登录注册
请使用微信扫一扫
关注公众号完成登录
式中,∆H为反应的摩尔焓变,其值表示每一摩尔该反应发生所需要吸收的能量。事实上,该能量可以进一步分为两部分[5]
一部分是吉布斯自由能变∆G,这部分必须以电能形式提供;另一部分T∆S以热量的形式吸收,可以来自外部热源,也可以来自额外电能产生的焦耳热。在进行电解时,H2O在阴极发生还原反应,从外电路得到电子,被分解成为H2和氧离子O2-。O2-则通过电解质传递到阳极,在阳极失去电子,发生氧化反应,生成O2,电子通过外电路的直流电源从阳极传递到阴极[5]。
电解水反应所需总能量∆H、电能∆G、热能T∆S与温度的关系如图1所示[5,14],曲线根据查表所得的H2O、H2、O2热力学属性计算得到。显然,温度越高,以热能形式吸收的能量T∆S就越多,反应所需的理论最低电能∆G就越少。其本质原因在于反应是吸热反应,因而在热力学层面高温有利于该反应的正向进行。
图1 电解反应所需总能量、电能、热能与温度的关系图
Fig.1 Temperature dependence of required total energy,electrical energy and thermal energy
实际计算电解所需电能时,除了要考虑提供吉布斯自由能变∆G 、使反应发生在热力学层面成为可能,还需要额外的电能来克服电解反应在动力学层面的阻力,记为∆E[14-15]。这部分额外电能∆E 往往用电解过电压表征,包含欧姆过电压、活化过电压、扩散过电压等对应不同阻力因素的过电压。事实上,由于高温对于化学动力学的提升,反应温度越高,电解过电压就越小,∆E 也越小。
根据以上定义,可求得电解池效率[5,14]
高温条件下,∆G、∆E 的值都要更小,反应同时在热力学层面和动力学层面得到提升,这就是高温电解池实现高效率电能转化的原理。
1.2 高温与低温电解的技术对比
根据1.1节所述,相较于低温电解,更高的电能转化效率是高温电解技术的首要优势。由于高温条件对电解反应的动力学和热力学提升明显,因而高温电解的系统效率比低温电解具有更大的提升潜力。
同时,高温电解池是高度可逆的。受益于高温电解的均相反应特性,高温电解池SOEC可以方便地切换到燃料电池工作模式,因而高温电解可以实现可逆运行[5,10,15];而低温电解池与低温燃料电池反应物的物相不同,因此需要采用不同的构造设计。
此外,高温电解具有碳耐受性。低温电解池的金属电极非常容易受到一氧化碳的毒化[5],即使是少量的碳杂质也会对电堆造成损坏;而高温电解池可以直接电解二氧化碳而不会被一氧化碳毒化,可以进行水—二氧化碳共电解制取氢气—一氧化碳,将氢气的甲烷化反应合并到电解池中,直接制取甲烷[5,11,16]。
最后,在多能源网络中,高温电解技术可参与高品位热量的梯级利用与多能源管理。高温电解需要制造高温反应环境,可与高温工业、供热管网结合形成热量的梯级利用,提升能源利用效率[17-18];同时高温电解也连接了电网与气网,有望通过多能源综合管理技术参与多网调控[19-20]。
高温电解、低温电解技术的详细特性对比如表1所示[4-5,21]。
表1 高温、低温电解技术的特性对比
Table 1 High-temperature electrolysis vs. low-temperature electrolysis
1.3 高温电解的主要技术障碍
高温工作条件在给电解池带来优良性能的同时,也为其大规模生产和应用增加了难度。事实上,由于常规材料和组件几乎都无法在高温电解所要求的700~1000 ºC下工作,基于陶瓷材料的高温电池电解质和电极研发一直以来是研究的热点,且至今没有适于大规模商业化生产的成熟技术[12,18];同时,高温为电池组堆过程中的电极贴合和气路密封带来了巨大的困难,适于高温的组堆和密封工艺同样是研发难点,制约了电堆容量,后文提到的板式电池尤为如此[13,21];更为重要的是,高温下主要工作材料的严重退化问题尚未得到经济有效的解决,很大程度上限制了高温电堆的工作寿命,影响了高温电解技术的经济性[5,21]。
