登录注册
请使用微信扫一扫
关注公众号完成登录
该演示器由两个7吨的重物组成,每个重物由钢缆悬挂,高度为250 m。该公司声称此系统可以在1 s之内反应,使用寿命长达50年,效率最高可达90%,并计划在利斯港口建成4 MW级全尺寸重力储能系统。Morstyn等则从理论上说明了竖井重力储能作为新技术的潜力和优点,并分析了在给定矿井的物理尺寸下,最大储能容量随重物尺寸的变化规律,给出了确定悬挂重物最佳尺寸的方法;国内葛洲坝中科储能技术公司于2018年提出了一种依托水体的矿井重力储能装置,通过水位升降来实现重物位置的变化,水体也作为能量传递的载体,其安全性更高;中煤能源研究所提出电动发电一体机和控制系统、矿车、井筒装备罐道、罐笼等所组成的矿井重力储能装置,利用自动吊具或罐笼实现多个重物的吊装,多个重物可以横向停放在巷道或竖向叠放在竖井中,并采用AGV地平车进行水平转载。在实际的工程项目和示范平台方面,中国科学院电工研究所研制了国内首个利用单梁门式提升机的10 kW级竖井重力储能原理样机,并进行了充放电性能测试,如图2所示。该样机通过四象限变流器实现对永磁同步电动发电机的控制,系统可以处在孤岛模式或并网模式两种工作方式下运行。另外,系统还可以通过轨道平车、自动吊具和卷扬提升机实现自动化运行,运用PLC进行智能控制。
综上可知,矿井悬挂式重力储能技术及其理论研究已经得到了国内外学者的广泛关注,提出了多种竖井式重力储能系统的基本方案和系统组成。然而,关于矿井系统内部各项技术指标的研究仍不完善,系统发电效率的影响因素,发电功率稳定策略方面的研究有待展开。因此,本工作基于系统结构,搭建了竖井重力储能系统的数学模型,研究了质量、高度、速度、加速度等关键因素对系统发电效率的影响规律。为使发电功率稳定输出,提出了将多个竖井系统输出功率以一定时间差启动错相叠加的控制策略,对不同通道数的系统发电功率的波动率和功率损失率进行了研究,旨在为竖井重力储能工程应用提供理论指导依据。
1 系统模型建立
1.1 工作原理
竖井重力储能装置主要由矿井、滑轮组、钢丝、绳绞盘、电动发电一体机和控制系统等组成,如图3所示。其基本原理是储能时,电机消耗电能,抬升重物,将电能以重力储能的形式存储;释能时,重物直线下降,自身重力作用下带动电机转动,将重力势能转换为幅值、频率都随下落速度变化的交流电,并通过双向变流器装置及控制装置实现并网。
1.2 模型建立
竖井重力储能系统中重物下降的运动过程总共分为三段,分别为加速下降运动、匀速下降和缓冲减速下降运动,如图3所示。根据三段运动过程,建立整体的运动模型和运动学方程。
重物总下降高度和总运动时间方程:
![]() | (1) |
其中,H为装置总高度,T为一次下落的总时间,H1、t1为加速段运动路程和时间;H2、t2为匀速段运动路程和时间;H3、t3为减速段运动路程和时间。
三段下降高度运动方程:
![]() | (2) |
其中,v1为匀速段速度大小,a1、a3分别为加速段的加速度大小和减速段的加速度大小。
速度方程:
![]() | (3) |
整体设定牵引力方程:
![]() | (4) |
由此推断出重物下落过程中整体功率方程:
![]() | (5) |
有了上述的运动模型,可以根据模型对重力储能系统的其他技术指标进行研究。在重力储能系统装置中,系统效率和发电功率是重要的技术指标。是本工作的重点研究内容,接下来对效率模型和功率模型进行建模。
2 效率模型
系统效率反映了设备和系统的性能,在一定程度上影响了经济性,高效率是实际工程一直追求的目标;本部分先对重力储能系统在运动过程中的损耗来源进行分析,再分析系统效率的影响因素。
2.1 损耗分析
竖井重力储能在运动过程中的损耗来源由两个,一个是空气阻力带来的风阻损耗,一个是下落时重物与轨道间的摩擦损耗。
(1)风阻损耗
重物下落时受到空气阻力的作用,会产生风阻损耗,该损耗大小为:
![]() | (6) |
其中,A为迎风面积,为空气密度,Cw为阻力系数。
