登录注册
请使用微信扫一扫
关注公众号完成登录
该演示器由两个7吨的重物组成,每个重物由钢缆悬挂,高度为250 m。该公司声称此系统可以在1 s之内反应,使用寿命长达50年,效率最高可达90%,并计划在利斯港口建成4 MW级全尺寸重力储能系统。Morstyn等则从理论上说明了竖井重力储能作为新技术的潜力和优点,并分析了在给定矿井的物理尺寸下,最大储能容量随重物尺寸的变化规律,给出了确定悬挂重物最佳尺寸的方法;国内葛洲坝中科储能技术公司于2018年提出了一种依托水体的矿井重力储能装置,通过水位升降来实现重物位置的变化,水体也作为能量传递的载体,其安全性更高;中煤能源研究所提出电动发电一体机和控制系统、矿车、井筒装备罐道、罐笼等所组成的矿井重力储能装置,利用自动吊具或罐笼实现多个重物的吊装,多个重物可以横向停放在巷道或竖向叠放在竖井中,并采用AGV地平车进行水平转载。在实际的工程项目和示范平台方面,中国科学院电工研究所研制了国内首个利用单梁门式提升机的10 kW级竖井重力储能原理样机,并进行了充放电性能测试,如图2所示。该样机通过四象限变流器实现对永磁同步电动发电机的控制,系统可以处在孤岛模式或并网模式两种工作方式下运行。另外,系统还可以通过轨道平车、自动吊具和卷扬提升机实现自动化运行,运用PLC进行智能控制。
综上可知,矿井悬挂式重力储能技术及其理论研究已经得到了国内外学者的广泛关注,提出了多种竖井式重力储能系统的基本方案和系统组成。然而,关于矿井系统内部各项技术指标的研究仍不完善,系统发电效率的影响因素,发电功率稳定策略方面的研究有待展开。因此,本工作基于系统结构,搭建了竖井重力储能系统的数学模型,研究了质量、高度、速度、加速度等关键因素对系统发电效率的影响规律。为使发电功率稳定输出,提出了将多个竖井系统输出功率以一定时间差启动错相叠加的控制策略,对不同通道数的系统发电功率的波动率和功率损失率进行了研究,旨在为竖井重力储能工程应用提供理论指导依据。
1 系统模型建立
1.1 工作原理
竖井重力储能装置主要由矿井、滑轮组、钢丝、绳绞盘、电动发电一体机和控制系统等组成,如图3所示。其基本原理是储能时,电机消耗电能,抬升重物,将电能以重力储能的形式存储;释能时,重物直线下降,自身重力作用下带动电机转动,将重力势能转换为幅值、频率都随下落速度变化的交流电,并通过双向变流器装置及控制装置实现并网。
1.2 模型建立
竖井重力储能系统中重物下降的运动过程总共分为三段,分别为加速下降运动、匀速下降和缓冲减速下降运动,如图3所示。根据三段运动过程,建立整体的运动模型和运动学方程。
重物总下降高度和总运动时间方程:
![]() | (1) |
其中,H为装置总高度,T为一次下落的总时间,H1、t1为加速段运动路程和时间;H2、t2为匀速段运动路程和时间;H3、t3为减速段运动路程和时间。
三段下降高度运动方程:
![]() | (2) |
其中,v1为匀速段速度大小,a1、a3分别为加速段的加速度大小和减速段的加速度大小。
速度方程:
![]() | (3) |
整体设定牵引力方程:
![]() | (4) |
由此推断出重物下落过程中整体功率方程:
![]() | (5) |
有了上述的运动模型,可以根据模型对重力储能系统的其他技术指标进行研究。在重力储能系统装置中,系统效率和发电功率是重要的技术指标。是本工作的重点研究内容,接下来对效率模型和功率模型进行建模。
2 效率模型
系统效率反映了设备和系统的性能,在一定程度上影响了经济性,高效率是实际工程一直追求的目标;本部分先对重力储能系统在运动过程中的损耗来源进行分析,再分析系统效率的影响因素。
2.1 损耗分析
竖井重力储能在运动过程中的损耗来源由两个,一个是空气阻力带来的风阻损耗,一个是下落时重物与轨道间的摩擦损耗。
(1)风阻损耗
重物下落时受到空气阻力的作用,会产生风阻损耗,该损耗大小为:
![]() | (6) |
其中,A为迎风面积,为空气密度,Cw为阻力系数。
