法,从电池单体(不同的电池材料对于电池设计和制造过程的要求也是不一样的)、模组和电池包的设计与制造等全方面入手,才有可能解决动力电池的热安全问题。对于技术手段,我们主动让电池单体本身安全是一种主动技术,凡是对电池热失控产生的后果来进行抑制的称之为被动技术,主动和被动技术分布在电池制造与应用的整个链条不同的阶段。这是我们建议的一些研究方向,谢谢大家!
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,6月1日下午3点49分,位于韩国忠清南道瑞山市大山邑的Kieun-ri光伏储能电站报告称发生了火灾,消防队员奋斗了10小时40分钟,终于将火势扑灭。信息显示,此次火灾造成了储能系统所在建筑物被烧毁,以及部分太阳能电池板被烧毁,所幸没有人员伤亡。(韩国消防局)报道显示,火灾发生在
北极星储能网获悉,6月7日,深圳市龙华区工业和信息化局发布智慧储能研发中心及生产基地重点产业项目遴选方案,提到,智慧储能研发中心及生产基地项目围绕先进电池产品、储能电子产品、智能网联低速电动车产品研发和储能技术系统解决方案研发应用的功能定位。项目意向单位是中国具有影响力的备用蓄电池
6月6日,蜂巢能源第300000套堡垒越野电池在遂宁基地正式下线,这一里程碑事件彰显了中国动力电池的技术积累与产业化突破。而在落幕不久的2025环塔拉力赛中,堡垒越野电池助力坦克夺得多个分段冠军以及总冠军,正是堡垒越野电池强大的性能与高标准智能化生产的双重验证。蜂巢能源堡垒越野电池基于三大核
6月5日,宁夏银川市人民政府办公室关于印发《银川高新区高质量发展实施方案(2025—2027年)》的通知。文件指出,积极招引动力电池、风机叶片、光伏组件等“新三样”及算力服务器等拆解回收利用项目,鼓励发展“互联网+回收”模式,强化全链条数字化监管,推进循环经济产业与合规化、标准化服务体系深
宁德时代重新入股江西升华后,双方的合作关系再进一步。这次宁德时代预定了更多磷酸铁锂产能。6月5日晚间,富临精工发布公告,子公司江西升华与宁德时代签署补充协议,对2024年8月达成的业务合作协议进行修订。协议修订后,宁德时代对江西升华的支持力度进一步增强,承诺的采购期间有所延长,采购规模
富锂锰基(LRM)材料,因其超高比容量和低成本等优势,被行业寄予厚望。近期,通用汽车宣布,将与LG新能源合作,推出新型富锂锰基方形电池,并将该电池应用于未来通用电动卡车和全尺寸SUV。通用汽车的目标是,成为首家在电动汽车上部署富锂锰基电池的汽车制造商。据了解,该富锂锰基电池计划将于2027年
北极星储能网获悉,6月4日,SNEresearch发布2025年1月至4月全球动力电池装车量排名及数据,2025年1月至4月全球电动汽车电池装车量为308.5GWh,同比增长40.2%。4月单月份动力电池装车量为86.7GWh,环比略有所下浮,不过综合1-4月整体来看,仍呈稳步增长趋势。企业方面,本次公布的全球动力电池装车量TOP
5月30日,安徽合肥供电公司通过合肥虚拟电厂完成了首次车网互动规模化实测,验证了合肥虚拟电厂调度大规模新能源汽车参与车网互动的技术可行性,对保供电、消纳高比例新能源发电具有重要作用。当日10时,合肥供电公司电力调度控制中心专责陈璐通过合肥虚拟电厂平台对合肥市政务中心新能源汽车充电站、
2025年5月30日,国家发展改革委、国家能源局联合印发《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号)。这是我国首份绿电直连政策法规,旨在探索创新新能源生产和消费融合发展模式,促进新能源就近就地消纳,更好满足企业绿色用能需求。在国际碳贸易壁垒下,绿电直连政策是我国应
北极星储能网获悉,6月4日晚间,长盈精密发布关于部分募投项目建设期延长的公告,根据目前募投项目的实施进度,对“常州长盈新能源动力及储能电池零组件项目”、“智能可穿戴设备AR/VR零组件项目”的建设期进行调整。公告显示,公司在2023年向特定对象发行了1.48亿股,每股发行价格为9.2元,实际募集资