现设定匀速运动段速度从0到20 m/s变化,高度为150 m,第一段加速度为g,第三段加速度为0.6g,迎风面积为9 m2,作出风阻损耗随速度变化图像,如图5所示。
从图5中可以看出,随着匀速段速度的增大,风阻损耗非线性增大,在低速度情况下风阻损耗对系统影响很小,在高速度情况下风阻损耗对系统影响很大。
接下来通过改变重物受风阻面积,来探究对风阻损耗的影响,设定迎风面积A为4 m2、8 m2、12 m2、16 m2,高度为150 m,第三段加速度为0.6g,匀速运动段速度从0到20 m/s变化,作出风阻损耗随速度变化图像,如图6所示。
由图6可知,风阻损耗与迎风面积变化方向相同,随着迎风面积的增大,风阻损耗也随之增大,但随着迎风面积的越来越大,风阻损耗的变化幅度越来越小。
(2)由轨道间的滑动引起的摩擦损耗
重物下落与框架内轨道接触,会产生摩擦损耗,该摩擦力大小与重物质量正相关,该损耗大小为:
![]() | (7) |
其中,为摩擦力与重量的相关系数,与实际工况有关。
现设定高度为150 m,第三段加速度为0.6g,为0.01,重物质量取25 t,匀速运动段速度从0到20 m/s变化,作出摩擦损耗随速度变化图像,如图7所示。
由图7可知随速度的增加,摩擦损耗逐渐减小,这是因为当质量确定时,滑动摩擦力大小固定,速度越大则匀速段位移越小,导致滑动摩擦损耗越小。
设定高度为150 m,第三段加速度为0.6g,为0.01,重物质量取10 t、20 t、30 t、40 t,匀速运动段速度从0到20 m/s变化,作出摩擦损耗随速度变化图像,如图8所示。
由图8可知,重物质量越大,摩擦损耗越大,从式(7)也可以得出,摩擦和损耗的大小和重物的质量成正比。
2.2 效率分析
对单个系统来说,由基本公式P=Fv可知,只有匀速段发电机的发电功率稳定,因此发电时段只考虑匀速段,减速和加速段不作考虑。
结合1.2小节和2.1小节中的公式,在考虑损耗的情况下,系统的发电效率为:
![]() | (8) |
考虑电机损耗,齿轮箱损耗和变流器损耗:
![]() | (9) |
其中,为齿轮箱效率,
为变流器效率,
为电机效率,H2为匀速段运动高度。
从式(9)中可以看出,影响效率的可控因素有质量m,总高度H,匀速段速度v1,减速段加速度a3。因此,分别改变这几个量的大小,研究其对效率模型的影响:给定重物质量为25 t,高度为150 m,第三段加速度为0.6g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像,如图9所示。
由图9可以看出,在考虑损耗的情况下效率也是随速度的增加而减小,在该设定条件下损耗对效率的影响相对较小,接下来通过改变其他设定条件,探究其变化。给定重物质量为25 t,高度分别为150 m、200 m、250 m、300 m,第三段加速度为0.6g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像如图10所示。
由图10可以看出,随着高度的增加,系统的发电效率越来越高,且高度越高,匀速段速度大小对发电效率的影响减小。而且通过200 m和300 m时两种情况下发电效率的对比可以看出,高度增加,损耗对系统效率的影响也略微增大,这是由于高度增加时匀速段路程增加,使得损耗相应增加。
接下来给定重物质量为25 t,高度为150 m,第三段加速度分为0.3g、0.5g、0.6g、0.8g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像,如图11所示。
由图11可以看出,随着减速段加速度的增加,系统的发电效率也随之提高,这是由于加速度的增加使减速段路程缩短,匀速段路程占比从而增加的缘故,且在速度高时对系统效率的影响明显,低速时则影响有限。而且通过0.5g和0.6g时两种情况下发电效率的对比可以看出,减速段加速度的增加并没有使损耗对发电效率的影响发生显著变化。
