为减少风能预测误差,使用自回归及马尔科夫链的模型进行有效功率的评估(2)

所以现在我们实际上是要开发一个工具,这个工具被称之为叫做平衡型模拟工具。那么,这个工具今后可能将会是按小时的来做这个运营的建模。这个工作并不仅仅是预测本身,同时也要试图能够得出这个真实的错误速率。那么我们刚才前面也说到了我们是通过市场来激活的。那么市场当中包括了消费者也包括了电网的提供者。那么他们的问题是我们怎么样来去评估这个风的资源。同时怎么样去激活风能资源。那么这些问题都是我们需要帮助他们回答的。

我们现在就需要去看一下这个相关的错误次数。我们前面也提到了预测,是由丹麦的机构来提供的。我们需要把这些数据分成两个这个电网的体系,在丹麦一个是西部的电网,那么是和其他的大陆上的电网相联系的。另外是东部电网。那么是和北欧国家电网相联系的。我们需要去搜集近海的信息和陆上的影响信息。所以说一共是有四种类型。我们看到它的误差是用这样一个共识来计算的。我们用它计算误差率,我们定义了误差之后我们就来进行每个小时的这样一个分辨率。另外就是说我们有大约三百天的数据,我们也使用冬天的数据。这里面我们没有包括夏天的数据。

这些是一些例子。我们看到这里是陆上的。也可以看到这个测量和预测之间的区别。你看到区别并不是很大。所以说他是比较平滑的。而在海上的呢,那么我们对于个体的风场来说可能会出现更多的误差。你可以看到有更多的波动。我们把这些错误进行分类。然后我们要看一下他的误差值的分布。我们发现他们是平均分布的。如果你看他的公式的话,那么他是有指数性关系的。那么这种特点实际上是以平均的模型相符合的。那么我们用一些标准的方法来估测他的阿尔玛的参数。有了这样一个参数以后我们可以去模拟。

那么这是模拟和实际数据的比较。看这个趋势,在趋势的方面他们是一致的。但是我们也可以看到我们所看到在实际数据当中有一些东西是阿尔玛的模型,没有办法去追踪,所以也就是说在这一块还是有改善的空间的。为什么要改善?因为阿尔玛的参数的估测如果是时间越多的话,越长的话,就越准。通常我们需要有50个小时才能够获得比较好的参数。因此的话我们需要有另外一种方法,他不依赖于时间的长短,所以我们就选用了马尔科夫链模型。它不需要很多的持续的时间。马尔科夫链的模型的关键是我们必须要能够定义它的马尔科夫转换矩阵,如果要是在计算数据的时候,我们把它作为马尔科夫链的建模的基础。那么下面是比较模拟和实际数据。这里的数据还有阿尔玛的参数模型,他们看起来是有类似的这样一个趋势。但是,马尔科夫链是更能够追踪实际的趋势。因此我们认为马尔科夫链模型是一个更好的模型。

所以结论是我们已经看到了这个在模拟当中的IMAE值。看到了这个DAHA在海上至少比陆上要高一倍同时我们也注意到了马尔科夫链模型是一个更好的平衡的模型。它比阿尔玛模型更好,因为它不依赖于时间序列,谢谢。

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 在线帮助 | 联系我们 |

版权所有 © 1999-2013 北极星电力网(Bjx.Com.Cn) 运营:北京火山动力网络技术有限公司

京ICP证080169号 京ICP备09003304号-2 京公网安备:1101052752电子公告服务专项备案