登录注册
请使用微信扫一扫
关注公众号完成登录
式中,∆H为反应的摩尔焓变,其值表示每一摩尔该反应发生所需要吸收的能量。事实上,该能量可以进一步分为两部分[5]
一部分是吉布斯自由能变∆G,这部分必须以电能形式提供;另一部分T∆S以热量的形式吸收,可以来自外部热源,也可以来自额外电能产生的焦耳热。在进行电解时,H2O在阴极发生还原反应,从外电路得到电子,被分解成为H2和氧离子O2-。O2-则通过电解质传递到阳极,在阳极失去电子,发生氧化反应,生成O2,电子通过外电路的直流电源从阳极传递到阴极[5]。
电解水反应所需总能量∆H、电能∆G、热能T∆S与温度的关系如图1所示[5,14],曲线根据查表所得的H2O、H2、O2热力学属性计算得到。显然,温度越高,以热能形式吸收的能量T∆S就越多,反应所需的理论最低电能∆G就越少。其本质原因在于反应是吸热反应,因而在热力学层面高温有利于该反应的正向进行。
图1 电解反应所需总能量、电能、热能与温度的关系图
Fig.1 Temperature dependence of required total energy,electrical energy and thermal energy
实际计算电解所需电能时,除了要考虑提供吉布斯自由能变∆G 、使反应发生在热力学层面成为可能,还需要额外的电能来克服电解反应在动力学层面的阻力,记为∆E[14-15]。这部分额外电能∆E 往往用电解过电压表征,包含欧姆过电压、活化过电压、扩散过电压等对应不同阻力因素的过电压。事实上,由于高温对于化学动力学的提升,反应温度越高,电解过电压就越小,∆E 也越小。
根据以上定义,可求得电解池效率[5,14]
高温条件下,∆G、∆E 的值都要更小,反应同时在热力学层面和动力学层面得到提升,这就是高温电解池实现高效率电能转化的原理。
1.2 高温与低温电解的技术对比
根据1.1节所述,相较于低温电解,更高的电能转化效率是高温电解技术的首要优势。由于高温条件对电解反应的动力学和热力学提升明显,因而高温电解的系统效率比低温电解具有更大的提升潜力。
同时,高温电解池是高度可逆的。受益于高温电解的均相反应特性,高温电解池SOEC可以方便地切换到燃料电池工作模式,因而高温电解可以实现可逆运行[5,10,15];而低温电解池与低温燃料电池反应物的物相不同,因此需要采用不同的构造设计。
此外,高温电解具有碳耐受性。低温电解池的金属电极非常容易受到一氧化碳的毒化[5],即使是少量的碳杂质也会对电堆造成损坏;而高温电解池可以直接电解二氧化碳而不会被一氧化碳毒化,可以进行水—二氧化碳共电解制取氢气—一氧化碳,将氢气的甲烷化反应合并到电解池中,直接制取甲烷[5,11,16]。
最后,在多能源网络中,高温电解技术可参与高品位热量的梯级利用与多能源管理。高温电解需要制造高温反应环境,可与高温工业、供热管网结合形成热量的梯级利用,提升能源利用效率[17-18];同时高温电解也连接了电网与气网,有望通过多能源综合管理技术参与多网调控[19-20]。
高温电解、低温电解技术的详细特性对比如表1所示[4-5,21]。
表1 高温、低温电解技术的特性对比
Table 1 High-temperature electrolysis vs. low-temperature electrolysis
1.3 高温电解的主要技术障碍
高温工作条件在给电解池带来优良性能的同时,也为其大规模生产和应用增加了难度。事实上,由于常规材料和组件几乎都无法在高温电解所要求的700~1000 ºC下工作,基于陶瓷材料的高温电池电解质和电极研发一直以来是研究的热点,且至今没有适于大规模商业化生产的成熟技术[12,18];同时,高温为电池组堆过程中的电极贴合和气路密封带来了巨大的困难,适于高温的组堆和密封工艺同样是研发难点,制约了电堆容量,后文提到的板式电池尤为如此[13,21];更为重要的是,高温下主要工作材料的严重退化问题尚未得到经济有效的解决,很大程度上限制了高温电堆的工作寿命,影响了高温电解技术的经济性[5,21]。
由于上述因素的限制,目前高温电解技术仍在实验阶段,尚未被广泛实际应用。但是,一旦能够克服高温下的一系列材料和工艺问题,实现高温电解池的低成本生产,高温电解在大规模储能方面的应用投入指日可待。
2 高温电解电池的技术分类
根据几何结构划分,高温电解电池可以分为板式、管式以及扁管式3种[22-25]。尽管采用这3种技术的电池在外观上有较大差异,但是它们在组成部分以及工作原理上是相似的。其组成包括阳极、阴极、电解质、流道以及连接体五大部分,原理示意图见图2[26]。
图2 高温电解电池的原理示意图
Fig.2 Schematic diagram of SOEC
在各组成部分中,流道起到传输气流的作用,反应物的水蒸气经过阴极流道,通入电池,而产物氢气以及氧气则分别经过阴极和阳极流道排出电池。阴极材料一般采用的是Ni/YSZ多孔金属陶瓷,阳极材料主要是多孔钙钛矿氧化物材料。多孔电极可以增加电极反应的有效面积。电解质为致密的氧化钇掺杂氧化锆陶瓷材料,能够隔绝阴极、阳极的气体,并在高温下传导氧离子。而连接体则是电导率较高的金属材料,起到集流的作用[26]。
通常情况下,单个电池的功率与电压较小,不能满足需求。因此在实际应用中,需要将多单个电池通过串并联形成电池堆,以达到更大的功率以及电压[22]。而采用不同技术的电池具有不同的几何外形,组成电池堆的方式不同,各自具有优势和劣势。以下介绍采用不同技术的电池的特点。
2.1 板式电池
板式电池的外观是一块平板,图3、图4分别是板式电池的结构以及板式电池堆的实物图[7,13]。
图3 板式电池和电堆结构图
Fig.3 SOEC scaling up to a stack
图4 板式电堆实物图
Fig.4 Picture of a planar SOEC stack
图3中的电池是由阴极、阳极、电解质3个部分堆叠形成的,其截面图如图2所示。而图4所示的电池堆则是由多个图3所示的电池与连接体堆叠形成的,实际上图2表示的就是电池堆中一个重复单元的截面图。