现设定匀速运动段速度从0到20 m/s变化,高度为150 m,第一段加速度为g,第三段加速度为0.6g,迎风面积为9 m2,作出风阻损耗随速度变化图像,如图5所示。
从图5中可以看出,随着匀速段速度的增大,风阻损耗非线性增大,在低速度情况下风阻损耗对系统影响很小,在高速度情况下风阻损耗对系统影响很大。
接下来通过改变重物受风阻面积,来探究对风阻损耗的影响,设定迎风面积A为4 m2、8 m2、12 m2、16 m2,高度为150 m,第三段加速度为0.6g,匀速运动段速度从0到20 m/s变化,作出风阻损耗随速度变化图像,如图6所示。
由图6可知,风阻损耗与迎风面积变化方向相同,随着迎风面积的增大,风阻损耗也随之增大,但随着迎风面积的越来越大,风阻损耗的变化幅度越来越小。
(2)由轨道间的滑动引起的摩擦损耗
重物下落与框架内轨道接触,会产生摩擦损耗,该摩擦力大小与重物质量正相关,该损耗大小为:
![]() | (7) |
其中,为摩擦力与重量的相关系数,与实际工况有关。
现设定高度为150 m,第三段加速度为0.6g,为0.01,重物质量取25 t,匀速运动段速度从0到20 m/s变化,作出摩擦损耗随速度变化图像,如图7所示。
由图7可知随速度的增加,摩擦损耗逐渐减小,这是因为当质量确定时,滑动摩擦力大小固定,速度越大则匀速段位移越小,导致滑动摩擦损耗越小。
设定高度为150 m,第三段加速度为0.6g,为0.01,重物质量取10 t、20 t、30 t、40 t,匀速运动段速度从0到20 m/s变化,作出摩擦损耗随速度变化图像,如图8所示。
由图8可知,重物质量越大,摩擦损耗越大,从式(7)也可以得出,摩擦和损耗的大小和重物的质量成正比。
2.2 效率分析
对单个系统来说,由基本公式P=Fv可知,只有匀速段发电机的发电功率稳定,因此发电时段只考虑匀速段,减速和加速段不作考虑。
结合1.2小节和2.1小节中的公式,在考虑损耗的情况下,系统的发电效率为:
![]() | (8) |
考虑电机损耗,齿轮箱损耗和变流器损耗:
![]() | (9) |
其中,为齿轮箱效率,
为变流器效率,
为电机效率,H2为匀速段运动高度。
从式(9)中可以看出,影响效率的可控因素有质量m,总高度H,匀速段速度v1,减速段加速度a3。因此,分别改变这几个量的大小,研究其对效率模型的影响:给定重物质量为25 t,高度为150 m,第三段加速度为0.6g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像,如图9所示。
由图9可以看出,在考虑损耗的情况下效率也是随速度的增加而减小,在该设定条件下损耗对效率的影响相对较小,接下来通过改变其他设定条件,探究其变化。给定重物质量为25 t,高度分别为150 m、200 m、250 m、300 m,第三段加速度为0.6g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像如图10所示。
由图10可以看出,随着高度的增加,系统的发电效率越来越高,且高度越高,匀速段速度大小对发电效率的影响减小。而且通过200 m和300 m时两种情况下发电效率的对比可以看出,高度增加,损耗对系统效率的影响也略微增大,这是由于高度增加时匀速段路程增加,使得损耗相应增加。
接下来给定重物质量为25 t,高度为150 m,第三段加速度分为0.3g、0.5g、0.6g、0.8g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像,如图11所示。
由图11可以看出,随着减速段加速度的增加,系统的发电效率也随之提高,这是由于加速度的增加使减速段路程缩短,匀速段路程占比从而增加的缘故,且在速度高时对系统效率的影响明显,低速时则影响有限。而且通过0.5g和0.6g时两种情况下发电效率的对比可以看出,减速段加速度的增加并没有使损耗对发电效率的影响发生显著变化。