由于上述因素的限制,目前高温电解技术仍在实验阶段,尚未被广泛实际应用。但是,一旦能够克服高温下的一系列材料和工艺问题,实现高温电解池的低成本生产,高温电解在大规模储能方面的应用投入指日可待。
2 高温电解电池的技术分类
根据几何结构划分,高温电解电池可以分为板式、管式以及扁管式3种[22-25]。尽管采用这3种技术的电池在外观上有较大差异,但是它们在组成部分以及工作原理上是相似的。其组成包括阳极、阴极、电解质、流道以及连接体五大部分,原理示意图见图2[26]。
图2 高温电解电池的原理示意图
Fig.2 Schematic diagram of SOEC
在各组成部分中,流道起到传输气流的作用,反应物的水蒸气经过阴极流道,通入电池,而产物氢气以及氧气则分别经过阴极和阳极流道排出电池。阴极材料一般采用的是Ni/YSZ多孔金属陶瓷,阳极材料主要是多孔钙钛矿氧化物材料。多孔电极可以增加电极反应的有效面积。电解质为致密的氧化钇掺杂氧化锆陶瓷材料,能够隔绝阴极、阳极的气体,并在高温下传导氧离子。而连接体则是电导率较高的金属材料,起到集流的作用[26]。
通常情况下,单个电池的功率与电压较小,不能满足需求。因此在实际应用中,需要将多单个电池通过串并联形成电池堆,以达到更大的功率以及电压[22]。而采用不同技术的电池具有不同的几何外形,组成电池堆的方式不同,各自具有优势和劣势。以下介绍采用不同技术的电池的特点。
2.1 板式电池
板式电池的外观是一块平板,图3、图4分别是板式电池的结构以及板式电池堆的实物图[7,13]。
图3 板式电池和电堆结构图
Fig.3 SOEC scaling up to a stack
图4 板式电堆实物图
Fig.4 Picture of a planar SOEC stack
图3中的电池是由阴极、阳极、电解质3个部分堆叠形成的,其截面图如图2所示。而图4所示的电池堆则是由多个图3所示的电池与连接体堆叠形成的,实际上图2表示的就是电池堆中一个重复单元的截面图。
由于板式电池是平面结构,可以通过成熟的流延方法制造,工艺相对简单,制造成本较低。而且其电解质较薄、电流通过的面积大、结构紧凑,因此具有电阻低、功率密度大的优点。但由于板式电堆在运行时整体都处于高温环境中,所以密封困难是限制板式电池应用的一个因素。另外,由于电堆中的不同材料在高温下的热膨胀大小不同,因此容易产生较大的热应力,导致电堆寿命降低甚至损坏[22,24,27-28]。
2.2 管式电池
管式电池在结构上是一端封闭、一端开放的圆管,阴极、阳极分别位于管的内外壁,一种由西门子-西屋公司联合制造的管式电池的单电池以及电堆示意图如图5、图6[22]所示。
图5 西门子-西屋管式电池结构示意图
Fig.5 Schematic diagram of tubular SOEC made by Siemens-Westinghouse
图6 西门子-西屋管式电堆示意图
Fig.6 Schematic diagram of tubular SOEC stack made by Siemens-Westinghouse
相比于板式电池,管式电池由于只有一端是开放的,而且在使用时,开放端的温度较低,因此在密封上更加容易。另外,管式电池与板式电池相比还具有更好的热应力耐受性,电池的稳定性更好,寿命更长[29]。但是,由于管式电池的外形是一个圆管,在工艺难度上比较大,制造成本高。另外,由于图6所示电堆中的单个电池可以长达数十厘米,制造工艺难以保证各圆管间的尺寸相同,因此也难以使各圆管之间良好接触,导致组堆难度高。图7为管式电堆的截面示意图[22],由图可见,若各圆管之间的尺寸不同,则无法使各电池间良好接触,不利于组堆。此外,由于管式电池中电流流经的路径较长,因此相比于板式电池,其电阻比较大[22,25,29]。
