登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
提高风电机组效率、降低度电成本是业内人士的共同愿望,但过度强调机组效率,而忽视机组远期故障几率、部件损坏及长期度电成本,必然会顾此失彼,得到与初衷相反的效果。因业主对功率曲线的“严格”要求,国内不少本该出保的风电场,因功率曲线问题的分歧和争议,迟迟未能出保,该付的款项没有得到应有的支付。为了出保,厂家不得不在生成功率曲线的各个环节上作文章。为了在激烈的市场竞争中取胜,有的厂家对标准功率曲线甚至进行了大胆的修饰,良莠不齐的功率曲线论证公司也应运而生。因此,不少功率曲线的真实性及论证的合理性值得怀疑。
风能利用技术与提高机组效率
所谓功率曲线就是以风速(Vi)为横坐标,以有功功率Pi为纵坐标的一系列规格化数据对(Vi,Pi)所描述的特性曲线。在标准空气密度(ρ=1.225kg/m³)的条件下,风电机组的输出功率与风速的关系曲线称风电机组的标准功率曲线。
风能利用系数是指叶轮吸收的能量与整个叶轮平面上所流过风能的比值,用Cp表示,是衡量风电机组从风中吸收的能量的百分率。根据贝兹理论,风电机组最大风能利用系数为0.593,风能利用系数大小与叶尖速比和桨叶节距角有关系。
翼型升力和阻力的比值称升阻比。只有当升阻比和尖速比都趋近于无穷大时,风能利用系数才能趋近于贝兹极限。实际风电机组的升阻比和尖速比都不会趋近于无穷大。实际风电机组的风能利用系数不可能超过相同升阻比和尖速比的理想风电机组的风能利用系数。采用理想的叶片结构,当升阻比低于100时,实际风电机组的风能利用系数不可能超过0.538。
水平轴风电机组的气动设计主要是设计叶片几何外形(包括叶片个数、弦长及扭角分布、截面翼型形状等),目的是获得最佳风能利用系数和最大年发电量,同时降低叶片载荷。而这三个目的有时会发生矛盾。与理想风电机组不同,除升阻比只能为有限值外,实际风电机组还要考虑两个现实问题:
1、考虑有限叶片数造成的功率损失。有限叶片数对风能利用系数影响的计算过程比较复杂,这里仅给出部分计算结果。对于理想叶片形状,在升阻比为100时,尖速比只有在6-10的范围内,有限叶片风电机组的风能利用系数才有可能微微超过0.500,如果升阻比下调到100以内的实用区,功率损失会更大。
2、理想叶片的形状十分复杂,难以加工制造,实际风电机组的叶片必然采用简化结构。另外在考虑叶片结构强度、振动、变形、离心刚化和气动阻尼作用,以及考虑机组成本、年输出功率等问题时都会对叶片形状提出其他方面的要求,这又会进一步降低风能利用系数。
有限叶片数造成的功率损失是无法避免的,叶片的易加工性、成本、强度、振动等诸多导致风能利用系数降低的实际问题也是必须考虑的因素。综合理论计算和对实际问题的分析,实际风电机组的风能利用系数难以超过0.500。
为了计算简便,在实际Cp值折算时,常把机组发电功率视为叶轮所吸收的风能。由于以下几方面的原因:机组转速只能在运行风速内的部分风速段较准确地跟踪叶尖最佳速比;变桨、偏航、部件冷却等机组有自耗电;因风能资源的复杂多变,实际机组不可能准确对风;当叶轮吸收能量后,还必须通过机组诸多部件(如:齿轮箱、发电机、变频器等)进行能量转化,当经过这些部件时,必然有能量损失。因此,在不同风速下,由实际发电功率计算出来的Cp值会更低,有不少风速段的Cp值远低于0.5。
国外有个别厂家为了提高实际机组效率,在叶片轮毂的流线形状、部件性能等多环节进行深入的研究和大的投入,制造出了最高Cp值超过0.5的“神机”,但是,因其设计和制造难度增大,势必使机组的生产成本增加,投资回报时间延长。
目前,国内市场竞争激烈,用户不仅在机组招标时选择功率曲线优秀的机型,而且,在机组投运后,不少业主还希望通过调整机组控制策略,提高机组效率和优化功率曲线。然而,如不顾当前的技术水平,忽视机组远期维护成本和故障几率,片面地强调机组效率,势必使机组长期度电成本增加,最终,必然是得不偿失。
