登录注册
请使用微信扫一扫
关注公众号完成登录
图1 热泵储电系统示意图
图中所示箭头方向为顺时针的充电循环,压缩机利用电网供应的谷电或过余电能将氩气压缩至高温高压的状态,将电能转化为氩气的内能。接着氩气流经储热罐,由热罐内的相变储能介质吸收热能,罐体内斜温层从顶端移动到底端,氩气的温度恢复到常温状态。然后,常温高压的氩气流入膨胀机,膨胀冷却至常压低温的状态。膨胀机出口的常压低温的氩气从储冷罐的底端流入,罐内的储冷相变材料吸收冷能。氩气流出储冷罐时,达到常温常压态,完成一次储能循环。当电能全部转换为热能储存在系统中或储能罐达可充电容量最大值时认为充电过程完成,本工作充电时间为5 h。
放电过程中,氩气在系统内反向流动,即为图中的逆时针方向,储能过程中的可逆装置压缩机与膨胀机转换为释能过程中的膨胀机与压缩机。氩气吸收储冷罐中相变材料的冷能变为低温常压状态,随后,从储冷罐中流出至压缩机转变为常温高压的氩气,接着流入储热罐,罐内的高温相变材料与氩气换热,储热罐内的斜温层由底端移动至顶端。氩气在罐内吸热后变为高温高压的状态,流入膨胀机中,在膨胀机内膨胀做功驱动发电机进行发电。最后,流经换热器回到初始状态从而完成一个放电过程。当储存的电能完全释放或储热/冷罐恢复到环境温度时,认为完全放电,本工作放电时间为5 h。
图2为热泵储电系统储能罐设计结构的物理模型。储能罐整体是一个带有进出口的圆柱体结构,由耐热材料制成。同时为了尽可能减少热损失,储能罐外部额外添加了一层保温材料。在储能罐内部的出入口附近均装有散流器装置,从而保证氩气进入罐内后的均匀流动,保证工作流体与相变储能材料的充分换热。储能罐内部设有几个一定间距的支撑网结构,相变材料由相同直径的毫米级聚合物外壳包裹并层层有序地堆积在支撑网上。在储能过程中,高温氩气是从储热罐顶端流入,而后从底端流出;低温氩气是从储冷罐的底端流入,而后从顶端流出。在释能过程(放电过程)中,氩气在罐内的流向相反。根据储能罐的容量和储热温度,选取NaNO3共晶水合盐作为储热罐内的储热材料,选取质量分数为0.5%的CaCl2作为储冷罐内的储冷材料。表1中列出了10 MW/5 h的热泵储电系统设计的几何参数以及材料物性。
图2 相变胶囊和储能罐堆积结构示意图
表1 10 MW/5 h热泵储电系统的几何参数及材料热物性
在储能罐相变储能介质填充床的换热过程的模拟中作出如下简化假设:储能罐的外层壁面绝热,忽略系统内部各处连接管路的热损失以及储能罐顶部和底部的热损失,同时忽略相变胶囊内部沿径向的温度变化以及外壳的热阻影响;相变储能介质的热物性只与状态有关;压缩机与膨胀机的等熵效率均为定值;忽略换热流体氩气在罐内沿径向的传热温度变化。
基于上述假设可得到填充床换热模型的控制方程为:
式中,ε为氩气占储能罐内体积的孔隙率;图片,图片为换热流体和储能材料的密度;cpf,cps为换热流体和储能材料的定压比热容;Tf,Ts为换热流体和储能材料的温度;t为时间;u为换热流体的流动速度;z为填充床的轴向高度;图片为换热流体的有效热导率;Afs为比表面积;图片为储能材料的导热系数;L为相变材料的潜热。其中,孔隙率ε的计算式为:
式中,fs为表面形状因子,此处取2.04;APCM为相变胶囊的有效横截面积。
图片有效热导率的计算式为:
式中,图片为换热流体热导率;图片为扩散热导率。
在初始时刻系统中换热流体的温度和罐内相变材料的温度均为环境温度T0;在储能以及释能的过程中,两个储能罐的入口温度均保持不变并且等于工作流体在入口处的温度,即Thot,in=T2,Tcold,in=T5,同时储能罐四周壁面均保持绝热。
