登录注册
请使用微信扫一扫
关注公众号完成登录
图1 热泵储电系统示意图
图中所示箭头方向为顺时针的充电循环,压缩机利用电网供应的谷电或过余电能将氩气压缩至高温高压的状态,将电能转化为氩气的内能。接着氩气流经储热罐,由热罐内的相变储能介质吸收热能,罐体内斜温层从顶端移动到底端,氩气的温度恢复到常温状态。然后,常温高压的氩气流入膨胀机,膨胀冷却至常压低温的状态。膨胀机出口的常压低温的氩气从储冷罐的底端流入,罐内的储冷相变材料吸收冷能。氩气流出储冷罐时,达到常温常压态,完成一次储能循环。当电能全部转换为热能储存在系统中或储能罐达可充电容量最大值时认为充电过程完成,本工作充电时间为5 h。
放电过程中,氩气在系统内反向流动,即为图中的逆时针方向,储能过程中的可逆装置压缩机与膨胀机转换为释能过程中的膨胀机与压缩机。氩气吸收储冷罐中相变材料的冷能变为低温常压状态,随后,从储冷罐中流出至压缩机转变为常温高压的氩气,接着流入储热罐,罐内的高温相变材料与氩气换热,储热罐内的斜温层由底端移动至顶端。氩气在罐内吸热后变为高温高压的状态,流入膨胀机中,在膨胀机内膨胀做功驱动发电机进行发电。最后,流经换热器回到初始状态从而完成一个放电过程。当储存的电能完全释放或储热/冷罐恢复到环境温度时,认为完全放电,本工作放电时间为5 h。
图2为热泵储电系统储能罐设计结构的物理模型。储能罐整体是一个带有进出口的圆柱体结构,由耐热材料制成。同时为了尽可能减少热损失,储能罐外部额外添加了一层保温材料。在储能罐内部的出入口附近均装有散流器装置,从而保证氩气进入罐内后的均匀流动,保证工作流体与相变储能材料的充分换热。储能罐内部设有几个一定间距的支撑网结构,相变材料由相同直径的毫米级聚合物外壳包裹并层层有序地堆积在支撑网上。在储能过程中,高温氩气是从储热罐顶端流入,而后从底端流出;低温氩气是从储冷罐的底端流入,而后从顶端流出。在释能过程(放电过程)中,氩气在罐内的流向相反。根据储能罐的容量和储热温度,选取NaNO3共晶水合盐作为储热罐内的储热材料,选取质量分数为0.5%的CaCl2作为储冷罐内的储冷材料。表1中列出了10 MW/5 h的热泵储电系统设计的几何参数以及材料物性。
图2 相变胶囊和储能罐堆积结构示意图
表1 10 MW/5 h热泵储电系统的几何参数及材料热物性
在储能罐相变储能介质填充床的换热过程的模拟中作出如下简化假设:储能罐的外层壁面绝热,忽略系统内部各处连接管路的热损失以及储能罐顶部和底部的热损失,同时忽略相变胶囊内部沿径向的温度变化以及外壳的热阻影响;相变储能介质的热物性只与状态有关;压缩机与膨胀机的等熵效率均为定值;忽略换热流体氩气在罐内沿径向的传热温度变化。
基于上述假设可得到填充床换热模型的控制方程为:
式中,ε为氩气占储能罐内体积的孔隙率;图片,图片为换热流体和储能材料的密度;cpf,cps为换热流体和储能材料的定压比热容;Tf,Ts为换热流体和储能材料的温度;t为时间;u为换热流体的流动速度;z为填充床的轴向高度;图片为换热流体的有效热导率;Afs为比表面积;图片为储能材料的导热系数;L为相变材料的潜热。其中,孔隙率ε的计算式为:
式中,fs为表面形状因子,此处取2.04;APCM为相变胶囊的有效横截面积。
图片有效热导率的计算式为:
式中,图片为换热流体热导率;图片为扩散热导率。
在初始时刻系统中换热流体的温度和罐内相变材料的温度均为环境温度T0;在储能以及释能的过程中,两个储能罐的入口温度均保持不变并且等于工作流体在入口处的温度,即Thot,in=T2,Tcold,in=T5,同时储能罐四周壁面均保持绝热。