给定重物质量分别为10 t、20 t、30 t、40 t,高度为150 m,第三段加速度0.6g,匀速运动段速度从0到20 m/s变化,作出发电效率随速度变化图像,如图12所示。
由图12可以看出,在考虑损耗情况下,质量的增加对发电效率的变化也没有影响,质量对发电效率的影响体现在风阻损耗这一项当中,风阻损耗对于系统总发电量来说数值较小,故质量的变化对考虑损耗下的发电效率的影响也很小。
3 功率模型
发电功率衡量重力储能系统在平均时间内的放电能力,是竖井重力储能系统的重要指标,发电功率要求波动率小且调节能力强。根据1.2小节中的功率表达式可得:
![]() | (10) |
对于单个竖井重力储能系统,设定H=1000 m,m=100 t,a1=a3=1 m/s2,v1 =15 m/s,作出重物下落所产生的机械功率图像,如图13所示。
从功率图像可以看出,对单通道重力储能装置来说,只有加速和减速段时间足够小时,功率才可输出为一条近似的直线。而且在实际的生产应用中,还需考虑装卸重物的时间,为此,功率曲线如图14所示。
可以看出,对于单个系统来说,输出功率不稳定,因此不能作为一个可靠的电源使用。为使输出功率为波动不大的直线,可以考虑将多个系统的功率进行叠加以此来达到功率稳定的目的。
3.1 控制方法
对于功率叠加,本工作采用延时补偿法,即两个系统错开一定的启动时间运行,从而使功率曲线能形成互补,如图15(a)所示。
图15 两通道功率叠加(间隔65 s)
再将两个功率叠加,得到图15(b),从图15(b)可以看出,凸起的部分来自于波峰和波峰叠加,波峰和下落段叠加。若将波峰和波谷叠加,下落段和上升段叠加,所得的波形应能趋于平整,为此,对速度、高度、加速度这三个参数做一定限制,使得波峰波谷长度相等,结合1.2小节中的运动模型,得到:
![]() | (11) |
式中,为装卸货时间。
根据式(1),设定m=100 t,a1=a3=1 m/s2,v1=15 m/s,H=375 m,延时启动时间为25 s,得到功率叠加图像,如图16所示。
从图15(b),图16对比可以看出,图16的功率波形更加平整,波动率也更低,证明该方案是可行的。对于两通道的叠加结果,可以想到,如果将叠加的通道数增加,就能得到更加平稳的功率波形。为此,接下来在相同机械功率输出的基础上,用不同通道数功率叠加,观察其功率波形,研究其功率波动率的变化。
从图16可以看出,两通道功率叠加可以形成具有波峰和波谷,按一定规律周期性变化的函数图像。因此若要使输出功率更加平稳,可将四个通道分为两组,使其中一组两通道叠加功率形成波峰和波谷长度相等,且平整的函数图像;再通过移相得到另一组两个通道的图像,使两组图像刚好互补,相加得到平稳的功率输出。根据上述思想,四通道之间的相位差及单个通道的加速度和速度有如下关系。
加速段与减速段加速度相等:
![]() | (12) |
波谷和波峰长度为:
![]() | (13) |
![]() | (14) |
式中,tl为波谷长度,th为波峰长度,t2为匀速段时间,tq为装货卸货时间,t1为加速段时间,ts为一组功率曲线的相角差。
为使波峰和波谷都为较平整的直线,则:
![]() | (15) |
根据运动过程方程及上述方程,得到加速度与匀速段速度的关系:
![]() | (16) |
另外三个通道的时间延迟分别为:
![]() | (17) |
![]() | (18) |
![]() | (19) |
根据上述的参数关系,为得到四通道功率叠加结果,设定m=100 t,a1=a3=1 m/s2,v1=13.9 m/s,H=1000 m,延时启动时间T1=24 s,T2=48 s,T3=72 s,得到功率叠加图像,如图17(a)所示,通过对曲线的数学表达式进行分析,可以发现曲线中的不平整段与加速度有关,为此,将加速度设定为a1=a3=0.5 m/s2得到功率叠加图像,如图17(b)所示;八通道功率曲线的叠加可以建立在四通道的基础上,可以看成是两个四通道功率曲线的叠加,为此,在四通道条件设定的基础上,为使平均功率相同,设定:m=50 t,延时启动时间为T1=24 s,T2=48 s,T3=72 s,T4=60 s,T5=84 s,T6=108 s,T7=132 s,其他条件一致,得到图17(c)的图像。
