登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
1 引言
交流传动在高性能场合的应用始于矢量控制概念的引入,包括直接磁场定向与间接磁场定向控制。尽管这一概念早在60年代就已出现,并由Siemens 的Blaschke博士于1972年正式提出,但是真正应用还是在微电子技术发展的二十年后。矢量控制从基本原理上讲能够获得优异的动静态特性,但是对电机参数的敏感性却成为实际应用中必须解决的问题。驱动器通过启动前的自整定以及运行过程中的在线整定,适应电机参数变化,保持矢量控制的动静态性能,这些复杂的自适应控制算法都必须通过强大的信号处理器才能完成。
近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。随着半导体技术的飞速发展,功率器件在不断优化,开关速度在提高而损耗在下降,功率模块的功率密度在不断增加;数字信号处理器的处理能力愈加强大,处理速度不断提升,交流驱动器完全有能力处理复杂的任务,实现复杂的观测、控制算法,现代交流传动的性能也因此达到前所未有的高度。以代表交流驱动控制最高水平的交流伺服为例,其需求随着新的生产技术与新型加工原料的出现而迅速增长。据相关统计,高性能交流伺服驱动器数量的年增长率超过12%。伺服驱动中应用最多的电机是异步电机及同步电机,额定功率从50W到200kW,位置环、速度环以及转矩环路的典型带宽分别为60Hz、200Hz以及1000Hz。
交流电机驱动中的大部分问题应当说在当今的驱动器中已经得到解决,相关的成熟技术提供了被业界广泛接受的解决方案,并在许多领域中得到成功应用,因此从基本结构上来讲,交流驱动器的现有设计方案在未来的几年中不会有大的变化。现在,交流驱动器开发的一个重点是如何将驱动器与电机有机地结合在一起,开发出更低成本、高可靠性、高性能“驱动模块”。基于这一思路,为进一步减小成本、提高可靠性,开发人员在如何省去轴侧传感器以及电机相电流传感器进行了深入的研究,特别是高性能无速度传感器矢量控制(SVC)的实现吸引了各国研发人员的广泛关注,并已成为近年来驱动控制研究的热点。随着具有强大处理能力的数字信号处理器的推出,实现该控制方式所需要的高鲁棒性、自适应的参数估计以及非线性状态观测成为可能,新的无速度传感控制方案不断推出。Siemens、Yaskawa、Toshiba GE、Rockwell、Mistubishi、Fuji等知名公司纷纷推出自己的SVC控制产品(本文所指SVC均针对异步电机),控制特性也在不断提高。SVC目前已在印刷、印染、纺机、钢铁生产线、起重、电动汽车等领域中广泛应用,在高性能交流驱动中占有愈来愈重要的地位。
2 无速度传感器矢量控制的优势
概括来说,无速度传感器矢量控制可以获得接近闭环控制的性能,同时省去了速度传感器,具有较低的维护成本。与传统V/Hz控制比较,无速度传感器矢量控制可以获得改进的低速运行特性,变负载下的速度调节能力亦得到改善,同时还可获得高的起动转矩,这在高摩擦与惯性负载的起动中有明显的优势。正是由于这些驱动特性,该控制技术已逐渐成为通用恒转矩驱动应用的选择。事实上,基本上所有的AC驱动厂家都提供该控制模式。
Schneider公司的驱动市场经理Susan Bowler认为,该控制模式的吸引人之处在于利用最小的附加费用获得大大增强的性能,包括低速特性、转矩响应及定位能力等。由于其性能接近伺服驱动,公司在拓展需要更精确负载定位控制的场合。该公司的第三代Altivar无速度传感器驱动产品具有自调谐特性,确保驱动器在电机运行参数随时间发生变化的情况下仍然能够持续优化电机运行特性,控制算法在设定速度上计算优化的电机电压以获得最大的转矩输出。电机的模型已经考虑了热效应的影响。