用于模型验证的是来自于Meier等的结果,其以空气为换热流体对1.2 m的显热砂石堆积床进行实验,验证模型的相关实验参数如表2所示。图3为时间在0.5 h、1 h、1.5 h时换热流体随罐内高度的变化情况。在t=0.5 h时,模拟结果相对于实验值的最大误差在高度为0.3 m处达到10.71%;在t=1 h时,最大相对误差在高度为0.5 m处达到7.98%;在t=1.5 h时,最大相对误差在高度为0.9 m处达到9.67%,其余模拟值与验证值误差很小,均在7%以内。可见数值模型较为准确,可以用于热泵储电系统的热力学分析。
表2 验证模型实验的相关参数
图 3 不同时间下换热流体随罐内高度的温度变化示意图
2 储能单元
图4依次为储热罐与储冷罐在不同时刻下罐内的温度在轴向的分布曲线。在充电过程刚开始时,储能罐入口处的相变材料与氩气发生换热,温度开始上升,在出口处的相变材料仍处于环境温度T0。随着充电时间的增长,换热的深入,储能罐内的斜温层开始逐步向出口进行移动,并且促使出口处的相变材料进行相变;同时,由于罐内氩气与储能材料的温度差逐渐降低,斜温层的温度梯度也逐渐减小。从运用显热材料及相变储能介质的两个系统的对比中看出:使用显热材料的系统储罐内部温度变化更为快速,即斜温层向出口处的移动速度更快;这是由于砂石等显热材料只能存储很少的显热热量,而相变材料在发生相变时额外吸收大量潜热,罐内的温度变化也因此较为缓慢。这进一步显示出运用相变储能介质的热泵储电系统的优越性,即在相同的储罐大小下可以存储更多能量或者两者在存储相同能量的情形下运用相变材料可以进一步节省整体系统的占地空间,更有利于大规模的能量存储。
图 4 对比显热/潜热不同时刻储能罐的温度分布:(a) 热罐;(b) 冷罐
图5、图6展示了在t=2 h时,不同孔隙率以及不同压缩/膨胀比两种情况下储能罐内部温度分布情况。由图5可知,当孔隙率由0.2增大到0.8时,斜温层的移动速度明显增加,且由于储热罐的进出口温差大于储冷罐,储热罐内斜温层移动得更快。同时,在储能罐内的同时刻的相同高度处,储热罐内的温度会随着孔隙率增加而升高,储冷罐内的温度会随着孔隙率增加而降低。这是由于随着孔隙率的增加,工作流体的流动空间增大,大幅提高了储能罐内工作流体与相变胶囊的对流换热速率。图6展示了压缩比在4~10之间变化带来的罐内温度变化情况,也表明所研究的系统的最大压力范围为0.4~1 MPa。初始时刻储热/冷罐的出口温度都为环境温度,随着压缩比的增加,储热罐的进口温度增加,而储冷罐的进口温度降低,储能罐的传热温差增大,传热速率也增大,使得储罐达到充满状态所耗费的时间更短。
图5 初始时刻下不同孔隙率下储能罐的温度分布:(a) 储热罐;(b) 储冷罐
图 6 初始时刻不同压缩比下储能罐的温度分布:(a) 储热罐;(b) 储冷罐
图7为两次储能与释能的充放电循环中储热与储冷罐进出口温度随时间的变化示意图。由图7可知,T2和T3分别为储热罐顶部、底部处氩气的温度,T5和T6分别为储冷罐的顶部、底部处氩气的温度。在系统储能充电的过程中,T2和T5的温度是基本保持恒定的,与工作流体的来流温度相等。这是由于换热器确保了工质进入压缩机和膨胀机的温度恒定,且压缩机与膨胀机的压缩膨胀比均保持不变,因此两者出口的温度也能保持恒定。对于储热罐和储冷罐的出口温度T3和T6,当储热/冷罐内的斜温层由进口向出口靠近,并接近出口位置时,出口温度就会发生变化。在系统释能放电的过程中,氩气向相反的方向流动,T3和T6为放电过程的储罐的进口温度,保持恒定;随着放电过程接近结束,斜温层移动到出口处,出口温度也逐渐接近环境温度。
图7 两个储能罐进、出口温度在两个循环内的随时间的变化
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,12月17日,江苏省能源部门主要负责人在国网南京供电公司“阳光电智慧能”电力宁满意营商环境发布会上披露:截至11月底,江苏新型储能规模全国第一,年底前还将投用百万千瓦为今冬能源保供蓄力。新型储能是虚拟电厂及新型电力系统的重要组成之一。就在12月16日,省电力交易中心宣布全
