登录注册
请使用微信扫一扫
关注公众号完成登录
我们针对从网上调研的2018年中国发生的电动汽车安全事故数据进行了一个简单的统计。我们发现这些事故与地域没关系,与车型没关系,与电池的结构和化学体系,例如是软包还是硬壳、三元还是磷酸铁锂,都没有必然的相关性。这些事故唯一的共同点就是差不多都在夏季发生的,外界温度对于电池失效来讲,我们称为自燃事件我们称之为安全失效还是有一定的季节分布。这张图刚刚也展示过了,发现尽管季节上有一定的共通性,材料的体系,电池的类型,车辆的状态来讲并没有一致的规律性。大家最关心的问题是电池在静止状态下的自燃事件,另外可以观察到电池在充电过程中,以及充电后比较高的荷电状态失效的几率比较高。
我们测试了国内和国外的很多电池,发现从电池的设计来讲热特性会有一定的规律,但这个取决于电池的制造水平。因此我们认为抛开其他的东西孤立来讲是软包安全还是钢壳安全,是磷酸铁锂安全还是三元安全这个都是不对的,因为这样讲的一个重要前提是,电池的热特性不受制造水平干扰。刚刚说了高比能量电池本质上是容易不安全的,如果电池制造水平差,电池产品的质量就是引起电池失效的一个重要原因。我们的研究发现,由于对电池产品设计的认识不足和对电池产品的控制不足,电池产品在实际应用中会呈现不同的热安全特性。对于电池包设计,包括制造过程和使用过程参数设计的不合理也会导致安全失效。
还有车辆使用过程当中可靠性的恶化,就是老化过程当中因为力学保护、还有能量管理等方面不是很合理的时候——因为我们对电池的认识到目前都还是非常有限的,合理与不合理是相对于当前的能力和认知水平而言的——电池的结构、化学体系等积累的变化会使得电池的热特性发生显著改变,并由此改变电池的安全性。仅就目前来看,很多情况下设计和应用的参数设置得并不是完全合理,就是说并没有让电池始终处在比较稳定的状态下,这些都会造成电池的安全性没有在一个合理的区间。考虑到现在国家在大力推300wh/kg的动力电池,毫无疑问要使用高镍材料,而高镍材料的热稳定性不好,因此电池的安全性问题就会更加突出。
下面,我将就电池包的热失控问题,从电池的热失控诱发、热失控演变过程,以及热失控在模组内或者电池包当中如何蔓延,这三个角度进行介绍。我们将热失控分解为基于电池层面的热失控,以及基于模组和电池包层面的热失控。开始热失控话题之前,我们首先先澄清一个概念:什么是安全性。国家标准测试与我们的目的之间有一个小小的差异。我们目前的国家标准测试的安全性我们称之为滥用条件下的安全性。按理说作为安全性标准,测试的目的应该能够展现电池在全生命周期过程当中每个时刻、每个状态时,电池或这电池体系的安全水平。但是这有一个前提,就是这个测试方法能够模拟电池所在的所有环境和状态才可能。滥用条件不能够完全覆盖电池生命周期遇到的各种情况,因此滥用安全性即便都通过了,这个电池或电池包的安全性仍然不能够得到保障,这个差距就是在这儿。
目前对于汽车产品来讲,最大的或者说公众最为恐慌的事情是自燃,我们称之为自引发热失控。这与滥用条件下的热失控是有区别的,如果我们看这个滥用安全性就可以发现这些滥用条件是可以被复制的,因为电池热失控可以由外界条件刺激的而触发,因此触发条件处在合理范围的时候目前的电池就一定会出事,例如把电池扔进火堆。但结合事故情形,让电池在一定外界触发条件下不发生热失控,这是现实对电池性能的需求,是必须要满足的。我们希望用个别电池代表所有相同电池的行为,所以我们称之为是该电池的固有安全性。就是排除制造瑕疵的波动干扰,这个电池体系和电池设计在特定条件下的热行为应该是可再现的。但是,我们更关心的是自引发热失控。自引发热失控目前表现为概率事件,这个概率怎么引起的,有很多种可能。第一是材料不均匀,例如这个隔膜前30米都没事,忽然到40米的时候出现了一个微小的破洞。第二是制造过程,例如刀具可以使用五千次,但是没有考量过1000次跟4999次的时候有什么差别,是否可能会引起一些金属的毛刺、导致毛刺产生的几率不一样,这个也是引起电池安全性事故的重大隐患。