用于模型验证的是来自于Meier等的结果,其以空气为换热流体对1.2 m的显热砂石堆积床进行实验,验证模型的相关实验参数如表2所示。图3为时间在0.5 h、1 h、1.5 h时换热流体随罐内高度的变化情况。在t=0.5 h时,模拟结果相对于实验值的最大误差在高度为0.3 m处达到10.71%;在t=1 h时,最大相对误差在高度为0.5 m处达到7.98%;在t=1.5 h时,最大相对误差在高度为0.9 m处达到9.67%,其余模拟值与验证值误差很小,均在7%以内。可见数值模型较为准确,可以用于热泵储电系统的热力学分析。
表2 验证模型实验的相关参数
图 3 不同时间下换热流体随罐内高度的温度变化示意图
2 储能单元
图4依次为储热罐与储冷罐在不同时刻下罐内的温度在轴向的分布曲线。在充电过程刚开始时,储能罐入口处的相变材料与氩气发生换热,温度开始上升,在出口处的相变材料仍处于环境温度T0。随着充电时间的增长,换热的深入,储能罐内的斜温层开始逐步向出口进行移动,并且促使出口处的相变材料进行相变;同时,由于罐内氩气与储能材料的温度差逐渐降低,斜温层的温度梯度也逐渐减小。从运用显热材料及相变储能介质的两个系统的对比中看出:使用显热材料的系统储罐内部温度变化更为快速,即斜温层向出口处的移动速度更快;这是由于砂石等显热材料只能存储很少的显热热量,而相变材料在发生相变时额外吸收大量潜热,罐内的温度变化也因此较为缓慢。这进一步显示出运用相变储能介质的热泵储电系统的优越性,即在相同的储罐大小下可以存储更多能量或者两者在存储相同能量的情形下运用相变材料可以进一步节省整体系统的占地空间,更有利于大规模的能量存储。
图 4 对比显热/潜热不同时刻储能罐的温度分布:(a) 热罐;(b) 冷罐
图5、图6展示了在t=2 h时,不同孔隙率以及不同压缩/膨胀比两种情况下储能罐内部温度分布情况。由图5可知,当孔隙率由0.2增大到0.8时,斜温层的移动速度明显增加,且由于储热罐的进出口温差大于储冷罐,储热罐内斜温层移动得更快。同时,在储能罐内的同时刻的相同高度处,储热罐内的温度会随着孔隙率增加而升高,储冷罐内的温度会随着孔隙率增加而降低。这是由于随着孔隙率的增加,工作流体的流动空间增大,大幅提高了储能罐内工作流体与相变胶囊的对流换热速率。图6展示了压缩比在4~10之间变化带来的罐内温度变化情况,也表明所研究的系统的最大压力范围为0.4~1 MPa。初始时刻储热/冷罐的出口温度都为环境温度,随着压缩比的增加,储热罐的进口温度增加,而储冷罐的进口温度降低,储能罐的传热温差增大,传热速率也增大,使得储罐达到充满状态所耗费的时间更短。
图5 初始时刻下不同孔隙率下储能罐的温度分布:(a) 储热罐;(b) 储冷罐
图 6 初始时刻不同压缩比下储能罐的温度分布:(a) 储热罐;(b) 储冷罐
图7为两次储能与释能的充放电循环中储热与储冷罐进出口温度随时间的变化示意图。由图7可知,T2和T3分别为储热罐顶部、底部处氩气的温度,T5和T6分别为储冷罐的顶部、底部处氩气的温度。在系统储能充电的过程中,T2和T5的温度是基本保持恒定的,与工作流体的来流温度相等。这是由于换热器确保了工质进入压缩机和膨胀机的温度恒定,且压缩机与膨胀机的压缩膨胀比均保持不变,因此两者出口的温度也能保持恒定。对于储热罐和储冷罐的出口温度T3和T6,当储热/冷罐内的斜温层由进口向出口靠近,并接近出口位置时,出口温度就会发生变化。在系统释能放电的过程中,氩气向相反的方向流动,T3和T6为放电过程的储罐的进口温度,保持恒定;随着放电过程接近结束,斜温层移动到出口处,出口温度也逐渐接近环境温度。
图7 两个储能罐进、出口温度在两个循环内的随时间的变化
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