图7 西门子-西屋管式电堆截面示意图
Fig.7 Sectional view of tubular SOEC stack made by Siemens-Westinghouse
2.3 扁管式电池
为了在管式电池结构的基础上进一步提升功率密度,扁管式的结构设计应运而生。扁管式电池的出发点是将管式电池“压扁”以增大电池之间的接触面积,其横截面形状不是正圆形,而是长扁圆形,长扁的气道可以进一步划分为若干个气室,以增加上下两极之间的导电通路,如图8所示[25]。类似管式电池,扁管式电池工作时,每个气室都有物料气流通过,进行电解或发电,同时其开放端口温度较低、密封相对容易,热应力耐受性同样优于板式电池;并且,由于长扁外形和气道内分隔导体的设计,扁管式电池的内电阻和成堆电阻更小,可以实现更高的功率密度。总之,扁管式结构结合了板式结构集流面积大、电阻小,以及管式结构的容易密封、稳定性好、寿命长的优点,是极具潜力的新型高温电解池结构。扁管式电池组堆后的实物图如图9所示[23]。
虽然扁管式电池具有其他两种结构的优点,但是由于其出现时间较晚,因此扁管结构的相关研究不多,大部分从燃料电池的角度出发进行设计和实验,而且制造工艺也不成熟,还无法做到大规模生产[23,29,31-32]。
图8 扁管式电池实物图
Fig.8 Picture of flat-tubular SOEC
图9 扁管式电堆实物图
Fig.9 Picture of flat-tubular SOEC stack
3 高温电解系统的转换模式
3.1 H2O电解制氢
电解H2O制氢是目前高温电解技术的主要转换形式,其反应式如式(1)所示。
由1.1~1.2节可知,高温电解具有高电能转化效率,其电解池效率可达85%~95%,这一特性使得高温电解水制备氢气具有经济性上的潜力。然而,由于加热进料至电解池工作温度耗能高,且电解池出口气体余热未得到有效利用,在计入加热耗能后,单电池效率会下降约30%。
设计有效的外围辅助系统(balance of plant, BOP)对电解池进行热管理是提高系统效率的必要手段。实现热管理的核心元件为换热器,通过换热器设计,能够在系统中加入能量循环,回收利用出口气体余热。使用夹点分析设计换热网络或采用不同的换热器设计,可达到75%~83%的系统效率(LHV)[33-35]。一种外围辅助系统设计示意图如图10所示。
电解生成的氢气具有多种利用方式。如加压液化后通过储氢罐储存运输,作为化工原料参与后续化工合成反应,以及作为可燃性气体直接通入天然气管道等[33, 36-37]。
3.2 CO2电解制CO
除电解H2O外,高温电解技术还可直接电解CO2生成O2,反应过程如下
能够电解CO2是高温电解技术的独特优势。不过,与电解H2O相比,电解CO2单位面积电阻率(area specific resistance,ASR)更高[38],且可能发生布杜阿尔反应等副反应,产生积碳覆盖阴极活性位点,降低电解池性能和使用寿命[39]。通过控制流道中的CO/CO2比例,降低CO的体积分数,保证碳元素比例较低,可以显著降低积碳风险[39]。
图10 一种外围辅助系统设计示意图
Fig.10 A BOP system design schematic
CO2电解可被应用于特定的场景下。如NASA利用火星大气的CO2环境,通过高温电解CO2制备O2供宇航员使用[39]。另外,在某些缺水地区,可利用电解生成的CO通过化工反应合成烃类燃料及甲醇等化工产物。
3.3 H2O+CO2共电解与化工合成
与单独电解H2O、CO2不同,H2O和CO2共电解时,除电解反应外,还会发生水煤气变换(water gas shift,WGS)反应,反应机理更复杂。