Siemens交流驱动产品经理Kirkpatrick的观点是,目前大多数的AC驱动产品默认都是SVC控制。闭环磁通矢量控制(FVC)只是在一些需要更严格速度控制及零速转矩控制的场合应用。由于FVC成本较高,码盘、电缆及其安装接线等涉及问题较复杂,其销量不大。
3 无速度传感器矢量控制的现状
无速度传感器控制这种感应电机的高级驱动方式填补了高性能闭环控制与简单开环控制之间的空档,其价格与所提供的驱动性能相称。尽管省略了闭环控制中使用的速度传感器,SVC仍然需要采用电压、电流传感器对电机进行控制,在高速运算处理器的平台上通过使用复杂的电机模型与高强度的数学运算,对传感器输入信号进行处理获得电机控制所需的磁通与转矩分量,再通过自适应的磁场向量方法实现解耦控制,以获得良好的动态响应。
应当说,该控制方式目前没有标准的解决方案,在过去的十几年里研究人员发表了不少论文,提出了许多不同的思路,而事实上许多公司在其通用变频器中亦采用了各自不同的无速度传感器控制方案,其驱动性能不尽相同,这与方案的内核是基于V/Hz或者磁场定向有关。大多数的无速度传感器交流驱动都属于无速度传感器矢量类型,而直接转矩控制(DTC)则属于另外一种。Rockwell的Kerkman认为,高性能的无速度传感器控制源于闭环磁场定向磁通矢量控制,其控制基于转子磁通矢量;而相对性能较低的方案则基于定子磁通矢量和一些简单的控制算法。SV控制技术中滑差频率的准确估测是困难所在,计算该频率所需的量对SVC来讲都是基本的控制量,因此它涉及到多方面的问题。Siemens标准传动R&D的Eckardt则认为,在高速电机磁场可以直接根据电机反电势计算获得,在低速(特别是零频附近),定子磁通的计算较为困难;而在零频,理论上定子磁通是不可观测的。
在Mitsubishi公司,高级磁通矢量控制代表了最新的无速度传感器控制技术。该技术对公司之前于1993年开发的技术进行了进一步的优化,旨在提高低速无速度传感器运行时的输出转矩与运行稳定性。该公司交流驱动市场部经理 Kantarek认为,SVC控制的优良特性可以应用到绝大多数恒转矩运行场合,特别是那些需要高起动转矩及低速平滑运行的场合,而且SVC驱动器目前已经发展到可以替代DC驱动。根据Kantarek的介绍,Mitsubishi 的SVC控制首先采用了电机内部特征模型,之后通过自整定每几个毫秒采样一次电机模型,驱动器将输出电流分解为激磁与转矩电流。通过相应的电压补偿保证电机定子磁通在一个稳定值上,并进一步计算转差频率。
直接转矩控制(DTC)为另外一种当今引起广泛关注的无速度传感器控制解决方案, ABB公司于1995年推出了其直接转矩控制产品ACS600,目前升级至ACS800。DTC采用了单独的环路对电机的速度及转矩进行控制。ABB交流驱动R&D经理Gokhale解释说,“DTC自开发之初就是一种无传感器控制的结构,它从本质上说是一种转矩控制方案,而不是矢量控制。”DTC除去了典型矢量控制中的电流调节器或电压指令生成环节。代之的是两个滞环控制环节,每25μs分别对磁通及转矩进行估计与控制。在该控制结构中, 低速磁通辨识的积分漂移以及定子电阻变化的影响直接限制了驱动器的最低工作范围。由于系统没有中间转矩电流、磁通电流控制环节, DTC缺乏直接电流控制。总体来讲, DTC直接控制转矩, 间接控制电流。
正是由于以上一些特点,一些研究人员将DTC称为本质上的“高级标量控制”。限于篇幅,本文将不再展开,以下将只针对SVC进行相关阐述。