更大的风险会在电池使用过程当中逐渐积累。为什么使用过程当中会发生变化?我自己是做材料化学研究的,我们几乎只考虑充放电循环性能,用电信号评判材料或者电极的状态好还是不好,但有一点我们忽略了:几乎所有的电池负极材料体积变化都是明显的,由于体积变化、应力积累引起电池形变,且大倍率情况下这种形变是不均一的,因此这个应力积累会给安全性造成很大的隐患,例如会引起析锂,也会引起局部的结构缺陷,甚至会造成内短路,这个是安全性能耐久性,这是之前我们没有考虑到的。这是我们测试标准和测试方法目前没有覆盖的情形或状态。如果考虑不到耐久性对电池可能造成的影响,我们也就没有办法复制这样的场景,也就检测不到这样的性能。
当我们研究失效问题的时候,我们先要把所有的信息都搜集全,再去分析这些信息背后可能的原因是什么,然后才能进行后面的分析与研究。我们就是这么多年积累到很多事实,总结起来就是引起电池自引发热失控的有这些缺陷,有一些是制造过程或者原材料引起的,还有一些是电池使用不当引起的。客观地看待这个问题,这是因为我们对电池的认识不足导致的。我们的电池设计和使用要求是否照顾到了电池全生命周期的性能,特别是安全性能,这个是电池厂商需要提供给电池用户的。作为使用人,在电池全生命周期当中是否需要进行电池的维护这也是一个话题,因为通过维护之后我们可以消除掉一部分应力。
局部过热是引发安全失效的最直接的因素。我们统计了2018年的21个安全失效事件,大多数都发生在夏季,说明温度控制还是很重要的,这个是直接引发电池内部反应的一个最直接的因素,这里就不多说了。
析锂也是引发电池安全失效的重要原因。如果这个电池电化学反应完美地进行,是不应该有析锂的,但是很不幸在极片形变过程中电解液的量发生改变了就可能会导致在极片厚度方向上存在着电化学反应的不均匀性,这时表面就可能产生析锂。在大倍率充电的时候,这种反应的不均匀性也会体现在极片的平面方向上,造成析锂。负极析锂,在正极就会是过充,那这两个不安全因素同时发生了,一个电池体系本来脾气就不好,通过一定的保护措施让它在这个范围内安全了,可是使用过程当中变得脾气更不好、更不安全了,原有的安全框架对它来说可能就没有用了。引起短路的原因还有一个,就是异物颗粒。这里举了几个例子,比如说在电池的制造环境当中我们可能会引入一些粉尘,如果是不导电的还好,可能要经过很长时间才能体现出来,如果是导电的颗粒直接就会造成短路。还有就是我们在用正极材料的时候,刚刚一直说高镍材料,其循环稳定性,温度特性不好,不好的机理就是有过渡金属离子溶解,镍、钴、锰都有溶解。溶解之后是否会迁移到负极被还原,形成金属枝晶,至少在理论上是成立的。还有隔膜的品质,我是做学术的,也许观点会有点太过于偏执,国产的隔膜价格很便宜但是市场未必好用可能也是这个原因,就是会造成电池的成品率不高。可能这1000米都没事,但是1000.01米的时候出现了一个洞,那这个电池就毁掉了。所以在选择材料供应商时,产品的一致性和可靠性是电池企业肯定要慎重考虑的。
还有一个引发电池安全失效的原因是电池的设计和制造缺陷,这个是可以避免的。应力积累也是很可怕的,我们把所有导致变化的因素称之为应力,不断的积累称之为应力积累,之前谈到有热积累,电积累,还有化学积累。当电池循环之后,其实我们可以看到电池的结构内部会发生一些改变,这些地方空隙变大就意味着有一些地方会被压缩,考虑到极片有一定的粗糙度,这个时候是否会发生短路就是个问题。还有,因为电池制造、使用和设计的原因可能会导致意想不到的事情发生。我们把电池叠好了之后边缘应该是齐的,但是当放到铝塑膜中,铝塑膜外壳的边缘是弯的。所有极片都会在这个地方弯折时,如果极片的留白不够大、或者隔膜富余的宽度不够宽,一个稍微的倾斜负极集流体就会与正极或正极集流体接触,或者暂时没有接触上,但我们不知道使用过程中当受力或者应力积累条件下是否就会接触。这种短路是比较容易引发电池安全失效的。