“绿电直连”11类应用场景测算(来源:微信公众号“孙小兵”作者:孙小兵)2025年6月4日2025年5月,国家发展改革委、国家能源局印发了《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号)(以下简称“650号文”)。作者结合近期在零碳园区策划上的实践和思考,对绿电直连专线缴纳输
北极星储能网讯:6月7日,立新能源开启了2025年第二批储能设备采购招标,三个项目采购构网型储能系统500MW/2GWh,分别应用于和田地区的和田市、皮山县和民丰县。立新能源已然是新疆地区最重要的新能源储能开发企业之一,其控股股东为新疆能源集团,是新疆国有能源骨干企业。立新能源与华电新能源、新疆
近期,多座储能电站获最新进展,北极星储能网特将2025年6月3日-2025年6月6日期间发布的储能项目动态整理如下:180MW/720MWh!国家电投黄河水电最大储能电站并网投产!5月30日,青海海南州塔拉滩上捷报传来,黄河公司建设的贡玛储能电站正式并网,标志着公司目前最大容量集中式储能电站建成投运。至此,
北极星储能网讯:6月6日,广东湛江徐闻200MW/400MWh独立共享储能电站项目EPC总承包工程采购发布。本次招标为预招标,项目位于广东省湛江市徐闻县,招标人为湛江天转储能科技有限公司,由中国能建广东院持股90%。项目建设8套高压级联全液冷储能单元,电池采用磷酸铁锂电池,以220kV电压等级拟接入当地电
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国BBU(BackupBatteryUnit)行业发展白皮书(2025年)》。2024年以来,随着AI需求爆发,BBU成为行业热点,多家电池企业针对BBU领域推出全极耳产品,EVTank统计数据显示,2024年全球BBU领域锂电池出货量0.5亿颗。在AI大爆发背景下,传统互联网数据
宁德时代重新入股江西升华后,双方的合作关系再进一步。这次宁德时代预定了更多磷酸铁锂产能。6月5日晚间,富临精工发布公告,子公司江西升华与宁德时代签署补充协议,对2024年8月达成的业务合作协议进行修订。协议修订后,宁德时代对江西升华的支持力度进一步增强,承诺的采购期间有所延长,采购规模
北极星氢能网获悉,6月4日下午4时,在临港区碳纤维产业园民用复材区上空,一架四旋翼氢动力无人机轻盈悬停、垂直起降,姿态稳定,标志着四旋翼氢动力无人机成功实现威海首飞。这架无人机由科泰克(山东)特种装备科技有限公司(以下简称“科泰克”)和深圳氢蓝时代动力科技有限公司(以下简称“氢蓝时
富锂锰基(LRM)材料,因其超高比容量和低成本等优势,被行业寄予厚望。近期,通用汽车宣布,将与LG新能源合作,推出新型富锂锰基方形电池,并将该电池应用于未来通用电动卡车和全尺寸SUV。通用汽车的目标是,成为首家在电动汽车上部署富锂锰基电池的汽车制造商。据了解,该富锂锰基电池计划将于2027年
北极星储能网获悉,6月5日,永杰新材在投资者互动平台表示,公司目前主要生产1系、3系、4系、5系、6系、8系铝合金板带箔,产品主要应用于锂电池、电子电器、车辆轻量化等领域。在市场拓展方面,公司围绕锂电池、消费电子等重点领域,将持续挖掘国内外优质客户资源,把握新兴客户的成长机遇,逐步实现向
北极星储能网获悉,6月6日消息,此前,德尔股份与浙江省湖州市吴兴区织里镇人民政府签订了相关《投资合作协议》,计划投资约3亿元投资建设新型锂电池中试及产业化项目和智能电机产业化项目。投资合作协议中的“新型锂电池中试及产业化项目”所称的新型锂电池,指公司研发的固态电池。公司拟将前期在日
据德国媒体“BneIntelliNews”报道,5月28日,玻利维亚位于NorLipez的法院裁定立即暂停玻利维亚国家锂业公司与中国和俄罗斯公司的锂矿特许权交易,禁止开展与协议相关的任何行政或运营活动,直至司法程序终结。这一决定导致去年玻利维亚国家锂业公司与宁德时代子公司香港CBC和俄罗斯UraniumOne集团签署