给定重物质量分别为10 t、20 t、30 t、40 t,高度为150 m,第三段加速度0.6g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像,如图12所示。
由图12可以看出,在考虑损耗情况下,质量的增加对发电效率的变化也没有影响,质量对发电效率的影响体现在风阻损耗这一项当中,风阻损耗对于系统总发电量来说数值较小,故质量的变化对考虑损耗下的发电效率的影响也很小。
3 功率模型
发电功率衡量重力储能系统在平均时间内的放电能力,是竖井重力储能系统的重要指标,发电功率要求波动率小且调节能力强。根据1.2小节中的功率表达式可得:
![]() | (10) |
对于单个竖井重力储能系统,设定H=1000 m,m=100 t,a1=a3=1 m/s2,v1 =15 m/s,作出重物下落所产生的机械功率图像,如图13所示。
从功率图像可以看出,对单通道重力储能装置来说,只有加速和减速段时间足够小时,功率才可输出为一条近似的直线。而且在实际的生产应用中,还需考虑装卸重物的时间,为此,功率曲线如图14所示。
可以看出,对于单个系统来说,输出功率不稳定,因此不能作为一个可靠的电源使用。为使输出功率为波动不大的直线,可以考虑将多个系统的功率进行叠加以此来达到功率稳定的目的。
3.1 控制方法
对于功率叠加,本工作采用延时补偿法,即两个系统错开一定的启动时间运行,从而使功率曲线能形成互补,如图15(a)所示。
图15 两通道功率叠加(间隔65 s)
再将两个功率叠加,得到图15(b),从图15(b)可以看出,凸起的部分来自于波峰和波峰叠加,波峰和下落段叠加。若将波峰和波谷叠加,下落段和上升段叠加,所得的波形应能趋于平整,为此,对速度、高度、加速度这三个参数做一定限制,使得波峰波谷长度相等,结合1.2小节中的运动模型,得到:
![]() | (11) |
式中,为装卸货时间。
根据式(1),设定m=100 t,a1=a3=1 m/s2,v1=15 m/s,H=375 m,延时启动时间为25 s,得到功率叠加图像,如图16所示。
从图15(b),图16对比可以看出,图16的功率波形更加平整,波动率也更低,证明该方案是可行的。对于两通道的叠加结果,可以想到,如果将叠加的通道数增加,就能得到更加平稳的功率波形。为此,接下来在相同机械功率输出的基础上,用不同通道数功率叠加,观察其功率波形,研究其功率波动率的变化。
从图16可以看出,两通道功率叠加可以形成具有波峰和波谷,按一定规律周期性变化的函数图像。因此若要使输出功率更加平稳,可将四个通道分为两组,使其中一组两通道叠加功率形成波峰和波谷长度相等,且平整的函数图像;再通过移相得到另一组两个通道的图像,使两组图像刚好互补,相加得到平稳的功率输出。根据上述思想,四通道之间的相位差及单个通道的加速度和速度有如下关系。
加速段与减速段加速度相等:
![]() | (12) |
波谷和波峰长度为:
![]() | (13) |
![]() | (14) |
式中,tl为波谷长度,th为波峰长度,t2为匀速段时间,tq为装货卸货时间,t1为加速段时间,ts为一组功率曲线的相角差。
为使波峰和波谷都为较平整的直线,则:
![]() | (15) |
根据运动过程方程及上述方程,得到加速度与匀速段速度的关系:
![]() | (16) |
另外三个通道的时间延迟分别为:
![]() | (17) |
![]() | (18) |
![]() | (19) |
根据上述的参数关系,为得到四通道功率叠加结果,设定m=100 t,a1=a3=1 m/s2,v1=13.9 m/s,H=1000 m,延时启动时间T1=24 s,T2=48 s,T3=72 s,得到功率叠加图像,如图17(a)所示,通过对曲线的数学表达式进行分析,可以发现曲线中的不平整段与加速度有关,为此,将加速度设定为a1=a3=0.5 m/s2得到功率叠加图像,如图17(b)所示;八通道功率曲线的叠加可以建立在四通道的基础上,可以看成是两个四通道功率曲线的叠加,为此,在四通道条件设定的基础上,为使平均功率相同,设定:m=50 t,延时启动时间为T1=24 s,T2=48 s,T3=72 s,T4=60 s,T5=84 s,T6=108 s,T7=132 s,其他条件一致,得到图17(c)的图像。