如果把安全性看作是电池的一个性能,把它过程当中所有的失效看成是一种可靠性之外的一个事件,那么电池的安全性研究实质上是可靠性的研究,这个跟我们目前对于电池的安全性的研究就完全不是一回事了。可靠性研究不是我的研究范畴,我只是举一个例子,说明可靠性的研究方法是一个挺复杂的事情。上述引起电池安全失效的因素如果可以避免,比如说像空气当中引入杂质,或者如果能够事先检测出来,在电池失效之前进行预警,例如这里展示的,我们把引起电池失效最主要的四种原因罗列在这儿,它们有的通过在线无损的测试方法可以检测到,有的通过离线甚至破坏的方法才可以检测到。我们希望对于电池的安全风险能够进行评估,不同的厂家、不同的批次、还有电池的不同生命状态时,电池的安全性处在一个什么样的水平,我们希望能够做这样的一种探索。我们就利用刚才四个触发原因的测试方法,加入一定的加权因子给出来一个热失控的风险评估,下面是对不同品牌的电池进行的研究,这里面得到的结论是日本某电池安全可靠性相对较高,这个跟市场上的实际表现还是比较吻合的,当然我们还需要更多的机会来验证我们的评估方法。
我们研究了安全失效的产生原因,接下来就想这些原因我们能不能够给消除掉;或者说这个原因不可避免的发生了,那么变成热失控之前电池中演变发生什么,这个过程可不可以停止掉。第一,我们能看到的在电池单体的层面,电池在热失控的演变过程当中经历了不同的加热阶段。由此我们首先建立了对电池安全性的描述,我们发展了用T1、T2、T3进行电池安全性描述的方法,在这个基础之上又采用了不同阶段的电池的升温速率来定量描述热特性,这个有一部分也变成了国家标准。我们会发现,其实针对不同的电池体系,在抛开所有制造因素干扰的情况下,其热特征还是具有相对明显的分布。例如仅就升温速率而言,除了钴酸锂-钛酸锂电池体系之外,所有的电池都不安全,尽管这些电池有的最高温度到400度、有的最高温度到800度。
在模组层面上,我们研究了热失控的扩展模型,这是电池为电孤立的情况,这是串联和并联模组的情况,因为有电信号的参与,三种情况下热失控的扩展机制就会不一样。在这个基础之上我们进行了模组的3D模型的研究。基于前面这些机理的认识,我们希望对电池的热失控过程进行阻断干预。首先我们把这个过程分解成了不同的材料反应,针对这些材料进行改性。原则就是把这个链式反应中断掉,或者前面的反应放热不能够引发后面的反应,反应中间某一个环节放热量足够的小或者足够的慢,使得后面的链式反应不能发生。这是一个我们研发的阻燃添加剂,当电解液达到热触发的温度,这个添加剂就把正极表面包住了,使得正极表面放热速度降低。还有阻燃的溶剂,目的是减少反应的数量、减缓升温的速率。隔膜失效导致正负极短路是一个重要的热失控演变的环节,让隔膜的稳定性提高就会令热失控演变过程有所改变。为什么现有动力电池安全性比很多年前可以改善,跟陶瓷隔膜的引入还是有很大关系的。这个介绍的是安全性的粘接剂,正极材料的失氧反应是电池在温度达到300度左右以后温度继续升高的重要原因。除了电解液,粘结剂也可以被用来在正极表面发生反应而抑制正极的界面会反应。最后我们尝试做了动力电池,50安时的,通过了各项滥用安全测试。我们也是近两年才认识到电池非滥用条件下的安全性是可靠性研究,因此这个安全电池的后续结果还有待实验去验证。
我们基于之前电池模组的测试还有模型,建立了基于pack的三维仿真,经过实验验证证明是具有可行性的。基于仿真模型可以得到各种热参数,进而进行了pack的冷却设计,在极端条件下可以对电池包内的热失控蔓延进行阻断。安全性和电池产品可靠性之间的关系,我之前有过论述,这已经不是一个简单的课题。其实我们的测试方法要提高到可靠性的论证,提到这个层次之后我们的认识就会有很大的不同。另外提高锂离子电池本身的安全性,从材料角度有很多事情可以去做,从系统层面让这个电池包不燃也有很多工作可以做,主要的问题是消费者和厂商是否愿意付出代价。
我们运用系统工程的想法,从电池单体(不同的电池材料对于电池设计和制造过程的要求也是不一样的)、模组和电池包的设计与制造等全方面入手,才有可能解决动力电池的热安全问题。对于技术手段,我们主动让电池单体本身安全是一种主动技术,凡是对电池热失控产生的后果来进行抑制的称之为被动技术,主动和被动技术分布在电池制造与应用的整个链条不同的阶段。这是我们建议的一些研究方向,谢谢大家!