由于板式电池是平面结构,可以通过成熟的流延方法制造,工艺相对简单,制造成本较低。而且其电解质较薄、电流通过的面积大、结构紧凑,因此具有电阻低、功率密度大的优点。但由于板式电堆在运行时整体都处于高温环境中,所以密封困难是限制板式电池应用的一个因素。另外,由于电堆中的不同材料在高温下的热膨胀大小不同,因此容易产生较大的热应力,导致电堆寿命降低甚至损坏[22,24,27-28]。
2.2 管式电池
管式电池在结构上是一端封闭、一端开放的圆管,阴极、阳极分别位于管的内外壁,一种由西门子-西屋公司联合制造的管式电池的单电池以及电堆示意图如图5、图6[22]所示。
图5 西门子-西屋管式电池结构示意图
Fig.5 Schematic diagram of tubular SOEC made by Siemens-Westinghouse
图6 西门子-西屋管式电堆示意图
Fig.6 Schematic diagram of tubular SOEC stack made by Siemens-Westinghouse
相比于板式电池,管式电池由于只有一端是开放的,而且在使用时,开放端的温度较低,因此在密封上更加容易。另外,管式电池与板式电池相比还具有更好的热应力耐受性,电池的稳定性更好,寿命更长[29]。但是,由于管式电池的外形是一个圆管,在工艺难度上比较大,制造成本高。另外,由于图6所示电堆中的单个电池可以长达数十厘米,制造工艺难以保证各圆管间的尺寸相同,因此也难以使各圆管之间良好接触,导致组堆难度高。图7为管式电堆的截面示意图[22],由图可见,若各圆管之间的尺寸不同,则无法使各电池间良好接触,不利于组堆。此外,由于管式电池中电流流经的路径较长,因此相比于板式电池,其电阻比较大[22,25,29]。
图7 西门子-西屋管式电堆截面示意图
Fig.7 Sectional view of tubular SOEC stack made by Siemens-Westinghouse
2.3 扁管式电池
为了在管式电池结构的基础上进一步提升功率密度,扁管式的结构设计应运而生。扁管式电池的出发点是将管式电池“压扁”以增大电池之间的接触面积,其横截面形状不是正圆形,而是长扁圆形,长扁的气道可以进一步划分为若干个气室,以增加上下两极之间的导电通路,如图8所示[25]。类似管式电池,扁管式电池工作时,每个气室都有物料气流通过,进行电解或发电,同时其开放端口温度较低、密封相对容易,热应力耐受性同样优于板式电池;并且,由于长扁外形和气道内分隔导体的设计,扁管式电池的内电阻和成堆电阻更小,可以实现更高的功率密度。总之,扁管式结构结合了板式结构集流面积大、电阻小,以及管式结构的容易密封、稳定性好、寿命长的优点,是极具潜力的新型高温电解池结构。扁管式电池组堆后的实物图如图9所示[23]。
虽然扁管式电池具有其他两种结构的优点,但是由于其出现时间较晚,因此扁管结构的相关研究不多,大部分从燃料电池的角度出发进行设计和实验,而且制造工艺也不成熟,还无法做到大规模生产[23,29,31-32]。
图8 扁管式电池实物图
Fig.8 Picture of flat-tubular SOEC
图9 扁管式电堆实物图
Fig.9 Picture of flat-tubular SOEC stack
3 高温电解系统的转换模式
3.1 H2O电解制氢
电解H2O制氢是目前高温电解技术的主要转换形式,其反应式如式(1)所示。
由1.1~1.2节可知,高温电解具有高电能转化效率,其电解池效率可达85%~95%,这一特性使得高温电解水制备氢气具有经济性上的潜力。然而,由于加热进料至电解池工作温度耗能高,且电解池出口气体余热未得到有效利用,在计入加热耗能后,单电池效率会下降约30%。
设计有效的外围辅助系统(balance of plant, BOP)对电解池进行热管理是提高系统效率的必要手段。实现热管理的核心元件为换热器,通过换热器设计,能够在系统中加入能量循环,回收利用出口气体余热。使用夹点分析设计换热网络或采用不同的换热器设计,可达到75%~83%的系统效率(LHV)[33-35]。一种外围辅助系统设计示意图如图10所示。
电解生成的氢气具有多种利用方式。如加压液化后通过储氢罐储存运输,作为化工原料参与后续化工合成反应,以及作为可燃性气体直接通入天然气管道等[33, 36-37]。
3.2 CO2电解制CO
除电解H2O外,高温电解技术还可直接电解CO2生成O2,反应过程如下
能够电解CO2是高温电解技术的独特优势。不过,与电解H2O相比,电解CO2单位面积电阻率(area specific resistance,ASR)更高[38],且可能发生布杜阿尔反应等副反应,产生积碳覆盖阴极活性位点,降低电解池性能和使用寿命[39]。通过控制流道中的CO/CO2比例,降低CO的体积分数,保证碳元素比例较低,可以显著降低积碳风险[39]。
图10 一种外围辅助系统设计示意图
Fig.10 A BOP system design schematic
CO2电解可被应用于特定的场景下。如NASA利用火星大气的CO2环境,通过高温电解CO2制备O2供宇航员使用[39]。另外,在某些缺水地区,可利用电解生成的CO通过化工反应合成烃类燃料及甲醇等化工产物。
3.3 H2O+CO2共电解与化工合成
与单独电解H2O、CO2不同,H2O和CO2共电解时,除电解反应外,还会发生水煤气变换(water gas shift,WGS)反应,反应机理更复杂。
共电解时电解池的ASR与电解H2O时相近,大约是CO2电解的0.56倍[38],电解池性能有所提高。
另外,高温共电解通过电解H2O和CO2,直接生成高温CO2、CO、H2合成气,如图11所示[40]。大量化工合成反应如费托合成、甲烷化、甲醇化等,使用合成气作为原料,在较高温度压强下生成对应产物。高温共电解可作为化工合成的前一环节,在物质与能量两方面与后续流程耦合,从而提高系统整体效率。与分别电解H2O和CO2相比,共电解效率更高,且需要更少的电解步骤,降低了反应器成本。