就风电机组的控制算法而言,目前尚未有集所有优点于一体的控制算法。设计高性能的风电机组控制策略需针对具体风能环境,兼顾控制成本和控制目的,最大限度地量化控制指标,实现多目标优化设计。在优化功率曲线时,应兼顾部件及机组寿命、故障几率以及机组自耗电等,例如:把低风速段不变桨且轮毂处于休眠状态的控制方式修改为小风调桨的控制策略,从原理上讲,这的确可使低风速段的叶轮Cp值增加,必然使轮毂部件的工作时间大大增加,机组自耗电增加,部件寿命缩短,故障几率增加。所以,这种修改未必可取。
因此,在选择机型时,应考虑机组的综合性能。例如:机组使用方便,远期维护和维修成本低,绝大部分故障可通过远程进行检查和诊断等;在优化功率曲线提高机组效率时,应综合考虑各种因素,避免对机组部件寿命和长期维护成本造成不良影响,获得更优的度电成本。
用风能系数判断标准(理论)功能曲线的真实性
由上面分析可知,现场机组的风能利用系数一般不超过0.5,因此,通过标准(理论)功率曲线换算出的风能利用系数,可以较为简便地核实标准(理论)功率曲线的真实性。
表1、表2分别示出了某国产和国外品牌1.5MW和2.0MW机组的标准功率曲线数据以及根据发电功率折算出的风能利用系数。国产机组在1.8m/s和2m/s的风能利用系数均超过0.8,4m/s-6m/s风能利用系数超过0.6。如是理论功率曲线,则已超过了贝兹极限,其真实性值得怀疑;如为实测,应是测量偏差或其他原因造成。而国外机组在不同风速下由功率曲线换算出的风能利用系数,则较符合风电机组的运行规律与控制特性。
表1、1.5MW机组功率曲线数据以及根据发电功率折算的风能利用系数
表2、2.0MW机组功率曲线数据以及根据发电功率折算的风能利用系数
注:表1、表2中,计算风能利用系数时,机组的发电功率视为了叶轮所吸收的电功率,因此,得到的Cp值比叶轮风能利用系数值低。
验证实测功率曲线、标准(理论)功率曲线和机组现场运行形成功率曲线
机组验证实测功率曲线、标准(理论)功率曲线和现场运行形成的功率曲线,虽然都是反映风速与机组发电功率的关系曲线,由于三者的形成条件和用途的不同,三者又有矛盾的一面。
验证机组性能的实测功率曲线与理论功率曲线主要是用于反映机组性能,其生成条件是尽力消除,少考虑或不考虑功率曲线的各种影响因素。
验证实测功率曲线,在国际上普遍采用IEC61400-12标准,其采样周期为10min。在实测时,对现场环境条件及测试设备有着严格的要求,而现场运行机组一般难以达到。在进行功率特性测试时,还应收集足够数量且覆盖一定风速范围和大气条件变化的数据。其费用高,时间长,会因湍流强度及其他各种影响因素造成偏差。实测功率曲线的值不是唯一的,因为,它与机组的现场运行功率曲线一样都是通过散点分布图绘制而成。机组的实测功率曲线很离散,且范围较宽,还会因测量者、测试公司的不同而不同。因此,利用实测的机组发电功率与风速计算的风能利用系数,不仅可能超过0.5,而且,超过贝兹极限也是可能的。正因如此,一般不采用实测功率曲线值作为标书上的标准功率曲线。在设计评估或设计认证时,国内大部分整机制造商所提供的担保功率曲线是通过仿真计算出来的理论功率曲线。
在风电场,机组运行生成的功率曲线主要用于机组维修和功率调整,要能反映出机组的自身性能、故障状况、环境和气候条件等。现场需要通过考察机组运行形成的功率曲线来判断机组的叶片、风速仪、风向标、功率控制参数等是否存在问题。例如,对于刚调试完的风电机组,需要通过对每台机组实际运行形成功率曲线的考察来进行功率调整,以在短时间内(经历一两次大风)就能把整个风电场机组的实际发电功率准确调整到“额定功率”,机组既不能报“功率过高”停机,也不能有功率过低的情况发生。在风电场机组调试的初期,风电场通讯还没有建立,为了短时间内把机组调试到最佳状态,这不仅需要形成较为完整的功率曲线,而且,功率曲线数据还应生成、储存在控制器中,以便通过专门的调试软件读取数据、生成功率曲线。因此,采样周期不能太长,一般应设为30s或1s。对机组调试和检查缺陷而言,如把采样周期设置为10min,则很难具有实用价值。在这方面,某些国际知名厂家的设计理念和方法值得借鉴,如Mita控制器WP3100。