图17 四通道不同加速度和八通道功率叠加结果
从图17(a)可以看出,四个通道叠加过后,功率曲线趋于平整,此时的波动率大概在6%。从图17(b)可以看出,随着加速度的降低,功率的波动率也越来越低,此时各通道的时间延迟为:T1=31.3 s,T2=62.6 s,T3=93.9 s,速度为V1=10.65 m/s,功率波动率在3%左右。而在八通道的功率叠加情况图17(c)中,可以看出,随着通道数的增加,功率的波动率也越来越低,在相同输出功率大小的情况下,此时功率波动率在2.5%左右。
三通道叠加与二通道叠加类似,但由于是奇数,与四通道叠加的原则类似,本工作试着将三个通道的功率曲线分别以下降段,上升段、匀速段叠加,两端匀速段和一段静止段叠加。即:
![]() | (20) |
![]() | (21) |
设定:m=400/3 t,a1=a3=1 m/s2,v1=13.9 m/s,H=1000 m,将延时启动时间设定为T1=30 s,T2=60 s,得到图18(a)的功率曲线。六通道功率曲线的叠加可以建立在三通道的基础上,可以看成是两个三通道功率曲线的叠加,为此,在三通道条件设定的基础上,为使平均功率相同,设定:m=200/3 t,启动时间设定为T1=15 s,T2=30 s,T3=45 s,T4=60 s,T5=75 s,得到图18(b)的功率曲线。
图18 三和六通道功率叠加
从图18(a)可以看出,功率波动比四通道大很多,这是由于奇数通道数功率叠加效果没那么好。由图18(b)可以看出,随着通道数的增加,功率的波动率也越来越低,在相同输出功率大小的情况下,此时功率波动率在3%~4%。
3.2 控制结论
确定了控制方法,再对控制性能进行研究,本工作对控制性能的研究从功率波动率和功率损失率两个方面出发。功率波动率反映了输出机械功率的平稳性,从上一节控制方法的不同通道的仿真实验中,可以得到在相同平均输出机械功率的前提下,2、3、4、6、8各通道的功率波动率大小的对比情况。在此基础上,本工作再研究功率损失率,功率损失率是指将多个通道的功率叠加后,所得到的平均功率相较于单个通道的匀速段功率叠加所减少的量。在图17(b)中,单个通道匀速段的功率为13.62 MW,四个通道匀速段功率直接叠加后为54.48 MW,而采用四通道叠加的控制方法后为41.1 MW,故功率损失率为24.6%。结合3.1小节中的仿真结果,可以得到不同通道的控制性能,功率波动率和功率损失率,如表1所示。
表1 不同通道数在相同输出功率的前提下的功率波动率和功率损失率
从表1中可以看出,在这种控制方法的基础上,在保持输出相同功率的前提下,随着通道数的增加,系统的功率波动率越来越低,当通道数为奇数3时,功率波动率更大,这是由于偶数通道数可以通过互补叠加使得输出功率更加平稳。从表中还可以看出,当通道数大于2时,功率损失率的变化随通道数的变化不大,当通道数为2时,本质上是两曲线的波峰波谷互补,使得功率损失率达到最大。因此,在实际的工程应用中,可以采用更多的通道数来实现功率的平滑输出,达到功率稳定的目的。
4 结 论
本工作创新性地对竖井重力储能装置内部的重要技术指标进行研究,完善了竖井重力储能装置中对提高系统效率和功率稳定的研究。重点构建重力储能系统的效率模型和功率模型,研究了系统中的重要参数:加速度、质量、高度、速度对系统效率的影响;并提出了功率稳定的控制方法,从2、4、6、8和3、6不同的通道数入手,给出了有效的功率稳定控制方案。并对控制方案的性能进行评估,分析不同通道数对竖井重力储能系统功率稳定性的影响及在多通道下的电压损失率,为实际工程项目提供具体的理论指导依据。根据对不同通道数的研究,发现在偶数通道下系统的功率稳定性更好,且通道数越多,系统功率越稳定,通道数为8时可达到2.5%;在实际工程建设中,为保持功率损失率小,应建两个通道以上,通道数大于4时功率损失没有随通道数有显著变化。由此看来,更多的通道数可以达到更好的系统性能。