北极星储能网讯:5月14日,宁夏市场监管厅发布《构网型电化学储能系统接入电力系统技术规范》《构网型储能参数整定技术规范》《虚拟电厂并网运行技术规范》、《新能源场站风光资源监测技术规范》《构网型储能系统接入电网测试规范》等5项地方标准征求意见稿。《构网型电化学储能系统接入电力系统技术规
北极星储能网讯:5月16日,平湖众顺新能源有限公司发布浙江平湖市独山港120MW/240MWh网侧储能项目招标,项目地点位于浙江省平湖市独山港高新技术产业园地块,项目资金为28800万元,约合单价1.2元/Wh。储能系统采用磷酸铁锂电池1500V液冷系统,室内站房式布置。主变压器容量需满足储能电站规模120MW/240
5月15日,在第十七届深圳国际电池技术交流及展览会(CIBF2025)现场,海辰储能5MWh集装箱储能系统获得由权威机构TüV莱茵颁发的欧标与美标双重认证证书。这一成果不仅意味着该产品获得了欧美市场通行证,更标志着海辰储能在电气安全、环境适应性及国际标准合规性方面已达到全球领先水平,可为全球储能
5月,短短一周时间,上能电气、汇川技术、中储科技、楚能新能源、天合储能、思格新能源、蜂巢能源、赢科数能等储能企业接连拿下超10GWh储能大单,引发业内广泛关注。这也说明,全球能源转型释放的储能需求仍在持续。5月14日,上能电气官微报道,上能电气与土耳其知名新能源公司Europower正式签署框架合
5月16日,阿特斯发布2025年第一季度业绩以及2025年第二季度、2025年度经营展望的公告。根据公告,CSIQ2025年第二季度预计总收入在19亿至21亿美元(折合人民币约136.4亿至150.8亿元)之间,毛利率预计在23%至25%之间,全年预计总收入在61亿至71亿美元(折合人民币约438.0亿至509.8亿元)之间。CSIQ2025
北极星售电网获悉,近日,“全国一体化算力网络”和林格尔数据中心集群绿色能源供给示范项目实现绿电供给,标志着内蒙古首个“绿电直供”算力中心项目投运。据悉,“全国一体化算力网络”内蒙古和林格尔数据中心集群绿色能源供给示范项目于2022年11月纳入自治区首批工业园区绿色供电项目清单,总投资16
美国公用事业厂商佐治亚州电力公司(GeorgiaPower)已经开始在佐治亚州建设一个装机容量为765MW的电池储能系统。2024年12月,佐治亚州公共服务委员会(PSC)一致投票通过了佐治亚州电力公司部署电池储能项目组合计划。当时,这些电池储能项目计划部署总装机规模为500MW。根据该公司最近发布的公告,McG
北极星储能网获悉,5月15日,云南省楚雄州永仁县500MW/2GWh全钒液流电池储能系统集成生产线项目首条电堆生产线正式建成投产。该项目由楚雄州金江能源集团有限公司与浙江聚合储能科技有限公司共同投资建设,生产线设计年产能达100MW,可实现年产值2.9亿元人民币,纳税754万元,创造工作岗位40个。同时,
刚刚结束的财报披露季,光伏组件行业可谓一片惨淡,或许“破界”早已成为诸多企业的战略之一。事实上,这也是新型电力系统构建下的必然路径,多元一体或将是新能源企业的统一选择。组件四寡头光伏制造行业的惨烈同样展现在头部企业。聚焦组件环节,此前北极星根据企业披露数据以及调研情况公布了今年一
北极星储能网获悉,5月16日,深圳市首航新能源股份有限公司发布投资者关系活动记录表,表示2025年,公司将在继续巩固、强化已有的优势业务外,持续积极拓展光伏逆变器地面电站业务、工商业储能及集中式储能业务以及新兴市场业务。根据目前了解到的市场与客户需求情况,2025年公司的整体收入预计将保持
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
