登录注册
请使用微信扫一扫
关注公众号完成登录
表7 两种分布式场景下系统成本情况
可见,新技术如果能够尽快成熟应用,对电源和输电设备建设成本的降低将起到非常可观的作用。长期的电源和电网规划需要考虑技术进步的作用并制定相应的策略,以便减少不必要的资源浪费。
5 结论
本文提出了考虑新能源大规模接入的未来电网演化模型,并将其应用于国网经营区算例,得到了未来40年电网演化情况,并进行了相应的分析。结果显示,所提出的模型能够对大规模系统进行长时间演化模拟,并给出各时期电网状态的定量数据。所得结果揭示了未来电网在各种发展模式下电力流和电力格局情况。不同场景之间的演化结果对比体现了各前沿技术所具有的价值,可以为后续的技术研发及长期能源政策制定提供定量参考。
为了提供更加实用的长期电力发展战略参考,还需要在所提方法基础上进一步完善对电源规划、电网规划以及分布式发电等技术的模拟,以及安全性校核等工作。
附录A 演化边界条件设定
各区域负荷的初始增速依据文献[23]以及文献[24]的2015年数据确定。考虑到随着时间推移,经济增速放缓,也会导致负荷的增长减慢,因此在前5年的演化中增速参考当前值确定,而5年后增速减少,15年后增速再减少直至演化结束。
具体各区域的初始负荷量以及增速设定如表A1所示。
表A1 各区域初始负荷量和增速
各时期的总负荷量统计如表A2所示。
表A2 各时期总负荷量
这一结果与文献[11]的预测,即到2050年时总负荷大约是当前3倍基本相符。
由于后效性的存在,对长时间的演化而言,各负荷点精确的位置并无意义。因此,采用文献[19]中的抽象化方法,即起始时电网不按当前实际拓扑进行连结,而是以各省省会及直辖市为中心,区域面积为半径随机分配初始变电站,且最低电压等级定为500kV/750kV。这样的抽象化能降低初始系统的规模,加快求解速度。
在电源方面,考虑水电将在2030年左右达到饱和,而核电受政策影响,依据文献[11]确定水电和核电在一年中的总发电量约束如表A3所示。
表A3 能源总量约束
事实上,水电的总量约束与可利用水资源总量有关,因此这一总量约束是基本确定的;而核电主要受到政策限制,这是人为因素,因此可以考虑两种较为保守的场景,其具体的核电总量设定如表A4所示。
因为近期的核能发展政策已经制定完成,在前期的核能开发量不应被改变。总量的减少是通过减低后期的可利用核能增长速率实现的。
表A4 核能总量约束
为计算建设成本,综合文献[25-26]中的数据,确定各类机组和不同电压等级的变电站及线路的成本,具体见表A5—A7。(其中机组容量取100MW,线路长度取100km,各电压等级变电站容量分别为8000/4000/2000MW。)
表A5 各类机组成本列表
表A6 各电压等级线路成本列表
表A7 各电压等级变电站成本列表
在表A5的设定中,风电和光伏均在15年后开始成本的下降,下降幅度分别是0.2亿元/年和0.3亿元/年,直至6亿元。
实际上,无论是机组、线路或是变压器的单位成本均随着所处地区的经济条件、自然条件以及具体的建设时间等有很大差异,显然在演化模型中将这些因素全部考虑进来并不现实,因而所用的成本均是典型成本值而忽略了个体之间的差异。由于总体的建设规模大,平均成本值应与典型成本值接近。
根据文献[31-32],不同类型发电的单位发电成本如 表A8所示。
表A8 不同类型发电单位成本
由于水电和核电已受到总量的约束,已建成机组应尽可能多发。因此实际程序中设置了较小的单位成本以达到这一目的。
评价函数的参数K的设定将影响问题的求解效率以及最终结果。本文算例中K取为1。
前沿技术场景中各参数的含义及相应取值见表A9。
表A9 参数含义及取值表
考虑到技术本身特性,分布式发电只用于受入电区域,而另两种技术用于所有区域。
(作者:谢宇翔 张雪敏 罗金山 夏德明 张艳)
参考文献
[1] 国网能源研究院.2015中国新能源发电分析报告[M].北京:中国电力出版社,2015. State Grid Energy Research Institute.2015 China new energy generation analysis report[M].Beijing:China Electric Power Press,2015(in Chinese).