在生成功率曲线数据时,不少国产控制器的程序设计,考虑最多的是机组出保,一般采用10min采样周期,对调试和判断机组缺陷少有考虑,或没有考虑。在控制器编程时,严格遵循IEC61400-12标准,而现场条件及机组传感器等均不符合IEC61400-12标准要求,因此,生成的功率曲线难以良好地反映机组性能。加之,近年来,不少风电场限电问题严重,把采样周期设定为10min,在通常情况下,在一年,甚至几年都难以形成正常、完整的功率曲线,这给现场的机组调试和维修带来了极大的不便。
机组在现场运行生成的功率曲线受到外界多种因素的影响,利用它来判断机组性能应有诸多的前提和限制条件。也正因为如此,为了较为准确地考查和验证机组的功率特性,IEC61400-12-1和IEC61400-12-2标准对此作了详尽地规定。因现场运行机组达不到这些规定和条件,生成的功率曲线与合同(标准)功率曲线不一致,本属于正常现象。或者说,功率曲线不与合同要求完全一致符合现场机组运行的基本规律。
然而由于各种原因,不少业主对功率曲线有着“严格”的要求。为了达标,厂家只有采取多种修正方式。如果一个风电场(如:33台机组)同一机型的每一台机组,不需要严格的限制条件就能在每个时段、每个风速段上生成的功率曲线都符合合同约定,在合同要求之上,那么,其功率曲线可能是采取多种措施或手段进行了修正。而这种“修正”往往既不利于良好地反映机组性能,又不利于机组维修和调整。有的甚至因对功率曲线的过度调整而危及部件寿命,增加故障几率等。由某国外机组的功率曲线数据可知(见表1、表2),提高机组的额定功率可以降低其满负荷风速。如为了降低功率曲线上的满负荷风速,减小湍流强度对功率曲线的不利影响,不顾及设备安全,过度地调高机组额定功率,势必增加变频器、发电机等部件的故障几率。
正如其他物件的度量一样。在度量时,首先应核实度量工具是否合格;其次还需排除各种影响因素,而不是简单地考察测量数值是否满足要求。因此,在考察风电机组的实际运行功率曲线时,首先需保证功率曲线的生成程序、生成方式,相关传感器及参数设置的正确,同时,还需排除各种内部和外界的干扰因素。
要让机组运行得到的功率曲线作为判断机组性能的重要参考依据,在考察期内应注意以下几方面的问题:机组状态及运行条件正常(如:没有限功率,风速仪的传递函数准确、可靠,测量时间及其连续性符合相关标准,机组控制器、功率检测元件、风向标、风速仪、叶片零位和控制参数等正常);功率曲线的采样周期、数据采样、数据筛选、生成方式等科学、合理,并与现场机组的运行条件相适应,而不是一味地、教条地执行IEC61400-12标准;采取多种有效措施排除风况、地形等因素的干扰(如:把不同机位、不同风电场的同一厂家同种机型批量机组的功率曲线进行分析和比较);在考察期内没有修改机组的功率控制程序及功率参数等。如把实测功率曲线、标准(理论)功率曲线和机组运行生成功率曲线的形成条件和用途彼此混淆,势必造成思维混乱,失去了功率曲线所应有的作用,同时,也会因此产生不必要的纠纷和矛盾。
总结
我们应当理性对待风电机组的功率特性考核与效率问题,采用合理措施生成功率曲线和判断机组性能,减少不必要的纠纷和争论,把主要精力集中于提高机组整体性能,降低机组的长期度电成本上。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月5日,国家电投发布《山东电力工程咨询院有限公司2025年第138批招标国家电投大连市花园口I、II海上风电项目海上主体工程施工中标结果公示》的公告。公告显示,标段1:国家电投大连市花园口I海上风电项目海上主体工程中标人为中国铁建港航局集团有限公司,中标价格为46439.6686万元。标段2:国家电投