全球瞩目的第十七届中国国际电池技术交流会/展览会(以下简称“CIBF2025”)于2025年5月15日至17日在深圳国际会展中心盛大开幕。力高新能受邀参展,凭借国产化芯片突破、BMS全场景解决方案及高效的储能技术与产品,成为展会焦点之一,吸引了众多行业专家、车企代表及合作伙伴驻足交流。作为全球电池行
北极星售电网获悉,5月15日,海南电力交易中心发布关于暂停4家售电公司在海南电力市场交易资格的通知。海南电力交易中心组织开展售电公司2025年持续满足注册条件核查工作。截至4月30日,核查在册售电公司29家,发现7家未满足持续注册的条件,2家连续12个月未进行实际交易。海南电力交易中心已将上述情
近日,中国能建中电工程西北院总承包的国家首批“沙、戈、荒”项目三峡能源青海格尔木100MW光热项目带负荷连续稳定运行6小时实现全系统投运发电,为海西光伏光热基地构建“光伏#x2B;光热”一体化清洁能源体系提供了重要支撑项目位于青海省海西州格尔木市乌图美仁光伏光热基地,装机容量100兆瓦,采用塔
据欧洲输电系统运营商网络(ENTSO-E)的最新消息,西班牙和葡萄牙最近的停电事件始于西班牙南部总装机容量为2200兆瓦的发电厂电力生产的丧失。ENTSO-E公布了4月28日导致西班牙和葡萄牙完全停电的相关事件序列。该系统在16小时后完全恢复。该组织称,法国靠近西班牙边界的地区也受到了此次事件的影响,
2025年5月15日,第十七届深圳国际电池技术交流会在此拉开帷幕,全球新能源领域的目光汇聚于此。在这场技术与理念碰撞的盛会上,四川金时科技股份有限公司(股票代码:002951.SZ)(以下简称“金时科技”)携子公司四川金时新能科技有限公司(以下简称“金时新能”)首次以新能源企业身份亮相(展位号14
北极星储能网获悉,科技部、中国人民银行、金融监管总局、中国证监会、国家发展改革委、财政部、国务院国资委印发《加快构建科技金融体制有力支撑高水平科技自立自强的若干政策举措》,设立“国家创业投资引导基金”。发挥国家创业投资引导基金支持科技创新的重要作用,将促进科技型企业成长作为重要方
5月9日,由西安热工院总承包的陕西省首个“超级电容+锂电池”混合储能火储联调项目在华能铜川照金煤电有限公司建成投运,为提升陕西电网运行稳定性提供了创新解决方案,标志着陕西省在火电灵活性改造与新型储能技术融合应用领域迈出了关键一步。作为西安热工院建设的第6套超级电容储能项目,本项目采用
5月13日,中国大唐集团有限公司党组书记、董事长吕军,董事、总经理、党组副书记张传江到大唐宁夏分公司在建项目调研,实地了解情况、研究解决问题。吕军要求深入学习贯彻落实习近平总书记考察宁夏时的重要讲话精神,按照集团公司的工作部署,聚焦高质量发展首要任务,大力推动创新发展、绿色发展、协
近日,采日能源锡林郭勒盟苏尼特左旗满都拉100MW/400MWh电网侧储能电站一号项目成功并网运行。该项目的成功投运标志着内蒙古自治区在新型储能技术规模化应用与电网协同发展领域迈出关键一步,为蒙西地区能源结构优化提供了重要支撑。作为内蒙古首批电网侧独立储能示范项目,该储能电站采用非步入式液冷
北极星储能网获悉,近日,中关村储能产业技术联盟(CNESA)与自然资源保护协会(NRDC)在北京签署合作谅解备忘录(MOU)。中关村储能产业技术联盟理事长陈海生、自然资源保护协会总裁兼首席执行官马尼什·巴普纳(ManishBapna)出席签约仪式。中关村储能产业技术联盟秘书长刘为、自然资源保护协会北京
5月15日上午,山东省人民政府新闻办公室举行新闻发布会,邀请山东省能源局主要负责同志等介绍山东深入实施“八大行动”,推动新能源高水平消纳情况,并回答记者提问。中新社记者:我了解到,山东打造能源绿色低碳转型示范区是未来一段时间的重要任务。请问,下一步山东在新能源发展过程中,将采取什么