第一作者:周睿(1999—),男,硕士研究生,研究方向为基于重力储能的多能源混合系统设计及并网控制,E-mail:23121528@bjtu.edu.cn;
通讯作者:洪剑锋,副教授,研究方向为永磁电机系统优化设计及重力储能系统设计,E-mail:jfhong@bjtu.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
5月30日,远景能源与印度尼西亚新能源企业SUNTerra在远景上海总部签署战略合作备忘录,双方将在东南亚、印度及澳大利亚等重点海外市场深化储能技术与解决方案合作。远景能源高级副总裁、国际产品线总裁徐刚见证签约。SUNTerra隶属于印尼最具影响力的企业—金光集团(SinarMas),负责端到端新能源开发
北极星储能网获悉,近日,河北石家庄市城管局城市照明管护中心引入储能路灯,此次新上岗的储能路灯配备有“应急充电宝”,遇极端天气可即刻启动储备电源,确保至少8小时持续照明。经现场测试,在模拟水位到达积水阈值情况下,路灯断电后仍可由储能式路灯维持道路照明,保障夜间交通安全。目前,已在友
近日,中国电建EPC总承包的南非红石光热电站项目获得南非国家电网公司签发的商业运行证书,标志着项目正式进入商业运行阶段。该项目是撒哈拉以南非洲首个塔式熔盐光热电站,也是南非北开普省最大的投资项目。项目采用了先进的塔式熔盐储能技术,现场安装41260面定日镜,它们所组成的镜场和以247.55米高
作者:彭鹏1王成东2陈满1王青松2雷旗开1金凯强2单位:1.南方电网调峰调频发电有限公司储能科研院2.中国科学技术大学火灾科学国家重点实验室引用本文:彭鹏,王成东,陈满,等.某钛酸锂电池储能电站热失控致灾危害评价[J].储能科学与技术,2025,14(4):1617-1630.DOI:10.19799/j.cnki.2095-4239.2024.1006本
天眼查显示,5月8日,河间市银龙新能源科技有限公司成立,注册资本500万元,经营范围包含:发电机及发电机组销售;太阳能发电技术服务;太阳能热发电产品销售;储能技术服务等。股东信息显示,该公司由银龙股份间接全资持股。
作为新能源行业年度顶级盛会,2025上海SNEC展会将于6月11日在国家会展中心盛大启幕。这场被誉为行业风向标的年度展会,已吸引全球超3500家企业确认参展,38万#x33A1;展览规模将汇聚全球新能源领域的前沿技术与创新成果,为产业高质量发展注入强劲动能。在这场全球瞩目的行业盛事中,数字能源产品及风光
北极星储能网获悉,6月3日消息,福建省科学技术厅等四部门关于组织申报2025年高校产学研联合创新项目的通知,新材料方向包括,锂离子电池、燃料电池等关键材料及工程化技术;电池梯级利用与绿色回收技术;乏燃料后处理技术;先进锂离子电池、动力锂离子电池凝胶聚合物电解质、高离子电导率和高稳定的无
关于召开2025第七届综合能源服务与零碳园区建设大会的通知当前,能源产业生态正经历从“供给侧资源主导”向“需求侧价值创造”的范式跃迁。现代能源服务业通过构建“用户需求-能效服务-价值共享”的新型商业闭环,催生出涵盖规划咨询、系统集成、智慧运维的全周期解决方案。为把握产业变革机遇,北极星
北极星售电网获悉,近日,重庆市能源局发布关于市六届人三次会议第1243号代表建议办理情况的答复函。答复文件明确,重庆实施“百万千瓦屋顶部署推进”光伏式和“千乡万村驭风”行动,截至2025年3月,全市风电、光伏发电装机规模分别达到256万千瓦、352万千瓦,新能源装机将从“十三五”末提升6.3%至16.