当前,全球家庭储能市场持续快速发展。据了解,2024年全球家庭储能累计总装机量将达15GWh,预计到2030年将会升至200GWh。在高速发展的同时,家庭储能市场也面临着费用高、安装慢、扩展难、不智能等痛点。面对这些迫切需要解决的难题,12月12日,在主题为“能源自由#xB7;新世界”的海辰储能生态日上,海
近一周,多座储能电站获最新进展,北极星储能网特将12月14日-12月20日发布的储能项目动态整理如下:配储600MWh!中国能建埃及最大光储一体化电站开工当地时间12月14日,中国能建总承包建设的埃及最大光储一体化电站——本班1GW光伏+600MWh储能项目开工仪式举行。埃及本班光储混合电站是AMEAPower投资开
日前,根据美国清洁能源协会与WoodMackenzie公司共同发布的一份研究报告,今年第三季度,美国电网规模储能市场与住宅储能市场均实现了创纪录。在7月至9月期间,这两个市场总计部署的储能系统规模达到3806MW/9931MWh,与去年同期相比,市场规模分别增长了80%和58%。报告指出,美国在今年第三季度部署的
北极星储能网获悉,近日,在印度工业联合会(CII)组织的第21届全球中小微企业商业峰会上,MNRE秘书PrashantKumarSingh表示,政府正计划引入可再生能源发电厂配储的10%的初始要求,该要求可能会随着时间的推移而增加。此举旨在解决可再生能源在印度电力结构中快速增长的份额的间歇性问题,并确保全天候
12月18日,为期三天的2024年第16届中国(无锡)国际新能源大会在太湖国际博览中心拉开帷幕。上能电气携全场景光储解决方案出席本次展会,与业内专家及合作伙伴交流最新技术创新成果,共同推动零碳电力系统的加速建设。聚焦|光储闪耀上能电气以领先的技术打造全场景光伏系统解决方案,3~8800kW全功率段
北极星储能网获悉,12月19日,伏山共和100万千瓦源网荷储项目黄河70万千瓦光伏建设项目配套基础设施储能系统采购招标中标候选人公示,项目分为A、B两个标包,每包规模均为100MW/400MWh。项目共有阳光电源、海博思创、中车株洲所3家入围,其中阳光电源以0.512元/Wh预中标A包,中车株洲所以0.472元/Wh预
北极星储能网获悉,日前,鹏辉能源印尼邦加岛液冷储能集装箱系统项目顺利完成安装调试并成功并网,正式交付当地大型棕榈油加工企业。此项目是鹏辉能源在印尼落地的首个含交流侧液冷储能集装箱系统项目,也是今年印尼办事处建成后交付客户的关键项目,对公司进一步开拓印尼及东南亚等海外市场有着重要示
12月19日,楚能新能源与上海成套公司在楚能全球总部签署战略合作协议,双方就储能系统、电气化货运通道等项目达成全面战略合作。楚能新能源总裁黄锋与上海成套公司总经济师、总法律顾问(首席合规官)祖和平代表双方签署协议,楚能新能源董事长代德明,中能装备党委委员、副总经理,上海成套公司党总支
12月18日,中国证监会发布《关于同意北京海博思创科技股份有限公司首次公开发行股票注册的批复》。同意海博思创首次公开发行股票的注册申请。上交所官网显示,海博思创科创板IPO在2023年6月20日获得受理,当年7月9日进入问询阶段,今年10月17日公司上会获得通过,11月29日提交注册申请。关于同意北京海
近日,全球知名研究机构彭博新能源财经(BNEF)公布了《2024年储能系统成本报告》(EnergyStorageSystemCostSurvey2024)(以下简称“报告”)。天合储能凭借领先的产品和技术实力、稳健的财务状况以及超高的可融资性蝉联榜单,并列全球前六,中国企业第三。连续多年荣登榜单,充分体现了天合储能的综合实