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
曾被贴上“电动化掉队”标签的大众,突然放出个大招。近日,大众汽车正式公布了其未来几年在电动汽车领域的重要发展战略——在ID.1以及SSP平台面世前的过渡期内,继续沿用现有MEB平台。但在明年“MEBPlus”平台面世后,其所有电动车型将逐步迁移到这个升级版平台,并全面采用成本更低的磷酸铁锂电池。
北极星储能网获悉,5月16日,湖南裕能新能源电池材料股份有限公司发布投资者关系活动记录表,表示进入二季度以来,市场需求依然表现强劲,但是也面临中美加征关税、碳酸锂价格波动等外部挑战。公司依然保持较高的产能利用率,随着产品提价的执行和部分原材料价格的企稳回落,以及新产品销量的不断扩大
日前,国家发展改革委、国家能源局、工业和信息化部、市场监管总局联合印发《关于公布首批车网互动规模化应用试点的通知》,将9个城市以及30个项目列入首批车网互动规模化应用试点范围,标志着车网互动从前期的探索研究、局部示范阶段,迈入推进规模化应用试点落地的新阶段。车网互动是指电动汽车与电
全固态电池,因其超高比能、本征安全的优势,成为了突破传统液态电池技术桎梏、开启可持续能源高效运用的“金钥匙”,高能数造(西安)技术有限公司自创立伊始,便以“让电池更高能·让产品更高能”为使命,致力于开发先进的固态电池与干法电极产线整体制造解决方案,以前瞻的战略眼光和深厚的技术底蕴
电芯已成为当下市场经济发展的主要推手,技术也亟需突破。2025年,储能电芯已进入深度洗牌与技术博弈的产业周期;与此同时,新能源汽车高速发展正在倒逼动力电池向“更严苛的安全标准”、“更全面的性能提升”方向进行着“质”的跃迁;此外,低空经济的推进下,激活了eVTOL电池市场。在这场电芯产业竞
近日,位于河北唐山曹妃甸工业区钢铁电力园区的中冶新材料项目二期整体已完工75%,预计2025年上半年完成施工,即将进入设备安装阶段。“中冶新材料项目”是中冶集团抓住新能源汽车行业爆发式增长的市场机遇,依托自身矿产资源优势和动力锂电池正极材料的综合技术优势打造的关键项目。项目共分两期建设
北极星储能网获悉,近日,5月12日,中美日内瓦经贸会谈联合声明:双方同意大幅降低双边关税水平。美方取消共计91%的加征关税,中方相应取消91%的反制关税;美方暂停实施24%的“对等关税”,中方也相应暂停实施24%的反制关税。消息出来后,对于出口美国的储能企业而言,总算是能松了口气。目前,中国储
北极星储能网获悉,5月8日,广东电将军储能科技有限公司竞得中兴新城九江片区90亩地块标志着电将军低空经济用固态电池及产业集群基地落户广东佛山南海。此次摘牌的90亩地块,将用于建设电将军低空经济用固态电池及产业集群基地。项目总投资15亿元,计划打造自动化、数字化的低空经济用固态电池研发、生
北极星储能网获悉,5月15日,宁德时代发布投资者关系活动记录表,表示公司在全固态电池上持续坚定投入,技术处于行业领先水平,2027年有望实现小批量生产。关于民用电动载人飞机进展,宁德时代表示,凝聚态电池能量密度最高可达500Wh/kg,正在推进民用电动载人飞机项目的合作开发,执行航空级的标准与
北极星储能网获悉,近日,多家储能上市企业披露其2025年第一季度业绩报告,包括比亚迪、特斯拉、宁德时代、阳光电源、亿纬锂能、国轩高科、阿特斯阳光电力、远东股份、骆驼股份、平高电气、许继电气、鹏辉能源、科陆电子、南都电源、科士达、上能电气、通润装备、禾望电气、华宝新能、智光电气、同力日
北极星储能网获悉,5月8日,晋景新能集团与中资环国际开发(深圳)有限公司、广东邦普循环科技有限公司正式签署谅解备忘录,达成全球电池循环经济战略合作。此次合作三方将构建“采购-拆解-再生-销售”闭环体系,推动动力电池回收技术标准化与产业化,加速粤港澳大湾区绿色低碳循环经济体系建设,推动