北极星风力发电网获悉,6月6日,国家能源集团2025年第1批4354.33MW风力发电机组集采公开招标中标候选人公示。根据公示,中车株洲所、金风科技、运达股份、远景能源、东方风电作为第一中标候选人预中标。本次开标除标包一、标包八未公布候选人外,共公示了8个标包的中标候选人结果,总规模为3388.93MW。
6月5日凌晨1点45分,阳西沙扒海域,三峡青洲七项目迎来首轮“丰收”,随着巨大的风机叶片在高空在与机舱实现精准对接,项目首台风机顺利完成吊装,为后续机组并网发电奠定坚实基础。此次吊装的风机单机容量为13.6兆瓦,采用四桩导管架风机基础,轮毂中心高度约150米,约等于50层大楼的高度,叶轮直径25
北极星风力发电网获悉,6月5日,华电集团发布黑龙江华电黑河孙吴100MW风电项目风力发电机组(含塔架)采购以及黑龙江华电黑河五大连池风电项目风力发电机组(含塔架)采购中标结果公示。公示显示,黑龙江华电黑河孙吴100MW风电项目风力发电机组(含塔架)采购中标人为三一重能股份有限公司,投标报价为16570
2025年5月4日,随着青海格尔木风电场最后一台风机机组自动灭火装置调试完成,普若泰克科技发展(北京)有限公司中标的国电投黄河公司海南风电分公司、格尔木分公司所属风电场加装自动灭火装置项目实现全面竣工。该项目历时近116个工作日,覆盖两地19座风电场,成功为1154台风电机组加装自动灭火装置,
浙江省科技厅日前公布2024年度省级重点实验室建设名单,由运达股份牵头,联合浙江大学、浙江工业大学共同组建的浙江省“全省海上风电技术重点实验室”正式获得认定。该实验室是浙江省聚焦新能源领域布局的重大创新平台,将致力于突破深远海风电关键技术瓶颈。“全省重点实验室”是浙江省科技创新体系的
近日,丹麦能源署批准将总装机容量23MW的萨姆索(Sams)海上风电场的电力生产许可证延长10年,这是丹麦首次对老式海上风电场进行延寿许可。萨姆索海上风电场建于2002年,是世界上最古老的海上风电场之一,由十台2.3MW的风电机组构成,总装机容量为23MW。其中一台风电机组曾于2015年坠入海中,随后该机
北极星风力发电网获悉,6月5日,贵州盘江精煤股份有限公司发布第七届董事会2025年第六次临时会议决议公告。根据公告,公司拟通过全资子公司盘江新能源发电(盘州)有限公司投资建设风电场项目及光伏电站项目,总投资为9.62亿元。盘州市落喜河风电场项目建设规模为120MW,安装14台单机容量5.0MW的风电机组
北极星风力发电网获悉,6月4日,中核集团2025-2026年度风力发电机组(含塔筒)一级集中采购项目招标公告发布。公告显示,本次集中框架采购招标的风机设备为中核集团及其下属相关成员单位项目的预计装机总量。本次采购为框架采购,包括多个具体项目,集中采购采用公开招标的形式。本方案中的风机规格为
北极星风力发电网获悉,6月4日,中广核阿勒泰吉木乃黑山头750MW风电项目风力发电机组(风机设备)采购项目和中广核吉木乃县红旗风电场250MW风电项目风力发电机组设备采购中标结果公示。公示显示,中广核阿勒泰吉木乃黑山头750MW风电项目风力发电机组(风机设备)采购项目(第一标段350MW)中标人为远景能源
当地时间5月29日,由中国电建EPC总承包建设的埃及苏伊士湾阿蒙内特(Amunet)500兆瓦风电项目在埃及国家电力公司、项目业主、监理单位及各参建方的共同见证下,顺利完成调试并正式投入商业运行。这标志着项目全面建成投产,为埃及能源结构优化和绿色转型注入了强劲动能。该项目位于埃及开罗东南约300公