北极星储能网获悉,6月4日,冠盛股份在其投资者活动中透露,公司的半固态磷酸铁锂电池主要面向储能客户,在安全性上较传统液态电池有显著提升,如通过针刺、挤压、碰撞等实验后不燃烧、不爆炸等,针对一些对安全性要求高的特定场景,如与人直接接触的储能场景等,能获得一定的溢价空间。在循环寿命方面
北极星储能网获悉,6月1日下午3点49分,位于韩国忠清南道瑞山市大山邑的Kieun-ri光伏储能电站报告称发生了火灾,消防队员奋斗了10小时40分钟,终于将火势扑灭。信息显示,此次火灾造成了储能系统所在建筑物被烧毁,以及部分太阳能电池板被烧毁,所幸没有人员伤亡。(韩国消防局)报道显示,火灾发生在
近年来,随着新型电力系统和电力市场建设加快推进,虚拟电厂作为电力系统新业态、新模式,作用日益显著,需求日益增长,发展条件日益成熟。在上海,一场“虚拟电厂”的能源革命正加速从蓝图走向现实。虚拟电厂成“智慧管家”“虚拟电厂,顾名思义,它并没有实体,而是一个零散电力资源的‘智慧聚合系统
《省级电网输配电价定价办法》(发改价格规〔2020〕101号)提出健全激励约束机制,对可计入有效资产的预计新增输配电固定资产,“基于提高投资效率的要求,按照不高于历史单位电量固定资产的原则核定(国家政策性重大投资除外)”。不考虑使用例外原则,这项规定对省级电网投资有直接而刚性的约束。总
2025年1月20日,特朗普正式就任美国第47任总统。上任后特朗普政府大幅调整拜登政府的气候及能源政策,不仅对美国自身能源、环境、经济、社会等诸多层面造成冲击,而且在国际范围产生广泛影响。本文系统梳理本届特朗普政府自上任以来的能源政策动向及全球影响,分析我国应如何有效对冲特朗普政府能源政
北极星储能网讯:6月4日,浙江省发改委、能源局于近日印发《2025年浙江省迎峰度夏电力需求侧管理工作实施方案》。方案提到,推动工商业用户主动开展削峰填谷,引导广大电动汽车车主推迟晚间充电时间,力争通过分时电价引导实现1GW以上削峰效果,有效降低全省基础用电负荷。鼓励虚拟电厂参与响应,规范
6月5日是世界环境日,本次世界环境日的主题是“美丽中国我先行”。国网廊坊供电公司精心策划并实施了以“绿色希冀伴你行”为主题的宣传活动,旨在将绿色发展的理念深植于城市每个角落,引领公众共筑生态文明。活动当天,廊坊市人民公园成为了绿色理念的传播热土。国网廊坊供电公司工作人员通过精心设计
宁德时代重新入股江西升华后,双方的合作关系再进一步。这次宁德时代预定了更多磷酸铁锂产能。6月5日晚间,富临精工发布公告,子公司江西升华与宁德时代签署补充协议,对2024年8月达成的业务合作协议进行修订。协议修订后,宁德时代对江西升华的支持力度进一步增强,承诺的采购期间有所延长,采购规模
富锂锰基(LRM)材料,因其超高比容量和低成本等优势,被行业寄予厚望。近期,通用汽车宣布,将与LG新能源合作,推出新型富锂锰基方形电池,并将该电池应用于未来通用电动卡车和全尺寸SUV。通用汽车的目标是,成为首家在电动汽车上部署富锂锰基电池的汽车制造商。据了解,该富锂锰基电池计划将于2027年
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
尽管地缘政治紧张局势加剧且经济不确定性更强,但国际能源署(IEA)在昨日发布的第十版《世界能源投资报告》显示,2025年能源行业投资将增至3.3万亿美元,较2024年增长2%,其中清洁能源技术吸引的资金(2.2万亿美元)是化石燃料的两倍。这一数据充分彰显了全球能源投资向清洁化转型的决心与趋势。(来
6月5日,汉中市发改委发布汉中市电力高质量发展实施意见(草稿),文件指出,鼓励屋顶分布式项目开发,推动工商业屋顶分布式光伏发展,支持优先采用“自发自用”建设模式,鼓励分布式光伏项目配置储能设施,减小公共电网运行压力。住房城乡建设、发展改革、自然资源、财政、机关事务管理等部门,应当共
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!