SVC控制的关键在于正确的转速估计与解耦控制,但这两者之间又存在相互耦合的关系。转速估计的精度不仅决定于测量的定子电压与电流,同时与电机参数密切相关。在数字化电机控制系统中,转速估计的精度又与采样频率以及反馈信号的分辨率有关,而转速估计的精确程度不仅影响到速度控制的准确度, 也会影响到速度环路补偿器的设计。这些问题环环相扣, 稍有失误甚至会影响到系统的稳定性。
SVC技术要实用化,必须解决几个基本问题:磁通辨识、速度估计以及参数适应性。过去十几年里,研究人员开发出了多种磁通辨识与转速估计方法。应用较为广泛的磁通辨识模型包括:开环电压模型、闭环复合模型以及自适应磁通观测模型。开环电压模型在低速存在积分漂移,对参数较为敏感,通过引入低通环节或多重级连低通环节解决积分漂移引起的发散问题,但是会引入幅值与相位失真,因此高性能的无速度传感器控制必须引入适当的补偿方法;闭环复合模型通过计算电压模型与电流模型间的估计误差完成高低速两种模型的平滑切换,在实际设计时通常需要选择合适的增益;自适应磁通观测模型通过自适应环节消除参数变化对磁通观测的影响,可应用于直接转子磁场定向控制。速度估计的方法有的是根据电机端电压及电流来估计转速,有的则是利用观测器来估计转速。转速估计的基本思路在于利用定子电压、电流与频率来计算转子的速度,这些方法基本上可分为:
(1) 以滑差频率为基础的转速估计方法;
(2) 以磁场定向为基础的转速估计方法;
(3) 以自适应控制为基础的转速估计方法;
(4) 以观察器为基础的转速估计方法。
其中以磁场定向为基础的转速估计法由于其快速性与较高的准确度,已成为行业设计的主流。
无论是磁通辨识还是速度估计,对参数的依赖性都较强,也正是因为如此SVC与采用速度或位置传感器的闭环磁通矢量控制(FVC)相比,对电机参数的变化更为敏感,在速度调节与转矩响应等动态指标上要落后于FVC控制。目前业界对SVC参数整定的设计包括初始整定与在线整定两种。在初始整定中,一些厂家只需输入电机铭牌参数,另外一些厂家则需要进入单独的静止、旋转参数辨识(离线辨识)。例如,GE Fuji生产的AF-300 G11动态转矩矢量控制驱动器中提供离线与在线整定两种方式。该产品有一个子程序跟踪电机运行状态,观测由于温度或负载变化引起的参数变化。通过在电机运行过程中不断刷新电机参数,并利用其独特的数学模型调节电压及电流,达到优化电机低速运行性能的目的。
在线整定的典型方法包括:EKF、MRAC以及直接求解电机DQ模型方程式等方法。众所周知,转子时间常数在磁场定向中扮演重要角色,在无速度传感器控制中,如何独立辨识转子速度与转子时间常数十分重要。一种办法是通过注入高次谐波来实现,但需要注意引起的转速、转矩波动,这是由于为了进行有效地辨识,谐波幅度相对需要较大;另外有的研究人员提出使用电机转子槽谐波独立辨识转速。有关参数自适应这方面的研究仍在深入,如何提高SVC系统的适应性、鲁棒性无疑是一个重要的研究课题。
总的来看,由于不需要速度传感器,SVC的电机控制模型要十分精确。从运算量来讲,SVC控制比FVC更为复杂,这也使得无速度传感器控制的难度要明显高于闭环控制。由于电机参数在运行过程变化很大,因此SVC驱动器的自整定能力对于获得准确的电机参数尤为重要,这也直接决定了矢量控制的性能。事实上,如何适应电机运行条件的变化,保持模型的精确性是避免高转矩波动的关键;而模型的自适应能力也是电机接近零速运行时最为重要的因素,因为此时的电机参考模型误差已经大大增加。由于采用了增强型的电机模型, 可适应电机运行条件变化,GE Toshiba报道称,其产品在一定转差及负载条件下,原来7%的转矩脉动现在已削减至不到2%;转矩调节精度在1~2%范围内,而速度稳定精则在额定速的0.1%范围内。