图17 四通道不同加速度和八通道功率叠加结果
从图17(a)可以看出,四个通道叠加过后,功率曲线趋于平整,此时的波动率大概在6%。从图17(b)可以看出,随着加速度的降低,功率的波动率也越来越低,此时各通道的时间延迟为:T1=31.3 s,T2=62.6 s,T3=93.9 s,速度为V1=10.65 m/s,功率波动率在3%左右。而在八通道的功率叠加情况图17(c)中,可以看出,随着通道数的增加,功率的波动率也越来越低,在相同输出功率大小的情况下,此时功率波动率在2.5%左右。
三通道叠加与二通道叠加类似,但由于是奇数,与四通道叠加的原则类似,本工作试着将三个通道的功率曲线分别以下降段,上升段、匀速段叠加,两端匀速段和一段静止段叠加。即:
![]() | (20) |
![]() | (21) |
设定:m=400/3 t,a1=a3=1 m/s2,v1=13.9 m/s,H=1000 m,将延时启动时间设定为T1=30 s,T2=60 s,得到图18(a)的功率曲线。六通道功率曲线的叠加可以建立在三通道的基础上,可以看成是两个三通道功率曲线的叠加,为此,在三通道条件设定的基础上,为使平均功率相同,设定:m=200/3 t,启动时间设定为T1=15 s,T2=30 s,T3=45 s,T4=60 s,T5=75 s,得到图18(b)的功率曲线。
图18 三和六通道功率叠加
从图18(a)可以看出,功率波动比四通道大很多,这是由于奇数通道数功率叠加效果没那么好。由图18(b)可以看出,随着通道数的增加,功率的波动率也越来越低,在相同输出功率大小的情况下,此时功率波动率在3%~4%。
3.2 控制结论
确定了控制方法,再对控制性能进行研究,本工作对控制性能的研究从功率波动率和功率损失率两个方面出发。功率波动率反映了输出机械功率的平稳性,从上一节控制方法的不同通道的仿真实验中,可以得到在相同平均输出机械功率的前提下,2、3、4、6、8各通道的功率波动率大小的对比情况。在此基础上,本工作再研究功率损失率,功率损失率是指将多个通道的功率叠加后,所得到的平均功率相较于单个通道的匀速段功率叠加所减少的量。在图17(b)中,单个通道匀速段的功率为13.62 MW,四个通道匀速段功率直接叠加后为54.48 MW,而采用四通道叠加的控制方法后为41.1 MW,故功率损失率为24.6%。结合3.1小节中的仿真结果,可以得到不同通道的控制性能,功率波动率和功率损失率,如表1所示。
表1 不同通道数在相同输出功率的前提下的功率波动率和功率损失率
从表1中可以看出,在这种控制方法的基础上,在保持输出相同功率的前提下,随着通道数的增加,系统的功率波动率越来越低,当通道数为奇数3时,功率波动率更大,这是由于偶数通道数可以通过互补叠加使得输出功率更加平稳。从表中还可以看出,当通道数大于2时,功率损失率的变化随通道数的变化不大,当通道数为2时,本质上是两曲线的波峰波谷互补,使得功率损失率达到最大。因此,在实际的工程应用中,可以采用更多的通道数来实现功率的平滑输出,达到功率稳定的目的。
4 结 论
本工作创新性地对竖井重力储能装置内部的重要技术指标进行研究,完善了竖井重力储能装置中对提高系统效率和功率稳定的研究。重点构建重力储能系统的效率模型和功率模型,研究了系统中的重要参数:加速度、质量、高度、速度对系统效率的影响;并提出了功率稳定的控制方法,从2、4、6、8和3、6不同的通道数入手,给出了有效的功率稳定控制方案。并对控制方案的性能进行评估,分析不同通道数对竖井重力储能系统功率稳定性的影响及在多通道下的电压损失率,为实际工程项目提供具体的理论指导依据。根据对不同通道数的研究,发现在偶数通道下系统的功率稳定性更好,且通道数越多,系统功率越稳定,通道数为8时可达到2.5%;在实际工程建设中,为保持功率损失率小,应建两个通道以上,通道数大于4时功率损失没有随通道数有显著变化。由此看来,更多的通道数可以达到更好的系统性能。