[2] 衣立东,朱敏奕,魏磊,等.风电并网后西北电网调峰能力的计算方法[J].电网技术,2010,34(2):129-132. Yi Lidong,Zhu Minyi,Wei Lei,et al.A computing method for peak load regulation ability of Northwest China Power Grid connected with large-scale wind farms[J].Power System Technology,2010,34(2):129-132(in Chinese).
[3] 张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158. Zhang Ning,Zhou Tianrui,Duan Changgang,et al.Impact of large-scale wind farm connecting with power grid on peak load regulation demand[J].Power System Technology,2010,34(1):152-158(in Chinese).
[4] 姚天亮,郑海涛,杨德洲,等.甘肃河西500万kW光伏就地消纳及调峰分析[J].中国电力,2014,47(3):14-18. Yao Tianliang,Zheng Haitao,Yang Dezhou,et al.Analysis on local consumption and peaking issues of 5000 MW PV in Hexi area of Gansu province[J].Electric Power,2014,47(3):14-18(in Chinese).
[5] 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J].中国电机工程学报,2016,36(19):5103-5110. Liu Zhenya.Research of global clean energy resource and power grid interconnection[J].Proceedings of the CSEE,2016,36(19):5103-5110(in Chinese).
[6] 肖立业,林良真.超导输电技术发展现状与趋势[J].电工技术学报,2015,30(7):1-9. Xiao Liye,Lin Liangzhen.Status quo and trends of superconducting power transmission technology[J].Transactions of China Electrotechnical Society,2015,30(7):1-9(in Chinese).
[7] 艾欣,董春发.储能技术在新能源电力系统中的研究综述[J].现代电力,2015,32(5):1-9. Ai Xin,Dong Chunfa.Review on the application of energy storage technology in power system with renewable energy source[J].Modern Electric Power,2015,32(5):1-9(in Chinese).
[8] 朱兰,严正,杨秀,等.计及需求侧响应的微网综合资源规划方法[J].中国电机工程学报,2014,34(16):2621-2628. Zhu Lan,Yan Zheng,Yang Xiu,et al.Integrated resources planning in microgrid based on modeling demand response[J].Proceedings of the CSEE,2014,34(16):2621-2628(in Chinese).
[9] Quiroga G A,Kagan H,Amasifen J C C,et al.Evaluation of distributed generation impacts on distribution networks under different penetration scenarios[C]//Proceedings of 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM).Montevideo,Uruguay:IEEE,2015:136-141.
[10] Quiroga G A,Kagan H,Amasifen J C C,et al.Study of the Distributed Generation Impact on Distributed Networks, Focused on Quality of Powe[C]//Proceedings of 17th International Conference on Harmonics and Quality of Power (ICHQP).Belo Horizonte,Brazil:IEEE,2016:855-860.
[11] 周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008. Zhou Xiaoxin,Lu Zongxiang,Liu Yingmei,et al.Development Models and Key Technologies of Future Grid in China[J].Proceedings of the CSEE,2014,34(29):4999-5008(in Chinese).
[12] 鲁宗相,黄翰,单保国,等.高比例可再生能源电力系统结构形态演化及电力预测展望[J].电力系统自动化,2017,41(9):12-18. Lu Zongxiang,Huang Han,Shan Baoguo,et al.Morphological evolution model and power foreing prospect of future electric power systems with high proportion of renewable energy[J].Automation of Electric Power Systems,2017,41(9):12-18(in Chinese).
[13] 周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望——试论三代电网[J].中国电机工程学报,2013,33(22):1-11. Zhou Xiaoxin,Chen Shuyong,Lu Zongxiang.Review and prospect for power system development and related technologies: a concept of three-generation power systems[J].Proceedings of the CSEE,2013,33(22):1-11(in Chinese).
[14] 梅生伟,龚媛,刘锋.三代电网演化模型及特性分析[J].中国电机工程学报,2014,34(7):1003-1012.Mei Shengwei,Gong Yuan,Liu Feng.The evolution model of three-generation power systems and acteristic analysis[J].Proceedings of the CSEE,2014,34(7):1013-1012(in Chinese).