尽管采用了自适应的精确电机模型,目前的最高水平的SVC控制在动静态特性上与FVC仍然存在一定差距,这在低速运行区域尤为明显。SVC低速能力的极限同样与负载惯性及变化情况等因素有关;就转矩控制而言,在1Hz运行相对容易一些,0.5Hz附近有可能,视具体应用场合,但是远低于这一速度的转矩控制对SV来将是较困难的了。如果要想在零速附近(通常指低于基速的5%)获得满转矩与非常精确的转矩控制,或者是达到额定速度0.01%的稳速精度,码盘反馈是必须的。在选择SVC驱动器时必须考察其动态响应,而且SVC与FVC的响应速度最大可以相差15倍,这些必须在高性能应用场合时加以仔细考虑。
产品化的SVC还需要解决许多细节问题, 要想获得高性能的SVC控制, 并在复杂的工业环境中稳定运行, 这些问题都需要进行细致的研究, 各公司的研发人员在这些地方投入相当的精力。以下仅列出其中一部分典型的问题要点:
(1) 低速运行区域
(2) 弱磁运行区域
(3) 再生模式运行
(4) 死区补偿
(5) 数字积分方法
(6) PI控制器种类的选择
(7) 转速辨识的稳态精度
(8) 动态负载的速度变化
(9) 采样延迟效应的考虑
(10) 系统关于参数变化的稳定性
(11) 磁饱和
(12) 集肤效应
4 无速度传感矢量控制的发展方向
概括来讲,未来无速度传感器矢量控制的动静态特性的进一步提高,需要更为完善的逆变器/电机模型,综合考虑不同运行条件下的电机磁路饱和、绕组集肤效应、逆变器的非线性以及电机参数变化等因素。在更为精确的自适应电机模型基础上,低速转矩脉动将进一步减小,稳速精度将进一步提高,对负载扰动的响应更快,对电机参数变化的稳定性将进一步加强。特别是具有宽泛围调速(包括零速)和高精度转速调节、转矩控制(而不仅是转矩限定)的SVC控制系统与FVC控制系统的差距将逐步减小,并有望取代部分伺服应用领域。
未来的一些进步还将体现在高速处理器及外设上。DSP+ASIC/FPGA的控制器结构使得系统的信号并行处理能力更为强大,在此基础上可以支持核心程序以非常快的速度运行,保证SVC系统对速度指令及负载变化有更快的响应,这对高性能的数字控制系统来讲是非常重要的。
此外,无速度传感器控制方式下的多机运行以及在高功率低速运行的应用也将成为未来的发展方向。
5 结束语
无速度传感器矢量控制(SVC)由于省去速度传感器,取消了相关的码盘连线,减小了系统的维护成本,提高了系统可靠性,为逆变器/电机的一体化设计奠定了基础。先进的SVC控制在高速数字信号处理平台上,通过建立精确的电机模型和引入高级控制策略大幅度提高驱动器的动静态性能,并向上发展取代部分闭环矢量控制与伺服控制应用领域。SVC已成为通用变频器中的事实驱动标准,其应用领域将进一步拓展。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在东部沿海,黄岛油库作业区洁净如洗;在西南山地,管道零散天然气资源“颗粒归仓”;在湄洲湾海岸,白鹭翩跹于草木葱茏的自然保护区;在东北平原,20余种景观植物与18种时令蔬菜为基层作业区织就“立体生态锦屏”……从东到西,从南向北,国家石油天然气管网集团有限公司(以下简称“国家管网集团”)