第一作者:周睿(1999—),男,硕士研究生,研究方向为基于重力储能的多能源混合系统设计及并网控制,E-mail:23121528@bjtu.edu.cn;
通讯作者:洪剑锋,副教授,研究方向为永磁电机系统优化设计及重力储能系统设计,E-mail:jfhong@bjtu.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
全球瞩目的第十七届中国国际电池技术交流会/展览会(以下简称“CIBF2025”)于2025年5月15日至17日在深圳国际会展中心盛大开幕。力高新能受邀参展,凭借国产化芯片突破、BMS全场景解决方案及高效的储能技术与产品,成为展会焦点之一,吸引了众多行业专家、车企代表及合作伙伴驻足交流。作为全球电池行
北极星售电网获悉,5月15日,海南电力交易中心发布关于暂停4家售电公司在海南电力市场交易资格的通知。海南电力交易中心组织开展售电公司2025年持续满足注册条件核查工作。截至4月30日,核查在册售电公司29家,发现7家未满足持续注册的条件,2家连续12个月未进行实际交易。海南电力交易中心已将上述情
近日,中国能建中电工程西北院总承包的国家首批“沙、戈、荒”项目三峡能源青海格尔木100MW光热项目带负荷连续稳定运行6小时实现全系统投运发电,为海西光伏光热基地构建“光伏#x2B;光热”一体化清洁能源体系提供了重要支撑项目位于青海省海西州格尔木市乌图美仁光伏光热基地,装机容量100兆瓦,采用塔
据欧洲输电系统运营商网络(ENTSO-E)的最新消息,西班牙和葡萄牙最近的停电事件始于西班牙南部总装机容量为2200兆瓦的发电厂电力生产的丧失。ENTSO-E公布了4月28日导致西班牙和葡萄牙完全停电的相关事件序列。该系统在16小时后完全恢复。该组织称,法国靠近西班牙边界的地区也受到了此次事件的影响,
2025年5月15日,第十七届深圳国际电池技术交流会在此拉开帷幕,全球新能源领域的目光汇聚于此。在这场技术与理念碰撞的盛会上,四川金时科技股份有限公司(股票代码:002951.SZ)(以下简称“金时科技”)携子公司四川金时新能科技有限公司(以下简称“金时新能”)首次以新能源企业身份亮相(展位号14
北极星储能网获悉,科技部、中国人民银行、金融监管总局、中国证监会、国家发展改革委、财政部、国务院国资委印发《加快构建科技金融体制有力支撑高水平科技自立自强的若干政策举措》,设立“国家创业投资引导基金”。发挥国家创业投资引导基金支持科技创新的重要作用,将促进科技型企业成长作为重要方
5月9日,由西安热工院总承包的陕西省首个“超级电容+锂电池”混合储能火储联调项目在华能铜川照金煤电有限公司建成投运,为提升陕西电网运行稳定性提供了创新解决方案,标志着陕西省在火电灵活性改造与新型储能技术融合应用领域迈出了关键一步。作为西安热工院建设的第6套超级电容储能项目,本项目采用
5月13日,中国大唐集团有限公司党组书记、董事长吕军,董事、总经理、党组副书记张传江到大唐宁夏分公司在建项目调研,实地了解情况、研究解决问题。吕军要求深入学习贯彻落实习近平总书记考察宁夏时的重要讲话精神,按照集团公司的工作部署,聚焦高质量发展首要任务,大力推动创新发展、绿色发展、协
近日,采日能源锡林郭勒盟苏尼特左旗满都拉100MW/400MWh电网侧储能电站一号项目成功并网运行。该项目的成功投运标志着内蒙古自治区在新型储能技术规模化应用与电网协同发展领域迈出关键一步,为蒙西地区能源结构优化提供了重要支撑。作为内蒙古首批电网侧独立储能示范项目,该储能电站采用非步入式液冷
北极星储能网获悉,近日,中关村储能产业技术联盟(CNESA)与自然资源保护协会(NRDC)在北京签署合作谅解备忘录(MOU)。中关村储能产业技术联盟理事长陈海生、自然资源保护协会总裁兼首席执行官马尼什·巴普纳(ManishBapna)出席签约仪式。中关村储能产业技术联盟秘书长刘为、自然资源保护协会北京