[15] 刘开俊,李隽,罗金山,等.同步电网发展趋势与中国能源互联网发展研究[J].电力建设,2016,37(6):1-9.Liu Kaijun,Li Jun,Luo Jinshan,et al.Synonous power grid development trend and China's energy interconnection development[J].Electric Power Construction,2016,37(6):1-9(in Chinese).
[16] 张节潭,苗淼,范宏,等.含风电场的双层电源规划[J].电网技术,2011,35(11):43-49. ZhangJietan,Miao miao,Fan Hong,et al.Bi-level generation expansion planning with large-scale wind farms[J].Power System Technology,2011,35(11):43-49(in Chinese).
[17] 王淳,程浩忠.基于模拟植物生长算法的配电网重构[J].中国电机工程学报,2007,27(19):50-55.Wang Chun,Cheng Haozhong.Reconfiguration of distribution network based on plant growth simulation algorithm[J].Proceedings of the CSEE,2007,27(19):50-55(in Chinese).
[18] Guo Jinpeng,Zhang Xuemin,Huang Shaowei,et al.A novel evaluation method for power grid evolution with economy and security contraints[C]//Proceedings of 2014 IEEE PES General Meeting.National Harbor,MD,USA:IEEE,2014:1-5.
[19] 卢明富. 小世界电网生长演化模型及其复杂性研究[D].北京:清华大学,2009. Lu Mingfu.Evolutive model of small-world power grid and its complexity[D].Beijing:Tsinghua University,2009(in Chinese).
[20] Roh J H,Shahidehpour M,Fu Y.Market-based coordination of transmission and generation capacity planning[J].IEEE Transactions on Power Systems, 2007,22(4):1406-1419(in Chinese).
[21] Alizadeh B,Jadid B.Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming[J].IET Generation,Transmission & Distribution,2011,5(9):948-960.
[22] Floyd R W.Algorithm 97:shortest path[J].Communications of the ACM,1962,5(6):345.
[23] 王敏. 国家电网公司年鉴[M].北京:中国电力出版社,2016. Wang Min.State Grid Corporation of China’s yearbook[M].Beijing:China Electric Power Press,2016(in Chinese).
[24] 王敏. 国家电网公司年鉴[M].北京:中国电力出版社,2015. Wang Min.State Grid Corporation of China’s yearbook[M].Beijing:China Electric Power Press,2015(in Chinese).
[25] 电力规划设计总院.电网工程限额设计控制指标(2013年水平)[M].北京:中国电力出版社,2014.Electric Power Planning & Engineering Institute.Limited design control index of Power Grid Engineering (2013 Level)[M].Beijing:China Electric Power Press,2014.
[26] 电力规划设计总院.火电工程限额设计控制指标(2013年水平)[M].北京:中国电力出版社,2014.Electric Power Planning & Engineering Institute.Limited design control index of Thermal Plant Engineering(2013 Level)[M].Beijing:China Electric Power Press,2014(in Chinese).
[27] 国务院办公厅.能源发展战略行动计划(2014-2020年)[EB/OL] ..
[28] World Energy Outlook Special Report:Energy and Air Pollution[M].Paris:International Energy Agency,2016.
[29] 刘振亚. 中国电力与能源[M].北京:中国电力出版社,2012. Liu Zhenya.Electric Power and Energy in China [M] .Beijing:China Electric Power Press,2012.
[30] 中国工程院.中国能源中长期(2030、2050)发展战略研究:电力˙油气˙核能˙环境卷[M].北京:科学出版社,2011. Chinese Academy of Engineering.Research on the Energy Development Strategy of China in Mid and Long-term (2030-2050):Power Oil Nuclear Environment [M].Beijing:Science Press,2011(in Chinese).
[31] 苏剑,周莉梅,李蕊.分布式光伏发电并网的成本/效益分析[J].中国电机工程学报,2013,33(34):50-56.Su Jian,Zhou Limei,Li Rui.Cost-benefit analysis of distributed grid-connected photovoltaic power generation[J].Proceedings of the CSEE,2013,33(34):50-56(in Chinese).
