北极星
      北极星为您找到“自养菌”相关结果215

      来源:环保工程师2021-05-06

      近年来,生物脱氮领域开发了许多新工艺,主要有:同步硝化反硝化;短程硝化反硝化;厌氧氨氧化和全程自养脱氮。...另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。

      生化法除氨氮的技术汇总!

      来源:环保工程师2021-04-13

      anammox的生化反应式为:nh4 no2-→n2↑ 2h2oanammox菌是专性厌氧自养,因而非常适合处理含no2-、低c/n的氨氮废水。...3、全程自养脱氮(canon)canon工艺是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是sharon和anammox工艺的结合,在同一个反应器中进行。

      关于A2O改良工艺的详解!

      来源:环保工程师2021-04-02

      二、a2o改良工艺汇总1、基于 srt 矛盾的复合式 a/o工艺在传统 a/o工艺的好氧区投加浮动载体填料,使载体表面附着生长自养硝化菌,而 paos 和反硝化菌则处于悬浮生长状态,这样附着态的自养硝化菌的

      生态反应器协同处理污水效能研究与示范研究成果

      来源:城建水业2021-03-09

      酵母菌能够合成几乎所有微生物所需的氨基酸及其他生长因子,其有利于促进自身合成能力欠佳的乳酸菌、自养型硝化细菌甚至厌氧氨氧化菌的繁殖。...乳酸菌和酵母菌在填料生物膜、植物生物膜中均具有较大数量,且植物生物膜中的乳酸菌、酵母菌数量亦明显高于填料生物膜中。

      北京建筑大学吴莉娜:UASB+A/O+ANAOR+ASBR实现垃圾渗滤液<mark>自养</mark>深度脱氮

      来源:中国给水排水2021-02-23

      而厌氧氨氧化(anammox)技术,只需将部分氨氮(nh4+-n)氧化成亚硝酸盐(no2--n),no2--n再和剩下的nh4+-n反应直接生成n2,实现自养脱氮而无需投加无机碳源。...图2表明,在垃圾渗滤液处理过程中检出的厌氧氨氧化菌优势菌种是candidatus kuenenia,这与处理城市污水厌氧氨氧化菌种有明显区别。尽管本工艺多处回流,即

      来源:环保工程师2021-02-20

      他包括两个基本反应步骤:由亚硝酸菌(nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养

      来源:环保工程师2021-02-08

      4、生物固体平均停留时间(污泥龄) 为了使硝化菌群能够在连续流反应器系统存活,微生物在反应器内的停留时间(θc)n必须大于自养型硝化菌最小的世代时间(θc)minn,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆尽

      来源:环保工程师2021-01-14

      3、生物学解释传统理论认为硝化反应只能由自养完成,反硝化只能在缺氧条件下进行,近年来,好氧反硝化菌和异样硝化菌的存在已经得到了证实。...基于迄今snd机理研究,综合微环境和生物学理论,mbbr生物膜内snd可能存在的反应模式是,分布于生物膜好氧层的好氧氨氧化菌、亚硝酸盐氧化菌和好氧反硝化细菌与分布于生物缺氧层的厌氧氨氧化菌、自养型亚硝酸细菌和反硝化细菌相互协作

      来源:环境与发展2021-01-12

      2.1.2 厌氧-好氧法此种方法作用于好氧环境中,应用自养型硝化菌对工业废水中含有的氨氮进行转化,形成硝态氮。...这种工业废水生物处理工艺中,不管是硝化菌,抑或是反硝化菌,在一定时期内都处在受到抑制的状态,无法起到真正作用。对于这一情况且根据焦化废水的实际特征,相关研究人员研发了膜法a-o工艺。

      彭永臻课题组 | 主流城市污水部分厌氧氨氧化技术的研究与工程化应用

      来源:给水排水2021-01-12

      目前两段式与一体化城市污水短程硝化/厌氧氨氧化自养脱氮工艺的可行性在不同实验室得以证明,国际一些知名水务集团相继建立了中试基地进行技术验证探索。...当亚硝酸盐氧化菌与厌氧氨氧化菌竞争,厌氧氨氧化菌难以得到基质而逐渐衰减,短期可引发系统出水总氮持续增高,长期可致使系统脱氮性能下降甚至崩溃。(2)瓶颈2,厌氧氨氧化菌大规模持留或富集。