10月20日—22日,全球风电盛会——2025北京国际风能大会暨展览会(CWP2025)将在北京·中国国际展览中心(顺义馆)举办,中船科技股份有限公司(以下简称“中船科技”)将连续第18次盛装亮相CWP,展位号:E1-A17。CWP诚挚邀请全球风电产业链伙伴共赴这场绿色能源盛会,与中船科技及全球同仁携手,共启
10月20日#x2014;22日,全球风电盛会#x2014;#x2014;2025北京国际风能大会暨展览会(CWP2025)将在北京#xB7;中国国际展览中心(顺义馆)举办,中国中车股份有限公司(以下简称“中国中车”)将第14次盛装亮相CWP,展位号:E2-B01。CWP诚挚邀请全球风电产业链伙伴共赴这场绿色能源盛会,与中国中车及全球
风舞高原、绿动西藏。2月26日,在藏历新年即将到来之际,由中车山东风电有限公司自主研发、专为高海拔地区倾心打造的首台套高海拔风电机组在中车尼木新能源装备产业园成功下线,助力西藏清洁能源发展。此次下线的风电机组功率等级涵盖5.X-6.XMW,风轮直径在195米以上,适用于海拔高度6000米以下,空气
北极星风力发电网获悉:近日,在山东东营,随着第三只叶片与轮毂成功对接,全球最大功率等级漂浮式风电机组,中国中车“启航号”成功吊装巨力索具生产制作的单叶片吊具发挥了关键作用,为能源事业注入了新的活力!“启航号”是中国中车自主研发的20MW漂浮式海上风电机组,功率突破到20MW量级,风轮直径
1月11日,全球最大功率等级漂浮式风电机组——中国中车“启航号”在山东东营风电装备测试认证创新基地成功吊装,标志着中车在海上超大型风机的探索迈出重要一步。“启航号”是中国中车自主研发的20MW漂浮式海上风电机组,功率突破到20MW量级,风轮直径达到260米,相当于7个标准足球场,叶尖速度与高铁
北极星风力发电网获悉,2024年四季度,电气风电中标多个海陆项目,中标总量超200万千瓦,项目覆盖三北地区、山东等多地不同风速区域。1、中标华电三北地区64万千瓦风电项目近日,三北地区煤电与新能源联营一体化项目264万千瓦风电项目公开招标结果公告,显示电气风电成功中标标段三64万千瓦风电项目。
近两年,中国风电机组单机容量迅速攀升,技术迭代加速,使风电成为最经济性的电力来源。然而,面对大型化和平价化的行业趋势,风电行业如何行稳“质”远,已成为一道行业必答题。在今年CWP2024展会现场,11家风电整机企业发布了多款重量级新品,直面这一“时代之问”。“大”有所为回顾我国风电过去几
10月16-18日,在风电行业年度盛典“北京国际风能大会暨展览会”上,中国中车携“风电机组解决方案、风电部件产业链供应解决方案、风光氢储一体化解决方案”三大解决方案参展,中国中车全风电产业链齐发力,与风电同仁一起,共同探索风电发展之道。作为中国最早从事风电装备制造的企业之一,中国中车拥
十月的北京,是满树的金黄、是盛会的乐章。10月16日-18日,一年一度的北京国际风能大会暨展览会如期举办。在这场展示面积突破10万平方米、专业观众超11万人次的全球风能盛会上,中国船舶集团倾力打造的清洁能源产业子集团——中船科技以“科技引领、产业融合,构建风电新生态”为主题,带领旗下中船海
与陆上风电相比,海上风电具有风速大、资源丰富、不占耕地等显著优势,将成为全球风电产业的发展方向,海上风电叶片将成为市场需求新增量。根据全球风能协会全球海上风电报告(2021),目前全球海上风电装机容量仅仅达到2050年实现碳中和目标所需海上风电装机容量(2000GW)的2%。未来10年,海上风电新
2024年6月6日,由北极星电力网、北极星风力发电网主办的第四届海上风电创新发展大会在山东济南盛大召开,会上,多位行业专家表示,我国海上风电产业经过长期的发展和沉淀,“十四五”末期,将迎来大爆发,主要由以下五大动因推动。海上风电规划发展潜力巨大作为战略性新兴产业,以及最具成本优势的绿色