由于化工合成反应的多样性,共电解与之结合后可生成多种产物,生成的产物应用广泛。如费托合成产物可用于合成汽油、煤油和柴油等发动机燃料,而甲醇、甲烷等产物既可作为清洁燃料,又可作为重要的化工原料[36,41-42]。
共电解与化工合成结合,将电能转化为化学能储存,是实现长时间大规模储能的有效手段。并且,由于其使用CO2作为原料生成有机物,可起到减少碳排放、生成可持续燃料的作用。
图11 SOEC共电解生成合成气示意图
Fig.11 Schematic diagram of CO2/H2O co-electrolysis using SOEC for syngas production
3.4 加压电解内合成
高温共电解在加压条件下,电解池内部存在甲烷内合成反应,可直接生成产物甲烷。
常规电解制甲烷流程将电解池与甲烷化反应器连接,电解产物H2通入甲烷化反应器内,与CO2反应生成甲烷,其电—气转换效率约为81.08%[43]。
对于加压电解内合成,通过将电解反应与甲烷化反应集成在电解池内,电解反应吸收甲烷化释放出的热量,实现了系统中热能的有效利用。与常规电解制甲烷相比,加压电解内合成流程简单且效率高,有望实现94.5%的电—气转换效率[44]。
4 高温电解系统的接入模式
4.1 纯电电解接入新能源电力系统
纯电电解指使用电能为系统辅机及电解供能,将进料从常温加热至高温电解池工作温度,并完成后续电解及产物加压储存等流程。
使用纯电电解的接入方式时,高温电解池在电力系统中作为电负荷,将电能转化为化学能储存,在新能源波动导致电能富余时起到消纳弃电的作用[43,45]。
由于高温电解出口气体温度高,因此可将高温电解系统与热网结合,使用电解产物作为热能载体,供热降温后再对电解产物加以利用。这种“气—热联供”的形式不仅提升了高温电解系统余热利用的能力,而且以高温电解系统作为能量接口,实现了电—气—热多能源网络的连接。
4.2 余热辅助电解接入“电—热”多能系统
对于高温电解系统,由于高温电解反应自身的吸热特性以及加热进料至电解温度的需求,热能在系统所需总供能中占有一定比例。4.1节提到的采用纯电供能的方式,将一部分高品位的电能转化为低品位热能,这种低效率的能量利用方式会导致额外的㶲损失。
使用外部热源替代电供热是提高高温电解系统制氢效率的有效方式,高温电解系统效率随外加热源温度变化如图12所示[46]。高温电解系统与核反应堆联合运行可实现系统52.6%的产氢热效率[47],火电机组[48]、太阳能光热反应器[49]等均可以作为外部热源,通过相对廉价的热能形式为高温电解供热,提升系统产氢热效率与经济效益。
图12 高温电解系统效率随外加热源温度变化图
Fig.12 High-temperature electrolysis system efficiency changes with external heating source temperature
另外,热电联产机组(combined heat and power,CHP)由于已经具备抽汽供热能力,无需额外进行设备改造,便可与高温电解系统连接。在CHP热负荷不足时,供热抽汽有所富余,使用200~300 ℃抽汽为高温电解系统供热,可以提升高温电解系统的㶲效率与储能效率。
高温电解系统采用CHP作为外部热源时,其同时作为CHP的热负荷以及电力系统的电负荷,将剩余电、热以化学能的形式储存,在“电—热”多能系统中实现高效储能。
4.3 加压可逆规模化高效储气发电
根据1.2节中所述,高温电解池具有高度可逆的性质,可在电解、发电模式下自由转换。因此,其除了可在纯电电解和余热辅助电解模式下作为电、热负荷,还可作为电源发电上网,实现可逆储能的功能。
加压可以提升高温电解系统储能时的电—气—电循环效率。当加压高温电解系统运行在电解池模式时,由3.4节可知,会发生甲烷内合成反应。内合成反应放热供电解使用,可减少电解池内净吸热量。当系统以甲烷为进料,运行在燃料电池模式时,电池内存在吸热的内重整反应。甲烷氧化反应的放热量供内重整反应使用,减少了燃料电池内的净放热量。由于在电—气转换过程中输入的电能以及在气—电转换过程中损失的热能均减少,因此系统电—气—电效率得以提升[50]。
通过加压高温电解系统可逆运行的方式,有望实现80%的电—气—电循环效率[45],其放电时间可长达1000 h,储能成本约为3美分/kWh,具有高效率、长时间、低成本的特点[51]。
常见的储能技术最大放电时间、储能成本、循环效率如图13所示[51]。可见使用可逆固体氧化物电池(reversible solid oxide cell, ReSOC)储能与其他储能方式相比,具有特定的应用场景,在成本上有竞争力。
图13 储能技术对比图
Fig.13 Energy storage technology comparison t
5 总结与展望
得益于高温条件对电解反应的热力学与动力学提升,高温电解在转化效率、可逆工作、碳耐受等方面显著优于常温电解。在实现结构上,新兴的扁管式结构兼具了板式与管式的结构优点;在转换模式上,高温电解池可单独制取H2或CO,也可共电解直接合成CH4;在系统接入模式上,纯电电解接入、余热辅助电解接入、可逆的储气发电接入等多种模式,能够在高效消纳可再生能源的同时提供丰富的灵活性资源。随着高温电解材料与工艺研发的不断深入,配合以面向富余电量的新型购电模式和氢燃料电池汽车等终端需求的发展,高温电解在大规模储能方面的应用指日可待,将对全球能源互联网的运行形态产生长足的影响。
参考文献