北极星储能网讯:5月29日,重庆能源局对代表建议进行答复。其中提出,我局将进一步科学做好新型储能电站项目规划布局和建设,力争到2027年底,全市装机规模达到200万千瓦/400万千瓦时,建设以新型储能等调节电源为核心的多维度平衡性电力资源池,不断增强全市电力系统调节能力。不断创新“新能源+储能
北极星储能网讯:5月30日,内蒙古鄂尔多斯市能源局发布谷山梁300MW/1200MWh电源侧储能项目牵头企业优选公告。其中提出,项目建设地点位于达拉特旗,接入谷山梁500千伏变电站,投产时间为2025年12月。申报项目实施主体牵头单位应为储能装备制造企业。鄂尔多斯市2025年新型储能专项行动项目谷山梁30万千
5月30日,远景能源与印度尼西亚新能源企业SUNTerra在远景上海总部签署战略合作备忘录,双方将在东南亚、印度及澳大利亚等重点海外市场深化储能技术与解决方案合作。远景能源高级副总裁、国际产品线总裁徐刚见证签约。SUNTerra隶属于印尼最具影响力的企业—金光集团(SinarMas),负责端到端新能源开发
据外媒报道,日前,可再生能源和储能系统开发商GenexPower公司改变了其计划在澳大利亚昆士兰州的Kidston风电+储能项目规划,该项目原名为Kidston风能项目,最初规划风力发电场装机容量为258MW,现已重新配置为120MW,并配套部署一个150MW/600MWh电池储能系统。GenexPower公司将通过昆士兰电力公司正在
近日,海辰储能∞Block5MWh储能系统成功完成全球首次开门极限燃烧试验,这一突破性成果为储能系统的安全性验证开拓了新路径,在行业内具有里程碑意义。四大极限挑战近年来储能系统热失控等引发的安全事故时有发生,使得储能安全问题备受瞩目。在此背景下,严苛、规范安全测试成为行业发展的迫切需求,
日前,可再生能源开发商ACEnergy公司表示,该公司计划部署的350MW/770MWh的LittleRiver电池储能系统申请已经得到澳大利亚维多利亚州政府的快速批准。该项目是维多利亚州政府通过“开发促进计划”途径选择加速审批的最新项目。该计划在去年将覆盖范围扩大到包括可再生能源发电项目,旨在加快维多利亚州
第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会(SNEC)将于6月11日在国家会展中心(上海)开幕。远东储能邀您相聚SNEC2025,探索能源未来,见证创新力量。聚焦高安全、高效能、高集成,精彩即将启幕,远东储能携手全球伙伴共建零碳新未来。
日前,根据欧洲光伏产业协会发布的一份研究报告,欧洲电池储能系统部署量持续刷新纪录,但仍需采取更多举措来加速部署。欧洲光伏产业协会表示,在三种模拟情景下,电池储能系统部署规模都将实现显著增长,但仍无法满足市场需求。日前,来自全球各地的太阳能、储能和电动汽车行业厂商代表参加了在德国慕
北极星储能网获悉,2025年5月31日,新疆伟润克州阿图什市300MW/1200MWh独立共享储能项目在克孜勒苏柯尔克孜自治州奠基开工。项目采用磷酸铁锂电池技术路线,配置构网型储能系统,可通过自主调节电压、频率特性,有效支撑电网稳定性,缓解新能源发电间歇性问题。其300MW/1200MWh的建设规模,刷新新疆同
6月4日,安徽省皖能聚合智慧能源有限公司发布皖能民丰县20万千瓦80万千瓦时独立新型储能项目招标公告。项目位于新疆维吾尔自治区和田地区民丰县境内,规划建设1座200MW/800MWh磷酸铁锂电化学储能电站和1座220kV汇集站,本项目采用构网型高压级联方案,本期一次性整装建成。本工程为交钥匙工程。项目合
日前,卧龙新能发布公告称,公司拟将其持有的卧龙矿业(上海)有限公司90%股权转让予关联方浙江卧龙舜禹投资有限公司(以下简称“卧龙舜禹”),交易价格为22,050.00万元,其主营业务为铜精矿贸易。根据公告,本次交易完成后,卧龙新能将不再从事铜精矿贸易业务。同时,公司可借助本次资产出售降低资产
2025年5月27日,深能湖北云梦50MW/100MWh集中式(共享式)储能电站项目成功并网。该项目全部采用欣旺达NoahX5MWh液冷储能系统。深能湖北云梦50MW/100MWh集中式(共享式)储能电站项目是湖北省优化能源结构、提升新能源消纳能力的关键基础设施,标志着欣旺达储能在助力大型集中式共享储能电站建设、服务新型