[32] 徐蔚莉,李亚楠,王华君.燃煤火电与风电完全成本比较分析[J].风能,2014(6):50-55. Xu Weili,LiYanan,Wang Huajun.Comparison and analysis between coal and wind generation cost[J].Wind Energy,2014(6):50-55(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
面向加快建设新型能源体系、新型电力系统的国家重大战略需求,可深度调峰的灵活性煤电起到了促进电网接纳高比例新能源,同时保障电力系统安全、经济、低碳运行的关键作用。国务院《2030年前碳达峰行动方案》明确,推动煤电向基础保障性和系统调节性电源并重转型。煤电灵活性改造工作的不断推进,为加快
6月26日,山西交控新能源发展有限公司2025-2026年度光伏组件供应商入库框架协议入围候选人公布,入围企业有英利能源发展有限公司、大同市云冈区世杰运维清洗有限公司、中衢控股有限公司、晶科能源股份有限公司、晋能清洁能源科技股份公司。公告显示,该项目所需N型单晶硅双面双玻光伏组件供应商入库,
6月26日,新疆油田新能源及配套煤电、碳捕集一体化项目(二期)136万千瓦光伏项目光伏发电工程EPC总承包中标候选人公布,项目分为6个标段,规模合计1.36GW。本次标段1-标段5公布中标候选人,标段6暂未公布中标候选人。中标候选人分别为中国能源建设集团湖南火电建设有限公司、中国电建集团贵阳勘测设计
6月21日,水电十四局承建的黄龙抽水蓄能电站项目输水发电系统土建、机电及金属结构设备安装工程项目开工仪式在甘肃省天水市举行,工程正式进入实质性建设阶段。黄龙抽蓄电站是《抽水蓄能中长期发展规划(2021年―2035年)》中甘肃省抽水蓄能“十四五”规划重点实施项目之一,同时也是甘肃省装机容量最
“十四五”以来,交通运输部深入贯彻落实党中央、国务院决策部署,统筹推进交通运输节能减排和环境保护工作,加快推动行业绿色低碳转型。一、系统谋划交通运输领域节能降碳工作制定碳达峰碳中和交通运输领域“1+N”政策体系,会同国家发展改革委、工业和信息化部联合制定《交通运输领域绿色低碳发展实
进入智能化时代,当每度电都学会“思考”,能源系统的变革才真正开始。今天,在全球能源结构与电力系统转型的浪潮中,人工智能(AI)技术正成为不可或缺的关键“破局者”,让能源系统迎来前所未有的“数字觉醒”。6月20-21日,以“人工智能深化协同,能源科技求索创新”为主题的2025国家能源互联网大会
近日,新疆、蒙西、蒙东地区纷纷正式下发136号文承接方案。对于三份方案的具体规则,北极星进行了梳理,不同之处主要有以下几方面:一、交易机制新疆1、新能源项目报量报价参与交易2、分布式光伏项目可不报量不报价参与市场、接受市场形成的价格3、参与跨省跨区交易的新能源电量,上网电价和交易机制按
日前,安阳市生态环境局印发《安阳市“无废城市”建设实施方案(2025—2027年)》(征求意见稿)。文件提出,到2027年底,安阳市“无废城市”制度、市场、技术、监管体系基本完善,主要指标达到省内先进水平,减污降碳协同增效作用初显;安阳市固体废物智慧监管信息平台上线运营,实现五大领域固体废物
从零碳服务区的“点状突破”到零碳高速的“线型协同”,交通运输部科学研究院交能融合创新团队(简称团队)聚焦“双碳”目标,依托多项重点科研项目,在零碳服务区、零碳高速公路建设和标准规范等方面取得系列成果,为行业提供了可复制、可推广的技术方案和实践经验。交通运输部科学研究院正高级工程师
今天是2025年“全国低碳日”,今年的主题是“碳路先锋、绿动未来”。习近平总书记指出,要正确处理好经济发展同生态环境保护的关系,作为国有重要骨干企业,中国石油油气田企业将生态环境分区管控作为项目选址的刚性约束,对生态保护红线内的生产经营设施有序退出,积极实施生态修复。截至目前,油气田