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
北极星储能网讯:5月14日,宁夏市场监管厅发布《构网型电化学储能系统接入电力系统技术规范》《构网型储能参数整定技术规范》《虚拟电厂并网运行技术规范》、《新能源场站风光资源监测技术规范》《构网型储能系统接入电网测试规范》等5项地方标准征求意见稿。《构网型电化学储能系统接入电力系统技术规
北极星储能网讯:5月16日,平湖众顺新能源有限公司发布浙江平湖市独山港120MW/240MWh网侧储能项目招标,项目地点位于浙江省平湖市独山港高新技术产业园地块,项目资金为28800万元,约合单价1.2元/Wh。储能系统采用磷酸铁锂电池1500V液冷系统,室内站房式布置。主变压器容量需满足储能电站规模120MW/240
5月15日,在第十七届深圳国际电池技术交流及展览会(CIBF2025)现场,海辰储能5MWh集装箱储能系统获得由权威机构TüV莱茵颁发的欧标与美标双重认证证书。这一成果不仅意味着该产品获得了欧美市场通行证,更标志着海辰储能在电气安全、环境适应性及国际标准合规性方面已达到全球领先水平,可为全球储能
5月,短短一周时间,上能电气、汇川技术、中储科技、楚能新能源、天合储能、思格新能源、蜂巢能源、赢科数能等储能企业接连拿下超10GWh储能大单,引发业内广泛关注。这也说明,全球能源转型释放的储能需求仍在持续。5月14日,上能电气官微报道,上能电气与土耳其知名新能源公司Europower正式签署框架合
5月16日,阿特斯发布2025年第一季度业绩以及2025年第二季度、2025年度经营展望的公告。根据公告,CSIQ2025年第二季度预计总收入在19亿至21亿美元(折合人民币约136.4亿至150.8亿元)之间,毛利率预计在23%至25%之间,全年预计总收入在61亿至71亿美元(折合人民币约438.0亿至509.8亿元)之间。CSIQ2025
北极星售电网获悉,近日,“全国一体化算力网络”和林格尔数据中心集群绿色能源供给示范项目实现绿电供给,标志着内蒙古首个“绿电直供”算力中心项目投运。据悉,“全国一体化算力网络”内蒙古和林格尔数据中心集群绿色能源供给示范项目于2022年11月纳入自治区首批工业园区绿色供电项目清单,总投资16
美国公用事业厂商佐治亚州电力公司(GeorgiaPower)已经开始在佐治亚州建设一个装机容量为765MW的电池储能系统。2024年12月,佐治亚州公共服务委员会(PSC)一致投票通过了佐治亚州电力公司部署电池储能项目组合计划。当时,这些电池储能项目计划部署总装机规模为500MW。根据该公司最近发布的公告,McG
北极星储能网获悉,5月15日,云南省楚雄州永仁县500MW/2GWh全钒液流电池储能系统集成生产线项目首条电堆生产线正式建成投产。该项目由楚雄州金江能源集团有限公司与浙江聚合储能科技有限公司共同投资建设,生产线设计年产能达100MW,可实现年产值2.9亿元人民币,纳税754万元,创造工作岗位40个。同时,
刚刚结束的财报披露季,光伏组件行业可谓一片惨淡,或许“破界”早已成为诸多企业的战略之一。事实上,这也是新型电力系统构建下的必然路径,多元一体或将是新能源企业的统一选择。组件四寡头光伏制造行业的惨烈同样展现在头部企业。聚焦组件环节,此前北极星根据企业披露数据以及调研情况公布了今年一
北极星储能网获悉,5月16日,深圳市首航新能源股份有限公司发布投资者关系活动记录表,表示2025年,公司将在继续巩固、强化已有的优势业务外,持续积极拓展光伏逆变器地面电站业务、工商业储能及集中式储能业务以及新兴市场业务。根据目前了解到的市场与客户需求情况,2025年公司的整体收入预计将保持