[1]Buckley T, Nicholas S, Brown M. China 2017 review: World’s Second-biggest Economy Continues to Drive Global Trends in Energy Investment[R]. Institute for Energy Economics and Financial Analysis, Cleveland: OH, Jan. 2018.
[2]白建华,辛颂旭,刘俊,等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报,2015,35(14):3699-3705.Bai Jianhua, Xin Songxu, Liu Jun, et al. Roadmap of Realizing the High Penetration Renewable Energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705(in Chinese).
[3]姚金楠. 去年可再生能源弃电量超1000亿度[N/OL]. 中国能源报,2018: 2 (2018-1-29) [2018-5-10]. http://paper.people.com.cn/zgnyb/ html/2018-01/29/content_1833775.htm.
[4]Schiebahn S, Grube T, Robinius M, et al. Power to gas:Technological Overview, Systems Analysis and Economic Assessment for a Case Study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4285-4294.
[5]Lehner M, Tichler R, Steinmüller H, et al. Power-to-Gas:Technology and Business Models[M]. New York: Springer, 2014.
[6]Qadrdan M, Abeysekera M, Chaudry M, et al. Role of Powerto-Gas in an Integrated Gas and Electricity System in Great Britain[J]. International Journal of Hydrogen Energy, 2015,40(17): 5763-5775.
[7]Petipas F, Brisse A, Bouallou C. Model-Based Behaviour of a High Temperature Electrolyser System Operated at Various Loads[J]. Journal of Power Sources, 2013, 239: 584-595.
[8]Kopp M, Coleman D, Stiller C, et al. Energiepark Mainz:Technical and Economic Analysis of the Worldwide Largest Power-to-Gas Plant with PEM Electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13311-13320.
[9]Khani H, Farag H E Z. Optimal Day-Ahead Scheduling of Power-to-Gas Energy Storage and Gas Load Management in Wholesale Electricity and Gas Markets[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 940-951.
[10]Frank M, Deja R, Peters R, et al. Bypassing Renewable Variability with a Reversible Solid Oxide Cell Plant[J].Applied Energy, 2018, 217: 101-112.
[11]Gahleitner G. Hydrogen from Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2039-2061.
[12]Li Q, Zheng Y, Guan W, et al. Achieving High-Efficiency Hydrogen Production Using Planar Solid-Oxide Electrolysis Stacks[J]. International Journal of Hydrogen Energy, 2014,39(21): 10833-10842.
[13]Zhang X, O’Brien J E, Tao G, et al. Experimental Design,Operation, and Results of a 4 kW High Temperature Steam Electrolysis Experiment[J]. Journal of Power Sources, 2015,297: 90-97.
[14]Udagawa J, Aguiar P, Brandon N P. Hydrogen Production through Steam Electrolysis: Model-Based Steady State Performance of a Cathode-Supported Intermediate Temperature Solid Oxide Electrolysis Cell[J]. Journal of Power Sources,2007, 166(1): 127-136.