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
北极星储能网讯:5月16日,平湖众顺新能源有限公司发布浙江平湖市独山港120MW/240MWh网侧储能项目招标,项目地点位于浙江省平湖市独山港高新技术产业园地块,项目资金为28800万元,约合单价1.2元/Wh。储能系统采用磷酸铁锂电池1500V液冷系统,室内站房式布置。主变压器容量需满足储能电站规模120MW/240
曾被贴上“电动化掉队”标签的大众,突然放出个大招。近日,大众汽车正式公布了其未来几年在电动汽车领域的重要发展战略——在ID.1以及SSP平台面世前的过渡期内,继续沿用现有MEB平台。但在明年“MEBPlus”平台面世后,其所有电动车型将逐步迁移到这个升级版平台,并全面采用成本更低的磷酸铁锂电池。
1-4月锂电产业链规划扩产项目达123个经历了2024年的低迷,2025年锂电池产业链扩产又迎来一波小高潮。据高工产业研究院(GGII)不完全统计,2025年1-4月,锂电池产业链共规划123个扩产项目,总投资额超3400亿元。具体到环节来看,锂电池、锂电池回收环节扩产项目分别有35个、23个,占整体规划扩产项目的
北极星储能网获悉,5月15日,上海市政府公示对市政协十四届三次会议第0068号提案的答复。原文如下:对市政协十四届三次会议第0068号提案的答复台盟界别:贵界别提出的“关于在上海地区规模化试点电化学储能的提案”收悉,经研究,现将办理情况答复如下:新型储能是建设新型能源体系、保障能源电力安全
5月9日,甘肃省强工业行动领导小组办公室关于印发《甘肃省深入推进新型工业化暨强工业行动2025年度工作要点》的通知,通知指出,以传统产业、大数据行业等为重点,大力推广源网荷储一体化、新能源自备电站、智能微电网、增量配电网、绿电聚合等新能源就近就地消纳模式,推动产业结构和能源消费结构绿色
北极星储能网获悉,5月16日,天奈科技发布2024年年度股东大会会议资料。指出在锂电池市场方面,公司继续加速推进公司碳纳米管产品替代传统导电剂的同时,大力拓展公司产品在正极材料中的应用,同时积极推动在硅基负极材料中的应用;在其他应用领域方面,凭借公司在锂电池市场的成功经验,拓展公司产品
全固态电池,因其超高比能、本征安全的优势,成为了突破传统液态电池技术桎梏、开启可持续能源高效运用的“金钥匙”,高能数造(西安)技术有限公司自创立伊始,便以“让电池更高能·让产品更高能”为使命,致力于开发先进的固态电池与干法电极产线整体制造解决方案,以前瞻的战略眼光和深厚的技术底蕴
电芯已成为当下市场经济发展的主要推手,技术也亟需突破。2025年,储能电芯已进入深度洗牌与技术博弈的产业周期;与此同时,新能源汽车高速发展正在倒逼动力电池向“更严苛的安全标准”、“更全面的性能提升”方向进行着“质”的跃迁;此外,低空经济的推进下,激活了eVTOL电池市场。在这场电芯产业竞
近日,位于河北唐山曹妃甸工业区钢铁电力园区的中冶新材料项目二期整体已完工75%,预计2025年上半年完成施工,即将进入设备安装阶段。“中冶新材料项目”是中冶集团抓住新能源汽车行业爆发式增长的市场机遇,依托自身矿产资源优势和动力锂电池正极材料的综合技术优势打造的关键项目。项目共分两期建设
北极星储能网获悉,5月15日,湖南省湘乡市经开区100MW/200MWh储能电站经过前期安装建设及调试,已全容量并网。南都电源为项目提供了全系统集成设备与服务,该项目位于湖南省湘乡市经开区,占地面积1.3万平方米,设置60个集装箱式电池舱,30个PCS交直流转换一体舱,是湖南省内规模最大的储能电站之一。