6月26日,国家发展改革委召开6月份新闻发布会。国家发展改革委政策研究室副主任李超回答了记者关于“近年来我国风电、光伏等新能源产业快速发展,但在消纳方面仍面临压力。请问相关部门在促进新能源消纳方面采取了哪些具体措施?目前取得了哪些阶段性成效?”的提问。李超表示,截至今年5月底,我国风
“十四五”以来,交通运输部深入贯彻落实党中央、国务院决策部署,统筹推进交通运输节能减排和环境保护工作,加快推动行业绿色低碳转型。一、系统谋划交通运输领域节能降碳工作制定碳达峰碳中和交通运输领域“1+N”政策体系,会同国家发展改革委、工业和信息化部联合制定《交通运输领域绿色低碳发展实
各地氢能发展虽然已取得一定进展,但仍面临一些问题和挑战,涉及基础设施、成本、技术等多个方面,这些方面往往相互交织,有时互为因果。来源:电联新媒作者:郑平近年来,国内多地将发展氢能作为促进产业发展和实现碳达峰、碳中和目标的重要抓手,推出不同层面的氢能发展规划,并投入大量资源推动具体
2025年6月19日,欧洲议会在法国斯特拉斯堡通过《清洁工业协议决议》及《电网自主倡议报告》,旨在推动欧盟工业脱碳进程并提升能源系统灵活性。《清洁工业协议决议》核心内容该决议聚焦工业部门的绿色转型,提出以下措施:能源成本降低:通过《可负担能源行动计划》推广清洁能源,目标到2030年将欧盟能
日前,安阳市生态环境局印发《安阳市“无废城市”建设实施方案(2025—2027年)》(征求意见稿)。文件提出,到2027年底,安阳市“无废城市”制度、市场、技术、监管体系基本完善,主要指标达到省内先进水平,减污降碳协同增效作用初显;安阳市固体废物智慧监管信息平台上线运营,实现五大领域固体废物
为贯彻落实《交通运输部等十部门关于推动交通运输与能源融合发展的指导意见》,加速交通强国与新型能源体系建设,由中国交通运输协会、长沙理工大学等单位联合主办的“2025全国交通与能源融合创新技术发展大会”,将于2025年10月22日至24日在长沙召开。会议以“交能创新融合,加快强国建设”为主题,旨
当河西走廊的风电群与陇东光伏基地形成“风光矩阵”,当甘南水电与储能电站构建起柔性调节网络,甘肃这个新能源装机占比超64%的西部省份,正通过电力现货市场的创新实践,绘制出“绿电西发东送、市场驱动消纳”的能源转型新图景。自2024年9月正式运行以来,甘肃电力现货市场以新能源场站报量报价、用户
6月24日上午,国家电投甘肃公司清水绿华50兆瓦风储一体化发电项目全面开工。该项目是国家电投甘肃公司积极践行集团“均衡增长战略”,构建“双碳”绿色产业体系的重要实践成果。作为2025年该公司首个开工建设的新能源项目,该项目实现了产业发展与生态环境的和谐共生,标志着该公司在风、光、储一体化
6月24日-26日,世界经济论坛第16届新领军者年会在天津举行,李强总理出席开幕式并发表特别致辞。此外,来自90多个国家和地区的1700余名政、商、学、媒体界代表参会。全球领先的光储企业晶科能源受邀出席峰会,并参加李强总理与领军企业闭门会议,以及“新能源治沙”、“全球碎片化格局下的制造业”、“
6月25日,第26届中国·青海绿色发展投资贸易洽谈会在西宁开幕,明阳集团董事长张传卫应邀出席大会并作为企业代表作主旨发言。青海省委副书记、省长罗东川主持大会,青海省委书记吴晓军致辞。张传卫在发言中指出,明阳是青海新能源的拓荒者和坚守者,15年前就开始了在青藏高原制造风机、建设风场的“追
6月25日,国家电投集团党组书记、董事长刘明胜在青围绕区域发展主题开展“十五五”规划专题调研并主持召开座谈会。刘明胜听取了黄河公司、青海省投对发展现状与发展环境、“十五五”及中长期发展重点与实施计划、规划保障措施等情况的汇报,肯定了企业近年来经营发展取得的成绩。刘明胜指出要清醒认识
入夏以来,多地出现持续高温天气,用电负荷快速增长。为扛牢电力保供首要责任,国家电网公司持续提升电网供电能力,加大电网建设投资力度,提级管控加快推进140项度夏重点工程建设。公司系统各单位推动迎峰度夏电力安全保供各项工作落实落细落到位,抓紧电网建设黄金期,冲刺度夏重点工程建设,确保工