[15]Kazempoor P, Braun R J. Model Validation and Performance Analysis of Regenerative Solid Oxide Cells for Energy Storage Applications: Reversible Operation[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5955-5971.
[16]Li Q, He R, Gao J A, et al. The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200 C[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599-A1605.
[17]O’Brien J E, McKellar M G, Harvego E A, et al. High-Temperature Electrolysis for Large-Scale Hydrogen and Syngas Production from Nuclear Energy–Summary of System Simulation and Economic Analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819.
[18]Ishihara T, Kanno T. Steam Electrolysis Using LaGaO3 Based Perovskite Electrolyte for Recovery of Unused Heat Energy[J].ISIJ International, 2010, 50(9): 1291-1295.
[19]李杨,刘伟佳,赵俊华,等. 含电转气的电—气—热系统协同调度与消纳风电效益分析[J]. 电网技术,2016,40(12):3680-3688.Li Yang, Liu Weijia, Zhao Junhua, et al. Optimal Dispatch of Combined Electricity-Gas-Heat Energy Systems with Power-to-Gas Devices and Benefit Analysis of Wind Power Accommodation[J]. Power System Technology, 2016, 40(12):3680-3688(in Chinese).
[20]Clegg S, Mancarella P. Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems[J]. IEEE Transactions on Sustainable Energy, 2016,7(2): 718-731.
[21]Mathiesen B V, Ridjan I, Connolly D, et al. Technology Data for High Temperature Solid Oxide Electrolyser Cells,Alkali and PEM Electrolysers[J]. Denmark: Department of Development and Planning, Aalborg University, 2013.
[22]Subhash C.Singhal, Kevin Kendall. 高温固体氧化物燃料电池: 原理、设计和应用[M]. 北京:科学出版社, 2007.
[23]Lim T H, Park J L, Lee S B, et al. Fabrication and Operation of a 1kW Class Anode-Supported Flat Tubular SOFC Stack[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9687-9692.
[24]Luo Y, Shi Y, Li W, et al. Comprehensive Modeling of Tubular Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon Dioxide[J]. Energy, 2014, 70(3): 420-434.
[25]Kim J H, Song R H, Song K S, et al. Fabrication and Characteristics of Anode-Supported Flat-Tube Solid Oxide Fuel Cell[J]. Journal of Power Sources, 2003, 122(2): 138-143.
[26]牟树君,林今,邢学韬,等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术,2017,41(10):3385-3391.Mu Shujun, Lin Jin, Xing Xuetao, et al. Technology and Application Prospect of High-Temperature Solid Oxide Electrolysis Cell[J]. Power System Technology, 2017, 41(10):3385-3391(in Chinese).
[27]Park J, Kang J, Bae J. Computational Analysis of Operating Temperature, Hydrogen Flow Rate and Anode Thickness in Anode-Supported Flat-Tube Solid Oxide Fuel Cells[J].Renewable Energy, 2013, 54(6): 63-69.
[28]Lin B, Shi Y, Meng N, et al. Numerical Investigation on Impacts on Fuel Velocity Distribution Nonuniformity Among Solid Oxide Fuel Cell Unit Channels[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3035-3047.
[29]Park J, Bae J, Kim J Y. A Numerical Study on Anode Thickness and Channel Diameter of Anode-Supported Flat-Tube Solid Oxide Fuel Cells[J]. Renewable Energy, 2012,42(1): 180-185.
[30]Park J, Bae J, Kim J Y. The Current Density and Temperature Distributions of Anode-Supported Flat-Tube Solid Oxide Fuel Cells Affected by Various Channel Designs[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9936-9944.
[31]Suzuki T, Liang B, Yamaguchi T, et al. Development of Novel Micro Flat-Tube Solid-Oxide Fuel Cells[J]. Electrochemistry Communications, 2011, 13(7): 719-722.
[32]Suzuki T, Yamaguchi T, Sumi H, et al. Evaluation of Micro Flat-Tube Solid-Oxide Fuel Cell Modules Using Simple Gas Heating Apparatus[J]. Journal of Power Sources, 2014, 272:730-734.
[33]Petipas F, Brisse A, Bouallou C. Benefits of External Heat Sources for High Temperature Electrolyser Systems[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5505-5513.
[34]Meng N, Leung M K H, Leung D Y C. Energy and Exergy Analysis of Hydrogen Production by Solid Oxide Steam Electrolyzer Plant[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4648-4660.
[35]Wang Z, Mori M, Araki T. Steam Electrolysis Performance of Intermediate-Temperature Solid Oxide Electrolysis Cell and Efficiency of Hydrogen Production System at 300Nm3h-1[J].International Journal of Hydrogen Energy, 2010, 35(10): 4451-4458.
[36]Giglio E, Lanzini A, Santarelli M, et al. Synthetic Natural Gas via Integrated High-Temperature Electrolysis and Methanation:Part I—Energy Performance[J]. Journal of Energy Storage,2015, 1(12): 22-37.
[37]黄明,吴勇,文习之,等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力,2013,33(4):39-42.Huang Ming, Wu Yong, Wen Xizhi, et al. Feasibility Analysis of Hydrogen Transport in Natural Gas Pipeline[J]. Gas & Heat,2013, 33(4): 39-42(in Chinese).