在全球能源转型与智能制造的双重驱动下,锂电产业正经历从“规模扩张”到“价值重构”的战略转型。国际能源署(IEA)数据显示,2025年全球锂电池市场规模预计突破1.2万亿美元,中国以超40%的全球份额占据产业链核心地位。2025年5月15-17日,CIBF2025中国国际电池技术展览会在深圳国际会展中心如火如荼
5月11日,在承德华富包装制品有限公司轰鸣的车间里,国网承德县供电公司三沟供电所共产党员服务队刘文利、张永军正手持检测仪,细致排查供电线路及配电设施。“大功率设备启停要实时监控电流波动,这是我们特别制作的智能用电指南。”张永军将二维码贴在设备控制柜上,供电服务通过数字化手段延伸至生
曾被贴上“电动化掉队”标签的大众,突然放出个大招。近日,大众汽车正式公布了其未来几年在电动汽车领域的重要发展战略——在ID.1以及SSP平台面世前的过渡期内,继续沿用现有MEB平台。但在明年“MEBPlus”平台面世后,其所有电动车型将逐步迁移到这个升级版平台,并全面采用成本更低的磷酸铁锂电池。
5月16日,国网浙江电力举办2025年履行社会责任成果发布会,现场发布了2024年度基于ESG理念的省级电网企业社会责任报告。报告显示,2024年浙江风光装机容量突破5000万千瓦、清洁能源装机占比超过50%,储能、光伏消纳率达100%,绿证交易同比增长144倍,新建新时代电气化村1064个……过去一年,国网浙江电
摘要新能源装机容量达到约8.6亿kW,电网消纳矛盾日益突出,仅靠电源侧调节难以支撑未来更大规模的新能源消纳任务。因此,如何利用价格激励使电动汽车、储能等用户侧调节资源发挥填谷能力,以满足新能源发展和新型电力系统建设的需要,已成为电网公司考虑的重点问题之一。文章选取城市公共充电站为研究
5月15日上午,山东省人民政府新闻办公室举行新闻发布会,邀请山东省能源局主要负责同志等介绍山东深入实施“八大行动”,推动新能源高水平消纳情况,并回答记者提问。中新社记者:我了解到,山东打造能源绿色低碳转型示范区是未来一段时间的重要任务。请问,下一步山东在新能源发展过程中,将采取什么
日前,国家发展改革委、国家能源局、工业和信息化部、市场监管总局联合印发《关于公布首批车网互动规模化应用试点的通知》,将9个城市以及30个项目列入首批车网互动规模化应用试点范围,标志着车网互动从前期的探索研究、局部示范阶段,迈入推进规模化应用试点落地的新阶段。车网互动是指电动汽车与电
北极星电力网获悉,近日,湘能电投(岳阳)发电有限公司成立,法定代表人为谌浩洪,注册资本164185.6万人民币,由湖南湘投能源投资有限公司、陕煤电力集团有限公司分别持股70%、30%。经营范围为许可项目:发电业务、输电业务、供(配)电业务;输电、供电、受电电力设施的安装、维修和试验;电气安装服务
近年来,随着风、光资源不断开发,新能源已成为江苏省发电第一大装机电源,这给地方绿色低碳发展奠定了良好基础,也可以让制造业企业“含绿量”更足、竞争力更强。近期江苏工商业分时电价新政出台,“如何利用新政策为企业省钱”,成为时下社会关注的话题。(来源:微信公众号“苏电牛思”)调整用电习
北极星储能网获悉,5月15日下午,商务部新闻发言人何咏前在发布会回应了关于美国针对进口汽车加征关税的问题。何咏前称,今年3月以来,有关部门已经多次发表声明,强调对长和集团出售港口交易将依法进行审查,保护市场公平竞争,维护社会公共利益;交易各方不得采取任何方式规避审查,未获批准前,不得
电芯已成为当下市场经济发展的主要推手,技术也亟需突破。2025年,储能电芯已进入深度洗牌与技术博弈的产业周期;与此同时,新能源汽车高速发展正在倒逼动力电池向“更严苛的安全标准”、“更全面的性能提升”方向进行着“质”的跃迁;此外,低空经济的推进下,激活了eVTOL电池市场。在这场电芯产业竞
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!