6月5日,遂宁市经济和信息化局发布关于印发《2025年重点行业领域节能监察工作方案》的通知。全文如下:关于印发《2025年重点行业领域节能监察工作方案》的通知各县(市、区)、市直园区经济和信息化主管部门:为贯彻落实国家、省、市关于工业节能降碳有关工作部署,持续发挥节能监察监督约束作用,提升
6月4日,由东方电气集团所属东方研究院与江西昌昱实业有限公司联合建设的40t/d气流床生物质加压气化关键技术中试装置投料运行试验成功,标志着我国具有自主知识产权的生物质原料一步法制粉、水蒸气纯氧加压气化技术路线取得关键突破。技术突破:开辟生物质原料高效转化新路径气流床生物质加压气化关键
北极星售电网获悉,6月5日,山东省能源局发布关于公布《2025年度山东省能源领域新技术、新产品、新设备推荐目录》(以下简称《目录》)的通知。《目录》包括,虚拟电厂资源聚合互动调控平台,虚拟电厂资源聚合互动调控平台通过信息通信技术(ICT)、智能控制算法与市场机制创新,将分散的分布式能源资
北极星储能网获悉,6月5日,优优绿能在深交所创业板正式挂牌上市。截至收盘,优优绿能报151.06元,涨幅68.64%,振幅32.22%,均价157.38元,成交额10.22亿元,换手率79.54%,总市值63.46亿元。优优绿能成立于2015年,位于广东省深圳市。公司专注于新能源汽车直流充电设备核心部件的研发、生产和销售,主
5月29日,鹤壁首座车载移动变电站在国网鹤壁供电公司淇滨110千伏变电站投运。该变电站的投运增强了鹤壁电网迎峰度夏期间的供电可靠性,为全省电力应急保障体系建设提供了新的技术支撑。据介绍,车载移动变电站项目总投资1928万元,全部采用模块化装配式设计,核心设备包括50兆伏安主变压器、110千伏主
6月5日,国务院新闻办举行新闻发布会,介绍《关于深化提升“获得电力”服务水平全面打造现代化用电营商环境的意见》有关情况并答记者问,国家能源局副局长宋宏坤、国家电网有限公司总经理庞骁刚、中国南方电网有限责任公司总经理钱朝阳、国家能源局市场监管司司长郝瑞锋等出席会议。文字实录如下:国家
日前,广东省生态环境厅发布关于进一步明确NOx和VOCs项目减排量核算方法有关事项的复函。详情如下:关于进一步明确NOx和VOCs项目减排量核算方法有关事项的复函粤环办函〔2025〕33号清远市生态环境局:你局《关于商请进一步明确NOx和VOCs项目减排量核算方法的函》收悉。经研究,有关情况函复如下。一、
北极星售电网获悉,近日,陕西省汉中市发展和改革委员会发布《汉中市电力高质量发展实施意见(草稿)》,其中提到,县级以上人民政府及其有关部门应当因地制宜推动储蓄、火电、水电等多种电源与新能源发电协同运营,有序发展多能互补项目;健全多能源发电协同调度机制,统筹优化调峰电源运行,保障新能
2025年,交通运输体系的绿色低碳转型成为政策焦点之一,是推动高质量发展的重要抓手。在“双碳”目标与国七排放标准升级的双重驱动下,氢燃料电池技术被列为重型车辆零碳转型的重要路径。美国戈尔的GORE-SELECT®质子交换膜凭借其高效能、耐久性等特性,将推动氢燃料电池的应用发展,成为重型车辆行业
5月15日,北京衡燃科技有限公司与清华大学联合开发的“基于过程控制的多源有机废物湍动床(TFB)气化焚烧技术”项目,顺利通过中国节能协会的专家评审,正式被认定为科学技术成果。在本次评审认定过程中,中国节能协会严格依据《科技成果评价试点暂行办法》的相关规定,秉持客观、公正、独立的原则,组
5月30日,宁夏银川庆祥220千伏电缆工程控制性节点——10号至12号地下顶管工程顺利贯通。这段内径达2.8米、全长456米的电力顶管,是宁夏内径最大、长度最长、施工难度最高,以及机械化程度最高的电力地下顶管工程。庆祥220千伏电缆工程位于银川市金凤区长城路核心地带,是银川电网优化网架结构的关键环
