北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻输配电输变电工程技术正文

多端直流输电系统控制研究综述

2015-09-22 09:13来源:电工技术学报关键词:直流输电换流站断路器收藏点赞

投稿

我要投稿

直流故障下系统的运行能力是评估直流输电系统的重要指标[8]。对直流侧故障的研究重点在于无远端通信条件下如何对直流侧故障的辨识和处理。直流输电系统中直流故障电流会对器件造成冲击,并且,直流侧故障对连接交流系统而言相当于三相短路故障,尤其对MTDC系统而言,直流侧单点故障相当于多点故障,对系统的稳定运行造成很大的影响。

根据电力电子设备的特点,为防止直流故障引起直流过压造成设备损坏,直流侧通常需设置放电或储能单元。由于直流侧没有电流过零点,需要对应的故障保护器件来快速中断大电流。针对直流侧故障,可以将MTDC系统中换流站故障处理与MTDC系统拓扑相结合,根据系统的拓扑结构制定相关策略。

在交流电压故障情况下,并网电压发生突变,系统需要快速准确的检测电网电压的幅值及相角变化,包括故障情况下电压基波幅值、相位信息的变化特征,不对称故障情况下负序分量的产生,故障对换流站的危害程度等。

3.2 MTDC保护控制

对于VSC-MTDC,由于续流二极管的存在,系统发生直流故障时,即使封锁开关管脉冲信号,直流电流仍会流入故障点,如果不加入直流断路器(Circuit Breakers, CBs),则必须封锁所有换流站的交流CBs,系统重启时,需要重新对电容充电,耗时较长。

针对此问题,文献[57]提出采用MMC换流器拓扑将直流故障电流限制到一个较低水平或者为零。然而,即使MMC具有故障容错能力,MTDC系统中仍需要直流CBs,将故障电路隔离,从而保证系统恢复时系统中不含功率。文献提出一种直流故障控制方法,但该控制方法下,一旦出现故障,必须所有换流站同时退出,灵活性不高。

MTDC的保护系统不仅要保护系统中的元件,还需要维持故障以外的系统稳定运行,因此,需要在其它连接的换流站封锁并变成不可控之前断开直流CBs隔离故障。ABB提出的直流CBs成为一大突破。但所提出的直流CBs解决方案还不足以使系统故障后快速恢复运行。为了克服时间限制,文献提出在换流站出口使用限流电抗器,减小直流故障电流的峰值及上升速度。但加入电感后,在减小系统的故障电流的同时,一方面,降低了多端系统的刚度,影响了系统的潮流控制,需要在换流站控制器中加以补偿,增加了换流站控制器的复杂度;另一方面,增大了系统的成本和体积。

文献基于协方差适应进化策略提出一种限流电感设计的优化方法,一方面在VSC输出侧将电抗器电感值最小化;另一方面,将电抗器的成本、体积以及直流故障电流峰值最小化。为了确保MTDC系统的可靠性,必须对故障线路和换流站进行解耦,提高MTDC故障穿越能力,文献提出一种利用换流站局部控制信号,减轻故障时有功注入交流网络所造成的直流电压上升,无需通信。传统的机械断路器响应时间长,且半导体开关所承受的电流应力大。直流固态断路器可以缩短中断时间,但其成本较高,且由于主回路中存在半导体器件导致较大的通路损耗。文献对HVDC CBs进行了综述,讨论了直流故障电流的研究进展,研究了HVDC断路器的设计,同时,对比分析了电流源型换流器(Current Source Converter, CSC)和VSC之间的差别。对于CSC-HVDC而言,功率容量大且系统损耗小,保护系统已较成熟,而缺点是交流侧故障将导致换相失败,从而使直流电压崩溃。相反,VSC-HVDC则对于直流侧故障极其脆弱,任何地点发生直流故障将引起幅值极大的故障电流。系统故障时,CSC-HVDC的直流短路电流上升率较小且可控,但VSC-HVDC的短路电流上升率很大。

原标题:【技术】多端直流输电系统控制研究综述
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

直流输电查看更多>换流站查看更多>断路器查看更多>