日前,根据美国清洁能源协会与WoodMackenzie公司共同发布的一份研究报告,今年第三季度,美国电网规模储能市场与住宅储能市场均实现了创纪录。在7月至9月期间,这两个市场总计部署的储能系统规模达到3806MW/9931MWh,与去年同期相比,市场规模分别增长了80%和58%。报告指出,美国在今年第三季度部署的
北极星储能网获悉,近日,三星SDI在中国获得一件固态电池专利。据了解,该专利通过复合物优化电池以及其他组件协同设计、副反应抑制和传输路径保护等方式,提升了稳定性,整体结构方面除了正负极层和电解质层外在正极上还拥有一层非活性构件。该电池通过含锂硫化物正极活性物质和优化的负极结构,能量
北极星储能网获悉,国家新型储能创新中心于2024年12月正式获得工业和信息化部批复组建,标志着我国新型储能领域唯一的国家制造业创新中心落户广州。国家制造业创新中心是工信部唯一一个,经中央科技委审议,纳入国家科技创新平台基地白名单(全国仅14类)的创新平台,每个技术领域仅布局1家。据了解,
北极星储能网获悉,12月19日,北京市通州区人民政府印发《北京城市副中心打造全域场景创新之城实施方案》(以下简称《方案》)的通知。《方案》指出,聚焦新型储能、CCUS等未来能源方向,积极谋划新型储能场景项目,依托张家湾国家绿色发展示范区新型电力系统实验基地,为新型储能设备提供试验验证场景
北极星储能网获悉,天眼查显示,近日,蓝天东方(莱州)能源有限公司成立,法定代表人为李俊伟,注册资本为1亿元人民币,经营范围包含:发电业务、输电业务、供(配)电业务;热力生产和供应;供电业务;风力发电技术服务;太阳能发电技术服务;新材料技术研发等。天眼查股权穿透显示,该公司由东方电
电化学储能技术助力可再生能源发展涂强1左丽梅1彭盼2(1.天津财经大学金融学院2.中国科学院大学经济与管理学院)电化学储能是一种利用电化学原理来储存和释放能量的技术,主要通过电池或电化学电容器等设备实现能量的储存和转换。作为一种主流储能技术,电化学储能具有能量密度高、响应速度快、环境适
北极星储能网获悉,12月14日,开封时代新能源科技公司(下称开封时代)传来消息,该公司位于平顶山市马棚山的24兆瓦/96兆瓦时全钒液流储能电站综合运行效率突破70%,稳居全国投运全钒液流储能电站前列。今年截至目前,该电站已实现500万千瓦时的错峰放电。“未来两年电站达到满负荷运行后,预计可实现
北极星储能网获悉,12月17日,山东聊城统计局发布《聊城发展光伏发电存在的问题及建议》。文章显示,聊城分布式光伏装机容量达到337.1万千瓦,但仍然存在要素制约严重、产能稳定性低、储能困难等问题。虽然近年来电网建设逐步加强,但距实现电网相互支撑、调节互济仍有较大差距,光电产出的不确定性,
北极星储能网获悉,12月6日,辉能科技的次世代锂陶瓷电池技术再次获得德国莱茵实验室(TVRheinland)认证。次世代锂陶瓷电池130Ah电芯体积能量密度达到811.6Wh/L,重量能量密度为359.2Wh/kg。该电芯产自辉能Gigafactory超级工厂的量产示范线,辉能科技创办人杨思枬表示,这一成就涵盖无隔膜陶瓷隔层技
12月12日,内蒙古电力集团智汇科技发展有限责任公司(简称“蒙电智汇科技公司”)执行董事赵晨旭一行前往广州,与南方电网电力科技股份有限公司(简称“南网科技公司”)开展业务交流。此次交流的核心议题是围绕双方科技成果转化业务协作展开,旨在深化双方合作,推动科技创新成果在能源电力行业的实际
北极星储能网获悉,近日,内蒙古牙克石100万千瓦抽水蓄能项目正式获得国家能源局批复,被纳入国家抽水蓄能专项规划重点实施项目,标志着该项目实施取得重大进展。该项目位于呼伦贝尔牙克石市南部、雅鲁河上游巴林林业局内,装机容量100万千瓦,静态投资约60亿元,额定水头294米,占地面积约844.34公顷,