5月9日,上海电气储能科技有限公司(以下简称“电气储能”)凭借深厚的技术沉淀和成熟的产业化经验,成功中标奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)项目之10MW/40MWh全钒液流储能项目。该项目坐落于上海奉贤星火开发区民乐路315号,总容量40MW/160MWh,场区总占地面积约2公顷。该
德国当地时间5月7-9日,海辰储能携旗下全场景储能产品矩阵亮相欧洲智慧能源展(ThesmarterEEurope),重磅发布了专为欧洲市场定制的欧版#x221E;Power6.25MWh2h/4h储能系统。该系统凭借极致安全、极易适配、极易维护、超高效益和环保引领五大特性,成功解锁“容量、场景、环保”多重限制,助力欧洲能源
2025年5月7日-9日,德国慕尼黑国际太阳能技术博览会(IntersolarEurope)举行,瑞浦兰钧携392Ah全新储能电芯以及全场景储能解决方案亮相本次展会;5月7日上午,瑞浦兰钧海外首发新一代PowtrixTM6.26MWh储能系统,其中4h长时储能版本能效可达95%以上,行业领先;瑞浦兰钧坚守安全底线,储能系统大规模燃
当地时间5月7日,楚能新能源携全场景储能产品矩阵亮相在德国慕尼黑举办的欧洲智慧能源展(SmarterEEurope)。作为欧洲能源转型的重要参与者,楚能以472Ah大容量储能电芯及CORNEXM6电池预制舱为核心,为欧洲市场提供覆盖发电侧、电网侧、用户侧的一站式储能解决方案。以技术突破重构储能价值展会现场,
2025年4月28日,西班牙与葡萄牙遭遇了欧洲近20年来最严重的全国性停电事故,5000万人陷入黑暗,交通瘫痪、医疗停摆、社会秩序一度混乱。这场持续近20小时的大停电不仅暴露了西班牙能源转型的深层矛盾,也为全球可再生能源发展敲响警钟。一、西班牙电力系统的现状:高比例可再生能源与脆弱性并存西班牙
2025年4月10日,由中国科学院工程热物理研究所、中国能源研究会、中关村储能产业技术联盟共同主办的第八届储能前沿技术大会主论坛在北京首都国际会展中心举行,论坛汇聚国内外8位院士及行业顶尖专家,聚焦新型储能关键材料、储能系统安全保护、储能与新型电力系统建设、氢能发展战略等前沿议题展开深度
2025年4月23日,明阳智能控股子公司无锡明阳氢燃动力科技有限公司(下称明阳氢燃)自主研制的全球首台30MW级纯氢燃气轮机荣膺2025“北极星杯”氢能技术创新奖。这次获奖不仅是对明阳氢燃纯氢燃气轮机研发与创新的高度肯定,更为公司开展纯氢燃气轮机示范应用提供了产业协同合作的宝贵平台。图1明阳30MW
北极星储能网获悉,易成新能4月23日晚间发布公告称,公司拟收购公司控股股东中国平煤神马控股集团有限公司(简称“中国平煤神马”)所持有的河南平煤神马储能有限公司(简称“储能公司”)80%股权,收购完成后,由储能公司股东各方对其同比例增资12,500万元,其中,公司增资10,000万元,上海采日能源科
作为支撑新能源大规模、高比例消纳的重要手段,服务新型电力系统和新型能源体系构建的重要装备,以及融入电力“源网荷储”和能源产供储销体系的重要环节,储能产业发展已迈入“快车道”。截至2024年底,我国抽水蓄能在运装机规模达5869万千瓦,新型储能装机规模达7376万千瓦/1.68亿千瓦时,同比分别增
储能电池正在经历“分久必合、合久必分”的阵痛阶段。314Ah储能电芯在2023年一炮打响,结束了300Ah、310Ah、320Ah、345Ah等不同容量储能电芯的混战状态,成为280Ah之后行业公认的第二代储能电芯。从市场反馈来看,314Ah在2024年的出货量渗透率达到40%。GGII预测,2025年314Ah电芯的渗透率将超过70%。值
助力我国能源转型加快构建新一代煤电体系怀柔实验室灵活燃煤发电团队副总师徐进良为深入贯彻党中央、国务院有关决策部署,落实《加快构建新型电力系统行动方案(2024—2027年)》有关要求,夯实煤电兜底保障作用,积极推进煤电转型升级,国家发展和改革委员会、国家能源局制定了《新一代煤电升级专项行
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!