[38]Zheng Y, Wang J, Yu B, et al. A Review of High Temperature Co-Electrolysis of H2O and CO2to Produce Sustainable Fuels Using Solid Oxide Electrolysis Cells (SOECs): Advanced Materials and Technology[J]. Chemical Society Reviews,2017, 46(5): 1427-1463.
[39]Shi Y, Luo Y, Cai N, et al. Experimental Characterization and Modeling of the Electrochemical Reduction of CO2in Solid Oxide Electrolysis Cells[J]. Electrochimica Acta, 2013, 88(2):644-653.
[40]Fu Q, Mabilat C, Zahid M, et al. Syngas Production via High-Temperature Steam/CO2Co-Electrolysis: An Economic Assessment[J]. Energy & Environmental Science, 2010, 3(10):1382-1397.
[41]Becker W L, Braun R J, Penev M, et al. Production of Fischer–Tropsch Liquid Fuels from High Temperature Solid Oxide Co-Electrolysis Units[J]. Energy, 2012, 47(1): 99-115.
[42]Al-Kalbani H, Xuan J, García S, et al. Comparative Energetic Assessment of Methanol Production from CO2: Chemical Versus Electrochemical Process[J]. Applied Energy, 2016,165: 1-13.
[43]Stempien J P, Ni M, Sun Q, et al. Production of Sustainable Methane from Renewable Energy and Captured Carbon Dioxide with the Use of Solid Oxide Electrolyzer: Athermodynamic Assessment[J]. Energy, 2015, 82: 714-721.
[44]Luo Y, Shi Y, Li W, et al. Synonous Enhancement of H2O/CO2, Co-Electrolysis and Methanation for Efficient One-Step Power-to-Methane[J]. Energy Conversion & Management,2018, 165: 127-136.
[45]Wendel C H, Gao Z, Barnett S A, et al. Modeling and Experimental Performance of an Intermediate Temperature Reversible Solid Oxide Cell for High-Efficiency, Distributed-Scale Electrical Energy Storage[J]. Journal of Power Sources,2015, 283: 329-342.
[46]Petipas F, Brisse A, Bouallou C. Benefits of External Heat Sources for High Temperature Electrolyser Systems[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5505-5513.
[47]O’Brien J E, Mckellar M G, Harvego E A, et al. High-Temperature Electrolysis for Large-Scale Hydrogen and Syngas Production from Nuclear Energy – Summary of System Simulation and Economic Analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819.
[48]Manage M N, Sorensen E, Simons S, et al. A Modelling Approach to Assessing the Feasibility of the Integration of Power Stations with Steam Electrolysers[J]. Chemical Engineering Research & Design, 2014, 92(10): 1988-2005.
[49]Balta M T, Kizilkan O, Yılmaz F. Energy and Exergy Analyses of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8032-8041.
[50]Bierschenk D M, Wilson J R, Barnett S A. High Efficiency Electrical Energy Storage Using a Methane–Oxygen Solid Oxide Cell[J]. Energy & Environmental Science, 2011, 4(3):944-951.