谁能想到,一颗拧在风电叶片根部的螺栓,竟差点引发一起重大设备事故——智能螺栓提前“报警”,避免了一场灾难!案例背景:山里的风电场,隐藏的风险某风电场,20台5.0MW大型风电机组日夜运转。风从峡谷呼啸而过的山脊上,一项“黑科技”正在悄然守护它们的安全——MS9000叶根智能螺栓监测系统。自202
5月27日,在浙江杭州滨江区协同电缆隧道内,一台四足巡检机器人正“上岗”作业,其搭载的可见光摄像头精准捕捉到10号工作井内排水沟杂物堆积导致积水的画面。这是杭州供电公司应用智能化巡检手段排查安全隐患的一个场景。当前,杭州供电公司聚焦“人人讲安全、个个会应急——查找身边安全隐患”主题,
近日,全球电量传感器先导者,53年电量测量解决方案专家——莱姆电子凭借优秀的产品质量和及时的交付响应能力,受到合作伙伴美的的高度认可,荣获美的集团工业事业部颁发的年度“优秀供应商奖”这一殊荣。回溯莱姆电子与美的工业事业部的合作,正值美的收购以色列高科技公司高创传动期间。在这关键节点
一场“智”与“能”的双向奔赴回顾历史,整个人类文明进程始终与能源开发利用紧密相关。如今,能源发展进入资源、环境、气候三重约束期,急需沿着清洁低碳方向进行转型。与此同时,人工智能技术正在蓬勃兴起,加速赋智于千行百业,“‘人工智能+’行动”的字眼更是连续两年见诸全国两会政府工作报告,A
今日看点:·上海E-Prix盛事见证科技突破,ABB携手本地盘柜厂合作伙伴共筑未来,秉持开放、共赢的态度促进行业的技术创新和发展·ABB开放许可管形母线专利,主导管形母线团标的制定和实施,推动技术的开放与共享,满足可持续发展目标下对更绿色产品的需求·ABB管形母线具有优秀的绝缘和散热性能,实现
2024年8月,国家能源局发布了《省(自治区、直辖市)“千乡万村驭风行动”总体方案编制大纲》的通知(简称《通知》),标志着我国农村能源转型翻开了新篇章。根据《通知》,将在“十四五”规划期间,针对适宜的县(市、区、旗)域农村地区,以村落为单位,建立起一批风电项目,旨在通过科学规划和合理布
从春晚扭秧歌的机器人,到爆火出圈的DeepSeek,从人形机器人马拉松,到人形机器人格斗大赛,2025年的人工智能(AI)层出不穷、亮点纷呈。有观点认为,中国人工智能正加速驶入“奇点时刻”。人工智能的奇点(AIsingularity)是指一个假想的未来时刻,当人工智能的发展达到了一定程度,它将会快速地自我
“室温已降至零下25摄氏度。”5月27日,在国网天津电科院的大温差环境电缆实验室内,一组220千伏高压电缆终端正经历着从室温到极寒的阶梯式降温考验。国网天津市电力公司科研团队人员紧盯屏幕,实时监测电缆终端在不同气温下内部界面温度与压力的细微变化,温度越低界面压力越小,电缆绝缘性能也会随之
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
二氧化碳连续监测技术,是火电厂烟气二氧化碳排放检测的试点技术,但目前在精确度上仍存在一些问题,需要协同攻关、重点突破。(来源:能源新媒文/魏子杰作者系龙源(北京)碳资产管理技术有限公司党委书记、董事长)2020年6月,生态环境部公布《生态环境监测规划纲要(2020—2035年)》,提出遵循“核
5月30日,远景能源与印度尼西亚新能源企业SUNTerra在远景上海总部签署战略合作备忘录,双方将在东南亚、印度及澳大利亚等重点海外市场深化储能技术与解决方案合作。远景能源高级副总裁、国际产品线总裁徐刚见证签约。SUNTerra隶属于印尼最具影响力的企业—金光集团(SinarMas),负责端到端新能源开发