第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会(SNEC)将于6月11日在国家会展中心(上海)开幕,此次参展,东方日升将在5.2H-B180展台带来“全栈融合全链协同”创新“昇”级:●全链融合方案——光储全场景解决方案:推出“组件+逆变器+储能+智慧能源管理”全链贯通的光储全场景解决方案,实现
2025年5月30日,国家发展改革委、国家能源局联合印发《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号)。这是我国首份绿电直连政策法规,旨在探索创新新能源生产和消费融合发展模式,促进新能源就近就地消纳,更好满足企业绿色用能需求。在国际碳贸易壁垒下,绿电直连政策是我国应
“绿电直连”11类应用场景测算(来源:微信公众号“孙小兵”作者:孙小兵)2025年6月4日2025年5月,国家发展改革委、国家能源局印发了《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号)(以下简称“650号文”)。作者结合近期在零碳园区策划上的实践和思考,对绿电直连专线缴纳输
“十五五”是我国经济迈向高质量发展的关键阶段,也是全球能源格局深刻调整的重要时期。在当前和今后一段时间,我国能源电力将持续处于清洁低碳、安全高效转型的大趋势大环境中,如何更加有效地发挥电力在国民经济中的基础和先导作用,促进国家重大发展战略和目标的实现,更好地满足人民群众日益增长的
在被视作下一代储能电池——500+Ah储能电芯的竞赛上,远景动力和宁德时代率先发力。5月29日,远景动力沧州超级工厂正式下线500+Ah储能电芯,成为行业率先实现500+Ah电芯量产的企业。无独有偶,本月中旬,宁德时代位于山东济宁的新能源电池工厂一期项目投产。此前,有消息称,宁德时代587Ah储能电芯将于
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
北极星储能网获悉,5月28日,在新疆昌吉州吉木萨尔县,三峡能源吉木萨尔20万千瓦/100万千瓦时全钒液流新型储能项目并网发电。该项目储能时长5小时,是新疆储能时间最长的液流新型储能电站,单次最大能储存100万度电,大约能满足390户三口之家的一年用电需求。2024年3月,该项目由上海勘测设计研究院有
今年是“十四五”规划的收官之年,也是全面深化改革纵深推进之年,在更加错综复杂的国际国内环境下,我国电力工业取得了长足的进展,在最大用电负荷、电源装机规模等方面大幅增长。当前正值“十五五”电力发展规划启动之际,本文系统总结“十四五”电力规划完成情况,分析电力行业发展新趋势、新动向,
在过去的几年里,全钒液流电池凭借其本质安全、长时可靠等特性,赢得了产业界和资本市场的广泛认可。然而,其商业化进程仍面临初始成本过高的核心挑战。当时间来到2025年,锂电池储能中标价已接近0.4元/Wh,对比之下,液流电池亟需突破成本瓶颈。作为新型储能领域的重要技术路线,全钒液流电池无疑是一
能源是产业发展的重要动力源泉和物质基础,当前新一轮能源革命和产业变革都在深入推进。大力发展新能源是加快规划建设新型能源体系的重要抓手,而促进新能源与产业协同是以能源转型支撑经济高质量发展的应有之义。(来源:电联新媒作者:刘坚、邓良辰、赵晓东、王娟)促进新能源与产业协同发展是推动能
作者:沈代兵1,2郝佳豪1,2宋衍昌1,2杨俊玲1张振涛1,3,4越云凯1,3,4单位:1.中国科学院理化技术研究所低温科学与技术重点实验室;2.中国科学院大学;3.长沙博睿鼎能动力科技有限公司;4.河北省储能产业技术研究院本文亮点:1、面向二氧化碳储能循环所需的大膨胀比宽负荷透平膨胀机研究还较少。2、针对储
“十五五”是我国经济迈向高质量发展的关键阶段,也是全球能源格局深刻调整的重要时期。在当前和今后一段时间,我国能源电力将持续处于清洁低碳、安全高效转型的大趋势大环境中,如何更加有效地发挥电力在国民经济中的基础和先导作用,促进国家重大发展战略和目标的实现,更好地满足人民群众日益增长的
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!