北极星输配电网整理了6月2日~6月6日的一周电网项目动态。浙江甘肃至浙江±800千伏特高压直流输电线路工程浙江段5月30日,甘肃至浙江±800千伏特高压直流输电线路工程浙江段首基铁塔组立完成,标志着该工程全面进入杆塔组立阶段。据悉,浙江段线路长约219.16千米,涉及新建铁塔456基,途经浙江省杭州市
6月6日,国家能源集团党组书记、董事长邹磊在集团总部会见上海电气集团党委书记、董事长吴磊,双方就进一步深化战略合作、实现共赢发展进行深入交流。上海电气集团党委委员、副总裁金孝龙,高级副总裁、大客户总监姚丹花,国家能源集团党组成员、副总经理徐新福参加会谈。邹磊对吴磊一行的到访表示欢迎
6月5日,国家电投发布《山东电力工程咨询院有限公司2025年第138批招标国家电投大连市花园口I、II海上风电项目海上主体工程施工中标结果公示》的公告。公告显示,标段1:国家电投大连市花园口I海上风电项目海上主体工程中标人为中国铁建港航局集团有限公司,中标价格为46439.6686万元。标段2:国家电投
2025年1月20日,特朗普正式就任美国第47任总统。上任后特朗普政府大幅调整拜登政府的气候及能源政策,不仅对美国自身能源、环境、经济、社会等诸多层面造成冲击,而且在国际范围产生广泛影响。本文系统梳理本届特朗普政府自上任以来的能源政策动向及全球影响,分析我国应如何有效对冲特朗普政府能源政
北极星风力发电网获悉,近日,南宁华润产投风电有限公司成立。法定代表人为杨册,注册资本10000万元,一般经营项目:风力发电技术服务;太阳能发电技术服务;余热余压余气利用技术研发;新兴能源技术研发。该公司由华润电力与南宁产业投资集团有限责任公司持股。
北极星风力发电网获悉,6月6日,国家能源集团2025年第1批4354.33MW风力发电机组集采公开招标中标候选人公示。根据公示,中车株洲所、金风科技、运达股份、远景能源、东方风电作为第一中标候选人预中标。本次开标除标包一、标包八未公布候选人外,共公示了8个标包的中标候选人结果,总规模为3388.93MW。
6月6日,陇川县王子树茶光互补等4个光伏发电项目业主优选中标结果公布,中标人为中电建新能源集团股份有限公司。3月3日,云南省发展和改革委员会、云南省能源局联合发布关于印发云南省2025年第一批新能源项目开发建设方案的通知。根据文件,此次开发建设的新能源项目共计175个,合计规模约14.49GW。其
北极星售电网获悉,6月6日,河北省发展和改革委员会发布关于促进能源领域民营经济发展若干细化举措的通知。文件提出,支持民营企业积极投资智能微电网。深化分布式智能电网规划建设、运行控制、运营模式等与大电网责权划分的研究探索,支持民营企业投资建设分布式智能电网,与电网企业创新形成合作共赢
北极星氢能网获悉,6月4日,中国能建党委书记、董事长宋海良在上海与上海市委常委、浦东新区区委书记李政,上海市政府副秘书长、浦东新区区委副书记、区长吴金城举行会谈。双方就深化能源电力、城市建设、数能融合、交能融合、国际合作等领域合作,助力浦东加快打造社会主义现代化建设引领区进行深入交
6月5日凌晨1点45分,阳西沙扒海域,三峡青洲七项目迎来首轮“丰收”,随着巨大的风机叶片在高空在与机舱实现精准对接,项目首台风机顺利完成吊装,为后续机组并网发电奠定坚实基础。此次吊装的风机单机容量为13.6兆瓦,采用四桩导管架风机基础,轮毂中心高度约150米,约等于50层大楼的高度,叶轮直径25
北极星储能网获悉,6月5日消息,湖南能源监管办持续推进电网公平开放专项监管,涉及省电网企业1家、地方电网企业2家、增量配电网运营主体10家、发电企业263家(归并后为36家),涉及339个发电项目和10个电网互联项目。发电项目中包括集中式风电208个、集中式光伏67个、分散式风电9个、分布式光伏22个、
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!