为贯彻落实党中央、国务院关于科技创新的重大决策部署,近日,江苏省国信集团成功落地全国首批银行间市场科技创新债券。本次发债将“科技金融”“绿色金融”和“两新”等领域进行了创新结合,成为全国首单唯一绿色两新科技创新债券。此次债券发行规模5.3亿元,期限5年,由工商银行联合建设银行、中国银
近日,山东省发改委印发《山东省关于加强煤炭清洁高效利用的实施方案》的通知,支持煤炭与煤电、新能源联营发展和优化组合,提升煤炭矿区多能互补水平。推动煤电行业减污降碳。严格落实《煤电行业转型升级行动方案》《煤电机组“三改联动”实施方案》《限制高煤耗机组发电工作方案》要求,有序推进小煤
近日,中国能建中电工程西北院总承包的国家首批“沙、戈、荒”项目三峡能源青海格尔木100MW光热项目带负荷连续稳定运行6小时实现全系统投运发电,为海西光伏光热基地构建“光伏#x2B;光热”一体化清洁能源体系提供了重要支撑项目位于青海省海西州格尔木市乌图美仁光伏光热基地,装机容量100兆瓦,采用塔
北极星电力网获悉,近日,山东省政府召开的新闻发布会上,省能源局党组书记、局长胡薄表示,2025年4月,印发《山东省2025年新能源高水平消纳行动方案》,大力实施“八大行动”,强化煤电基础调节地位,年底前建成大型煤电机组268万千瓦;深度挖掘自备电厂调节能力,支持自备电厂参与电力市场。持续完善
高原风采,格桑花开。5月10日晚,山东电建三公司西藏扎布耶综合能源EPC项目顺利实现两列熔盐同时储热发电目标,标志着该项目全面投产。为顺利实现此项节点目标,项目团队科学调度人力、机械,充分发挥协同配合、奋力攻坚的作战精神,严抓安全生产和工程质量,将任务和责任明确到每一个环节、每一个个人
北极星太阳能光伏网获悉,近日,中国能建发布公告称,公司2023年度向特定对象发行A股股票申请已于5月13日获得上交所审核通过。据了解,中国能建本次定增募资于2023年5月24日发起。募资说明书显示,本次发行的募集资金总额(含发行费用)不超过150.00亿元(含150.00亿元)。扣除发行费用后的募集资金净
近日,山东省发改委印发《山东省关于加强煤炭清洁高效利用的实施方案》的通知,支持煤炭与煤电、新能源联营发展和优化组合,提升煤炭矿区多能互补水平。推动煤电行业减污降碳。严格落实《煤电行业转型升级行动方案》《煤电机组“三改联动”实施方案》《限制高煤耗机组发电工作方案》要求,有序推进小煤
江苏常州,茅山春意盎然,千米地下深处,盐穴正悄然“变身”。六年前,中国华能在此打造世界首个非补燃压缩空气储能电站,盐穴里的“充电宝”一战成名。而今,华能再闯盐穴储能“无人区”,向建设世界单机功率最大、总容量最大、综合效率最高的压缩空气储能电站发起挑战。今年一季度,在建设团队的日夜
北极星储能网获悉,泰安市发展改革委多元化布局、一体化施策聚力打造千万千瓦级“储能之都”,市发展改革委聚力构建以抽水蓄能、盐穴储能和电化学储能为主,制氢储能和储热储冷为辅的多元储能体系,在建在运储能装机超500万千瓦,居全省首位;先后入选全省首批未来产业集群、支柱型雁阵集群、十强产业
近期,中国能建聚焦“创新、绿色、数智、融合”核心发展理念nbsp;国内市场开发火力全开连续中标、签约多个工程项目。1广东省面向多应用场景提升电网韧性综合储能示范项目中国能建广东院中标广东省面向多应用场景提升电网韧性的综合储能示范项目EPC总承包工程。该项目位于广州空港经济区南部白云片区人
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!