记者从中国广核集团有限公司获悉,12月13日,中广核德令哈100万千瓦光热储一体化项目中的80万千瓦光伏发电部分并网发电。据了解,这个项目位于青海省海西蒙古族藏族自治州德令哈市光伏(光热)产业园区,采用光伏发电与光热熔盐储能相结合的技术,总装机容量100万千瓦,项目储能配比率高达25%。此次并
12月10日,低碳院联合化工公司、榆林化工、科环集团龙源环保共同开发的国内首套超高温炭基固体储热装置完成1000小时工业示范连续运行。该套炭基固体储热装置每日可将波动性的光伏电力转换为高温热能进行存储,再以24小时不间断形式持续输出符合化工生产要求的高品质蒸汽。装置采用的炭基储热材料以集团
据CNBC报道,储热可能为可再生能源存储提供一种更便宜且可扩展的替代锂离子技术方案。“间歇性的风能和太阳能正在成为人类已知最便宜的能源形式,现在各种各样的能源存储方式被用来利用这些能源,以驱动交通和电力网络,”RondoEnergy的创始人兼首席创新官JohnODonnell说。“储热是一种全新的存储能源
12月9日,“基于熔盐储热调频调峰安全供热综合提升示范项目”在华能海门电厂顺利完成72小时试运,标志着全国首例熔盐储热耦合百万机组示范项目正式投入商业运行。该项目熔盐电加热功率60兆瓦,储能容量120兆瓦时,额定产汽量90吨/小时。项目利用熔盐大规模储热实现了机组安全灵活运行、深度调频调峰、
12月9日中午12时,华能千万千瓦级粤东风光火储一体化能源基地储能板块示范项目在广东省汕头市华能海门电厂投产。这是全国首例熔盐储热耦合百万机组、四机联调汽水电控调频调峰示范项目,标志着我国在兆瓦级6千伏高电压直驱熔盐电热装备创新,以及多电压等级熔盐电热设备综合利用上实现新突破,并且首次
11月27日,国电电力廊坊热电二期项目4号机组应用的世界首个耦合烟气熔盐储热锅炉首根钢架吊装就位,标志着“350兆瓦高效灵活燃煤发电机组关键技术研发与示范工程项目”工程建设进入安装施工阶段。廊坊二期项目位于河北省廊坊市广阳区,规划建设2台350兆瓦超临界热电联产机组,同步建设除尘及烟气脱硫、
11月22日03时33分,随着110千伏安怀光热电站0#启备变送电成功,国网酒泉供电公司圆满完成三峡恒基能脉瓜州70万千瓦“光热储能+”项目投运工作。三峡恒基能脉瓜州70万千瓦“光热储能+”项目属于国家第一批以沙漠、戈壁、荒漠地区为重点的大型风电、光伏基地项目,也是全球首个“双塔一机”风光热储一体
11月19日,内蒙古能源杭锦风光火储热生态治理项目光伏区开始并网,接下来风电场区将进行有序并网。项目位于杭锦旗锡尼镇,是国内单体最大的以生态治理为立足点规划建设的风光火储热多能互补项目,治沙面积3382亩。整体项目全容量并网后,风场年上网电量34.46亿千瓦时,光伏场年发电量1.98亿千瓦时,可
11月17日,随着第一块储热高温盐罐底板吊装就位,安徽公司宿州电厂熔盐储热高温盐罐主体安装工程正式进入实施阶段。安徽公司宿州电厂1000兆瓦时熔盐储热示范项目是全国首个煤电机组熔盐储热项目,也是国内目前最大的煤电机组熔盐储热项目。该项目以宿州热电350兆瓦超临界燃煤汽轮发电机组为基础,通过
近日,继取得江苏国信淮安压缩空气储能项目高温熔盐储热系统成套设备订单后,上海电气集团旗下的上海锅炉厂有限公司(以下简称“上锅”)又成功中标华能江苏公司金坛综合能源利用项目2×350MW盐穴压缩空气储能发电项目热水储热系统成套设备订单。冲刺年度目标!该项目的中标标志着上锅在压缩空气储能领
北极星储能网获悉,10月31日,江苏君汇控股集团有限公司新型储能(热)制造与应用综合项目在江苏盐城大丰签约。该项目拟在江苏大丰港经济开发区落地,预计总投资33亿元,涵盖新型熔盐储能装备研发中心和制造工厂以及全省首个GW级新型储能零碳供热项目。项目建成后将充分利用熔盐介质的稳定物理化学性能
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!