[51]Jensen S H, Graves C, Mogensen M, et al. Large-Scale Electricity Storage Utilizing Reversible Solid Oxide Cells Combined with Underground Storage of CO2and CH4[J].Energy & Environmental Science, 2015, 8(8): 2471-2479.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年4月10日至12日,第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心隆重召开。本届展会以“数智赋能产业变革储能重塑能源格局”为主题,汇聚全球800余家行业领军企业,展览规模突破20万平方米,成为储能领域最具影响力的年度盛会。飞毛腿能源科技携多款创新产品参展,与行业同仁
近年来,随着全球电动汽车(EV)保有量的持续增加,充电基础设施的建设压力日益凸显。传统充电站依赖电网供电,面临用电高峰期电力紧张、扩容成本高、新能源消纳能力不足等问题。在此背景下,“光储充”一体化技术应运而生,通过“光伏发电+储能调节+智能充电”,成为调节电网稳定性的有效途径,并逐渐
2025年4月12日—13日,以“同心携手•共创辉煌”为主题的2025年度科士达合作伙伴大会在江西宜春盛大举行。来自全国各地的合作伙伴齐聚于此,共同见证科士达在智慧能源领域的创新成果。大会期间,合作伙伴们走进科士达智能制造基地,亲身感受前沿科技与卓越制造实力。通过深入交流与实地参观,携手探讨
在新能源电价市场化改革纵深推进之际,天合储能在第十三届储能国际峰会EISE2025携手ULSolutions、中国质量认证中心(CQC)两家权威机构,正式发布山东泰安“肥城150MW农渔光储补项目”二期储能电站运行报告。报告显示,该站系统综合效率达87.1%,直流侧效率高达95.2%,关键指标全面领先行业同期水平。
4月15日,国务院国资委发布654家“科改企业”名单,详情如下:“科改企业”名单中国核工业集团有限公司1.中核武汉核电运行技术股份有限公司2.中核第七研究设计院有限公司3.中国同辐股份有限公司4.中国核电工程有限公司5.中核能源科技有限公司6.同方威视技术股份有限公司中国航天科技集团有限公司7.中国
近日,中共中央办公厅、国务院办公厅发布《关于完善价格治理机制的意见》。《意见》要求,分品种、有节奏推进各类电源上网电价市场化改革,稳妥有序推动电能量价格、容量价格和辅助服务价格由市场形成,探索建立促进改革平稳推进的配套制度。截至2024年底,包括风电、太阳能发电以及生物质发电在内的中
2025年4月15日,东润数字能源旗下北京东润环能科技股份有限公司(以下简称“东润数字能源”)与中网联合(北京)能源服务有限公司(以下简称“中网联合”)在北京建工发展大厦成功举行战略合作签约仪式,双方将围绕新能源领域展开全方位合作,打造以功率预测、调度控制、价格预测、交易策略等为核心的
北极星售电网获悉,4月15日,吉林省能源局发布关于印发《吉林省新型储能高质量发展规划(2024-2030年)》(以下简称《规划》)的通知。《规划》指出,持续优化完善储能政策体系和商业模式,全力营造公平、公正、公开的市场竞争环境,明确新型储能独立市场地位,健全电力市场化交易机制和价格形成机制。
日前,投资KKR公司的子公司ContourGlobal公司宣布,拉丁美洲规模最大的光储项目——OasisdeAtacama太阳能+储能项目的前两个阶段已经在智利安托法加斯塔(Antofagasta)开通运营。该项目前两个阶段包括221MW太阳能发电场和1.2GWh电池储能系统,储能系统的持续时间为6.2小时。该项目号称拉美地区“最大”
日前,研究机构彭博新能源财经公司(BNEF)指出,到2035年,澳大利亚部署公用事业规模电池储能系统装机容量可能会增加8倍,从2024年的2.3GW增长到18GW。根据BNEF发布的《2025年澳大利亚储能更新》报告,澳大利亚正处于部署大型电池储能系统的热潮之中,这一趋势受到电力市场波动、政府支持性政策和燃煤
在当前全球能源结构深刻转型的浪潮中,我国的氢能产业,尤其是绿氢领域,作为我国战略性新兴产业的关键一环,正迎来一个前所未有的黄金发展期,被视为塑造未来产业格局中具有前瞻性和潜力的培育方向。面对“碳达峰、碳中和”目标的紧迫挑战,“加速构建以绿色低碳为核心的新型能源体系”已成为国家层面
2025年4月10日至12日,第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心隆重召开。本届展会以“数智赋能产业变革储能重塑能源格局”为主题,汇聚全球800余家行业领军企业,展览规模突破20万平方米,成为储能领域最具影响力的年度盛会。飞毛腿能源科技携多款创新产品参展,与行业同仁
在新能源电价市场化改革纵深推进之际,天合储能在第十三届储能国际峰会EISE2025携手ULSolutions、中国质量认证中心(CQC)两家权威机构,正式发布山东泰安“肥城150MW农渔光储补项目”二期储能电站运行报告。报告显示,该站系统综合效率达87.1%,直流侧效率高达95.2%,关键指标全面领先行业同期水平。
近期,几座储能电站获最新进展,北极星储能网特将2025年4月7日-2025年4月11日期间发布的储能项目动态整理如下:200MW/800MWh!中电建河北独立储能项目签约4月3日,河北省邢台市柏乡县举行中电建储能项目签约仪式,柏乡县政府与中国电建集团河北工程有限公司签署《中电建柏乡县储能项目投资协议》。此次
2025年4月10日至12日,第十三届储能国际峰会暨展览会在北京盛大举行。贝肯新能源有限公司作为全球高性能飞轮储能解决方案的领导者,在此次展会上大放异彩,圆满完成参展活动,为行业发展注入新动力。企业实力彰显,聚焦储能前沿贝肯新能源是一家全球化科技型高端装备制造企业,一直致力于先进飞轮储能
2025年4月10日,全球储能行业顶级盛会——第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心盛大开幕。ESIE2025由中关村储能产业技术联盟、中国能源研究会和中国科学院工程热物理研究所主办。本届峰会以“数智赋能产业变革,储能重塑能源格局”为主题,开幕式现场汇聚了国内外政府主