      来源:淼知水圈2021-01-08

      第二段生物滤池主要对污水中的氨氮进行硝化,在该段生物滤池中,由于进水中有机物浓度较低,异养微生物较少,而优势生长的微生物为自养性硝化菌,将污水中的氨硝化成硝酸盐或亚硝酸盐。...,必然存在硝化菌与聚磷菌的不同泥龄之争,使除磷和硝化相互干扰;pasf脱氮除磷工艺,成功地解决了硝化菌与聚磷菌的泥龄之争、反硝化与聚磷菌厌氧释磷的矛盾等难题。

      来源:环保工程师2021-01-04

      1、有机物导致的氨氮超标大量碳源进入a池,反硝化利用不了,进入曝气池,因为底物充足,异养菌有氧代谢,大量消耗氧气和微量元素,因为硝化细菌是自养,代谢能力差,氧气被争夺,形成不了优势菌种,所以硝化反应受限制

      来源:环保工程师2020-12-30

      4、生物固体平均停留时间(污泥龄)为了使硝化菌群能够在连续流反应器系统存活,微生物在反应器内的停留时间(θc)n必须大于自养型硝化菌最小的世代时间(θc)minn,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆尽

      城市污水厂部分反硝化滤池启动及运行

      来源:《中国环境科学》2020-12-29

      是一种新型的污水脱氮处理技术.基于此提出应用于深度脱氮的部分反硝化耦合厌氧氨氧化二级滤池的工艺路线.该工艺理论上可节省 79%的碳源,氨氮可来源于二级生物处理剩余氨氮或者引入部分初沉池原水,可节省曝气成本;其次,厌氧氨氧化菌为自养

      刘洪波团队:微生物 大作用 弱电强化助力污水深度脱氮

      来源:净水万事屋2020-12-25

      、试验组和对照组门水平群落组成的相似性及差异性heatmap 图及微生物种群out 水平序列聚类的差异性图与微生物种群种水平丰度百分比分析等技术方法,揭示了微生物弱电刺激下系统分子层面物质与微生物优势菌群种类数量的变化

      来源:淼知水圈2020-12-24

      反硝化细菌可以分为自养反硝化细菌和异养反硝化细菌,其中大部分反硝化细菌为异养反硝化细菌,需要利用有机碳源进行反硝化。...在生物脱氮过程中,涉及到氨化反应、硝化反应、反硝化反应三个阶段,废水中的氨氮首先必须被硝化菌硝化,转化成亚硝酸盐和硝酸盐,然后在反硝化菌的作用下发生反硝化作用,硝酸盐将被作为细胞呼吸过程中氧化简单碳水化合物的供氧体

      沈耀良教授 | ABR相分离条件下耦合MBR工艺反硝化除磷可行性

      来源:环境工程2020-12-18

      污泥适应期对碳氮去除特性反应运行1~20 d为接种污泥的适应阶段,abr的hrt设置为16 h,mbr为8 h,为避免由于回流造成的局部水力停留时间缩短,使得abr尚未去碳完全就进入mbr,影响mbr内的自养硝化...但无论是sbr还是a2/o工艺都属于单污泥系统,系统中的功能微生物如硝化菌、反硝化除磷菌等在碳源、hrt和srt等因素上存在竞争,很难在一个系统中同时实现氮磷的高效去除。

      苏州科技大学陈重军:厌氧氨氧化颗粒污泥的研究进展

      来源:中国给水排水2020-12-15

      该过程无需外加有机碳源,主要应用于高氨氮、低碳源废水处理,为实现自养低耗脱氮提供了新途径。然而,anaob繁殖速率低,倍增时间长,在实际应用中很容易随污泥流失导致难以快速培养。...该过程无需外加有机碳源,主要应用于高氨氮、低碳源废水处理,为实现自养低耗脱氮提供了新途径。然而,anaob繁殖速率低,倍增时间长,在实际应用中很容易随污泥流失导致难以快速培养。

      污水脱氮进入“0”碳源绿色节能新时代!

      来源:走进水专项2020-11-16

      该技术利用矿物材料调控的反硝化过程,在低碳氮比条件下实现硝酸盐高效去除;首次阐释了自养与异养菌的协同共生关系,揭示了天然矿物调控的不同来源异养碳源与单质硫/硫铁矿协同体系的元素转化行为和微生物代谢机制

      来源:淼知水圈2020-10-26

      全程自养脱氮是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是sharon和anammox工艺的结合,在同一个反应器中进行。...解答:适当提高污泥浓度,如果氨氮略高时可通过加曝来去除氨氮,现在应该从改善污泥结构入手,让污泥更适应硝化菌的定居,而不是一味加曝导致硝化菌流失。

      相关搜索