在东部沿海,黄岛油库作业区洁净如洗;在西南山地,管道零散天然气资源“颗粒归仓”;在湄洲湾海岸,白鹭翩跹于草木葱茏的自然保护区;在东北平原,20余种景观植物与18种时令蔬菜为基层作业区织就“立体生态锦屏”……从东到西,从南向北,国家石油天然气管网集团有限公司(以下简称“国家管网集团”)
5月22日,长安益阳发电有限公司6号机正式投产。至此,湖南省已投产百万千瓦煤电机组达8台,煤电结构得到进一步优化,电力供需平衡能力进一步增强。“十二五”和“十三五”期间,湖南省十年投产煤电机组仅258万千瓦,远低于江西、湖北等周边省,严重影响湖南电力供需平衡。“十四五”以来,湖南省煤电建
从广袤无垠的沙漠到波涛汹涌的海上,新能源开发不断向规模化、集约化方向迈进,光伏电站不得不面临更加严苛的环境和气候挑战,电站的设计与运行管理也随之迈向精细化。然而,在光伏电站建设庞大的工程体系中,人们往往将目光聚焦于主要设备技术的革新,却时常忽视电力传输的隐形守护者——电缆,这一极
6月5日,遂宁市经济和信息化局发布关于印发《2025年重点行业领域节能监察工作方案》的通知。全文如下:关于印发《2025年重点行业领域节能监察工作方案》的通知各县(市、区)、市直园区经济和信息化主管部门:为贯彻落实国家、省、市关于工业节能降碳有关工作部署,持续发挥节能监察监督约束作用,提升
2023年11月,国家发展改革委、国家能源局联合发布了《关于建立煤电容量电价机制的通知》(发改价格〔2023〕1501号,以下简称《通知》),决定自2024年1月1日起建立煤电容量电价机制。《通知》对煤电容量电价机制的实施范围、电价水平的确定、容量电费分摊和考核方面做出了一系列规定。煤电容量电价机制
近日,国家电投集团一批新能源项目并网,它们如同跃动的音符,在祖国大地的四面八方奏响绿色发展的交响乐,从大漠戈壁到东海之滨、从高原山麓到平原沃野,国家电投集团以奋进为笔、以创新为墨,不断推动绿色能源高质量发展。内蒙古公司兴安盟突泉县445兆瓦风电项目并网5月30日,内蒙古公司兴安盟突泉县
北极星氢能网获悉,2025年6月,北京聚智合众科技有限公司已完成1.1亿元人民币A轮融资股权变更交割。本轮融资完成后,聚智合众股权结构发生战略性调整。本次融资资金有两大核心投向:技术攻坚:加大氢电混合动力系统、无辐式氢能两轮车等核心技术的研发投入,推动产品能效,成本降低;联合清华大学、中
6月4日,山西大同市御东污水处理厂(一期)绿色低碳设施设备更新改造项目设计(1标段)招标公告发布。公告显示,招标人为山西华睿产业发展投资有限公司,项目地点在大同市御东污水处理厂内。该工程为绿色低碳设施设备更新改造工程,所涉及的建设、更新、改造内容等不改变污水处理厂现状规模,工程规模仍
北京正在加快建设国际绿色经济标杆城市,而城市副中心通州将成为重要承载地和示范区。近日,市发展改革委、城市副中心管委会、通州区政府联合印发《北京城市副中心促进绿色经济发展实施方案》。方案提出,全力推动绿色经济发展,通过打造国际绿色经济标杆城市、建设国家绿色发展示范区等措施,着力培育
6月4日,由东方电气集团所属东方研究院与江西昌昱实业有限公司联合建设的40t/d气流床生物质加压气化关键技术中试装置投料运行试验成功,标志着我国具有自主知识产权的生物质原料一步法制粉、水蒸气纯氧加压气化技术路线取得关键突破。技术突破:开辟生物质原料高效转化新路径气流床生物质加压气化关键
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!