在储能行业蓬勃发展的当下,构网型储能更是以其卓越的性能和广阔的应用前景,成为行业关注的焦点。作为全球领先的储能系统解决方案提供商,科华数能凭借深厚的技术底蕴和创新精神,在构网型储能的探索之路上,为储能行业的发展提供了新的思路与方向。4月11日,在第十三届储能国际峰会分论坛活动中,科
如今,清洁能源已经遍布世界各个角落,储能也在走入千行万业。但其实在用户端,储能还有更多的潜在市场机遇有待挖掘。ESIE2025第13届储能国际峰会暨展览会期间,欣旺达储能的移动储能车从广东惠州跋涉5000#x2B;公里亮相北京,掀起储能应用的新浪潮。在“移动”的支撑下,储能技术除了发挥以往削峰填谷
北极星售电网获悉,上海电力交易中心发布关于对连续12个月未进行实际交易的售电公司暂停上海电力市场交易资格的通知。经核查,陕西国弘益欣能源有限公司、三门峡市天鹅电力有限公司、龙源电力集团共享储能技术(北京)有限公司连续12个月未在上海电力市场进行实际交易。经政府主管部门和能源监管机构同
北极星太阳能光伏网获悉,3月21日,诸暨上峰新能源有限公司正式注册成立,公司法定代表人为瞿辉,注册资本100万人民币,主营业务包含发电业务、输电业务、供(配)电业务,储能技术服务,节能管理服务、太阳能发电技术服务等。天眼查信息显示,诸暨上峰新能源由浙江上峰阳光新能源有限公司100%持股,后
数据中心正在寻找传统电网之外的电力来源,以满足支持先进人工智能所需的电力需求。尽管引入了新的可再生能源发电,但现有的电网基础设施仍难以跟上多个领域急剧上升的需求,尤其是数据中心对电力需求增长迅速。当前的电网无法承载这种扩张的规模和速度。仅是审批新的大型输电项目和并网就可能耗时长达
近日,随着华电凯升木垒雀仁光伏储能一站并网投运,新疆电网新型储能总装机规模突破1000万千瓦,达到1009.7万千瓦/3371.3万千瓦时,装机规模位居全国前列、西部各省份第一。截至2024年年底,新疆电网新能源发电装机规模突破1亿千瓦。新能源发电存在间歇性和不稳定性,特别是在新疆,新能源发电出力呈现
2025年4月10日,全球储能行业顶级盛会——第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心盛大开幕。ESIE2025由中关村储能产业技术联盟、中国能源研究会和中国科学院工程热物理研究所主办。本届峰会以“数智赋能产业变革,储能重塑能源格局”为主题,开幕式现场汇聚了国内外政府主
在储能行业蓬勃发展的当下,构网型储能更是以其卓越的性能和广阔的应用前景,成为行业关注的焦点。作为全球领先的储能系统解决方案提供商,科华数能凭借深厚的技术底蕴和创新精神,在构网型储能的探索之路上,为储能行业的发展提供了新的思路与方向。4月11日,在第十三届储能国际峰会分论坛活动中,科
“快看,这块满电的电池都扭成麻花了,还没有冒烟着火……”4月10日,在第十三届北京国际储能展上,因湃电池展台人头攒动。原因是这里正在展示业界首个「满电电芯扭转试验」:一块处于满电状态的电芯,被暴力扭转成麻花状后依然没有冒烟没有起火,电压、电流、温度全程处于稳定状态。试验在引起了现场
促进虚拟电厂高质量发展为加快构建新型电力系统注入新动能——《关于加快推进虚拟电厂发展的指导意见》解读高长征韩超杨萌(中电联电力发展研究院)2025年能源工作指导意见提出“统筹推进新型电力系统建设,推进虚拟电厂高质量发展”。近日,国家发展改革委、国家能源局联合印发《关于加快推进虚拟电厂
北极星售电网获悉,4月15日,重庆市人民政府发布关于印发《重庆市新能源汽车便捷超充行动计划(2024—2025年)》(以下简称《计划》)的通知。《计划》指出,到2025年年底,实现新能源汽车与超充网络相互协同、与电网融合互动,建成布局均衡、充电便捷、智能高效、机制完备、技术先进的便捷超充生态,
4月9日,燕赵兴泰储能项目召开一期10MW/40MWh全钒液流项目预验收会议。河北建投集团科技信息部、建投能源、塞罕绿能、国泰发电相关领导及专业人员参加会议。会上,塞罕绿能详细阐述了该项目的全生命周期,以及在项目设计、施工、调试等环节面临的困难和应对措施。国泰发电相关负责人就项目一期运营期间
据外媒报道,储能开发商EnergyVault公司计划收购Enervest集团在澳大利亚新南威尔士州运营的125MW/1GWhStoneyCreek电池储能项目。日前,EnergyVault公司宣布,该公司已经从其合作的开发商Enervest集团手中收购了这个电池储能项目,但未透露收购金额。双方在去年签署了一份初步合作协议,EnergyVault公司
数据中心正在寻找传统电网之外的电力来源,以满足支持先进人工智能所需的电力需求。尽管引入了新的可再生能源发电,但现有的电网基础设施仍难以跟上多个领域急剧上升的需求,尤其是数据中心对电力需求增长迅速。当前的电网无法承载这种扩张的规模和速度。仅是审批新的大型输电项目和并网就可能耗时长达
随着全球气候变暖问题日益严重,推动清洁能源发展、减少碳排放已成为各国的共同目标。在这一背景下,微电网作为一种能够推动经济社会发展绿色化、低碳化的解决方案,受到了广泛关注。然而,在微电网实际推广与应用过程中,也面临着一些待解的难题。(来源:朗新研究院作者:邹雅蓉)明晰微电网的功能定
4月11日,第十三届储能国际峰会暨展览会特别设立的储能设计与解决方案论坛四大专场在北京首都国际会展中心顺利举办,论坛涵盖了电池技术、构网型储能、系统集成、数智化技术,邀请了40余位储能领军企业负责人及行业专家,共同探讨储能领域前沿技术、发展趋势和未来挑战。当前,在“碳达峰、碳中和”的
党的二十届三中全会报告提出,要健全因地制宜发展新质生产力体制机制,催生新产业、新模式、新动能,发展以高技术、高效能、高质量为特征的生产力。虚拟电厂作为电力领域新质生产力的典型代表,在电力系统中的功能定位不断明确、应用场景持续丰富,逐步成为推动构建新型电力系统、提升系统灵活调节能力
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!