6月24日,伦敦——“伦敦气候行动周”期间,全球领先的循环经济倡导机构艾伦·麦克阿瑟基金会(EMF)与宁德时代就“全球能源循环计划”愿景达成高度一致——推动电池循环经济全面落地,同时助力新电池生产彻底摆脱对原生矿产资源的依赖。“在全球范围内,循环经济正从理念迈入系统实践的新阶”艾伦·麦
面向加快建设新型能源体系、新型电力系统的国家重大战略需求,可深度调峰的灵活性煤电起到了促进电网接纳高比例新能源,同时保障电力系统安全、经济、低碳运行的关键作用。国务院《2030年前碳达峰行动方案》明确,推动煤电向基础保障性和系统调节性电源并重转型。煤电灵活性改造工作的不断推进,为加快
6月26日,新疆油田新能源及配套煤电、碳捕集一体化项目(二期)136万千瓦光伏项目光伏发电工程EPC总承包中标候选人公布,项目分为6个标段,规模合计1.36GW。本次标段1-标段5公布中标候选人,标段6暂未公布中标候选人。中标候选人分别为中国能源建设集团湖南火电建设有限公司、中国电建集团贵阳勘测设计
6月21日,水电十四局承建的黄龙抽水蓄能电站项目输水发电系统土建、机电及金属结构设备安装工程项目开工仪式在甘肃省天水市举行,工程正式进入实质性建设阶段。黄龙抽蓄电站是《抽水蓄能中长期发展规划(2021年―2035年)》中甘肃省抽水蓄能“十四五”规划重点实施项目之一,同时也是甘肃省装机容量最
为推动国家能源规划、政策和项目落实,按照国家能源局规划监管工作要求,湖南能源监管办建立健全湖南“十四五”能源规划重点项目建设进度监测机制,分月开展监测分析,督促协调重点项目按规划推进落实。现将2025年6月监测情况简要通报如下:截至2025年5月底,纳入监测机制的能源建设项目计划投资共3395
“十四五”以来,交通运输部深入贯彻落实党中央、国务院决策部署,统筹推进交通运输节能减排和环境保护工作,加快推动行业绿色低碳转型。一、系统谋划交通运输领域节能降碳工作制定碳达峰碳中和交通运输领域“1+N”政策体系,会同国家发展改革委、工业和信息化部联合制定《交通运输领域绿色低碳发展实
北极星售电网获悉,6月26日,工业和信息化部办公厅印发《关于深入推进工业和信息化绿色低碳标准化工作的实施方案》的通知。文件提出,加强绿色低碳产业培育标准引领。加快工业绿色微电网、工业领域清洁低碳氢应用、中低温余热余能高效利用、超长寿命高安全性储能电池等多能互补利用标准制修订,加大工
随着近年发展,光伏发电占比越来越高,极大得影响了电力调度和电力现货交易策略,甚至有交易员认为,“现货玩的是天气预报和负荷猜心术”。而0-4小时的光伏发电,非常容易受到云量的突变影响。从当前的观测及预测手段看,主要来自三类设备,但都存在或多或少的问题:·地面辐射计,只能满足局地实时观
进入智能化时代,当每度电都学会“思考”,能源系统的变革才真正开始。今天,在全球能源结构与电力系统转型的浪潮中,人工智能(AI)技术正成为不可或缺的关键“破局者”,让能源系统迎来前所未有的“数字觉醒”。6月20-21日,以“人工智能深化协同,能源科技求索创新”为主题的2025国家能源互联网大会
比攀峰更难的,是于挫败后重新鼓起再战的勇气;而比重拾勇气更显不易的,是历经狂风暴雨洗礼后,仍能再度傲然屹立于行业之巅。回望光伏行业数十年的风云变幻,几番大浪淘沙,无数企业在残酷的市场竞争中折戟沉沙,能够重燃生命力的企业寥寥无几,英利能源当为其一。01重返巅峰的“三驾马车”提及英利,
赣锋锂业6月25日在2024年年度股东大会上表示,公司已形成固态电池全链路布局,覆盖硫化物电解质及原材料、氧化物电解质、金属锂负极等关键环节。公司同步推进硅基与锂金属负极双路线,其中400Wh/kg电池循环寿命突破800次并完成工程验证;首款500Wh/kg级10Ah产品实现小批量量产。硅基体系实现320-450Wh/
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!