共电解时电解池的ASR与电解H2O时相近,大约是CO2电解的0.56倍[38],电解池性能有所提高。
另外,高温共电解通过电解H2O和CO2,直接生成高温CO2、CO、H2合成气,如图11所示[40]。大量化工合成反应如费托合成、甲烷化、甲醇化等,使用合成气作为原料,在较高温度压强下生成对应产物。高温共电解可作为化工合成的前一环节,在物质与能量两方面与后续流程耦合,从而提高系统整体效率。与分别电解H2O和CO2相比,共电解效率更高,且需要更少的电解步骤,降低了反应器成本。
由于化工合成反应的多样性,共电解与之结合后可生成多种产物,生成的产物应用广泛。如费托合成产物可用于合成汽油、煤油和柴油等发动机燃料,而甲醇、甲烷等产物既可作为清洁燃料,又可作为重要的化工原料[36,41-42]。
共电解与化工合成结合,将电能转化为化学能储存,是实现长时间大规模储能的有效手段。并且,由于其使用CO2作为原料生成有机物,可起到减少碳排放、生成可持续燃料的作用。
图11 SOEC共电解生成合成气示意图
Fig.11 Schematic diagram of CO2/H2O co-electrolysis using SOEC for syngas production
3.4 加压电解内合成
高温共电解在加压条件下,电解池内部存在甲烷内合成反应,可直接生成产物甲烷。
常规电解制甲烷流程将电解池与甲烷化反应器连接,电解产物H2通入甲烷化反应器内,与CO2反应生成甲烷,其电—气转换效率约为81.08%[43]。
对于加压电解内合成,通过将电解反应与甲烷化反应集成在电解池内,电解反应吸收甲烷化释放出的热量,实现了系统中热能的有效利用。与常规电解制甲烷相比,加压电解内合成流程简单且效率高,有望实现94.5%的电—气转换效率[44]。
4 高温电解系统的接入模式
4.1 纯电电解接入新能源电力系统
纯电电解指使用电能为系统辅机及电解供能,将进料从常温加热至高温电解池工作温度,并完成后续电解及产物加压储存等流程。
使用纯电电解的接入方式时,高温电解池在电力系统中作为电负荷,将电能转化为化学能储存,在新能源波动导致电能富余时起到消纳弃电的作用[43,45]。
由于高温电解出口气体温度高,因此可将高温电解系统与热网结合,使用电解产物作为热能载体,供热降温后再对电解产物加以利用。这种“气—热联供”的形式不仅提升了高温电解系统余热利用的能力,而且以高温电解系统作为能量接口,实现了电—气—热多能源网络的连接。
4.2 余热辅助电解接入“电—热”多能系统
对于高温电解系统,由于高温电解反应自身的吸热特性以及加热进料至电解温度的需求,热能在系统所需总供能中占有一定比例。4.1节提到的采用纯电供能的方式,将一部分高品位的电能转化为低品位热能,这种低效率的能量利用方式会导致额外的㶲损失。
使用外部热源替代电供热是提高高温电解系统制氢效率的有效方式,高温电解系统效率随外加热源温度变化如图12所示[46]。高温电解系统与核反应堆联合运行可实现系统52.6%的产氢热效率[47],火电机组[48]、太阳能光热反应器[49]等均可以作为外部热源,通过相对廉价的热能形式为高温电解供热,提升系统产氢热效率与经济效益。
图12 高温电解系统效率随外加热源温度变化图
Fig.12 High-temperature electrolysis system efficiency changes with external heating source temperature
另外,热电联产机组(combined heat and power,CHP)由于已经具备抽汽供热能力,无需额外进行设备改造,便可与高温电解系统连接。在CHP热负荷不足时,供热抽汽有所富余,使用200~300 ℃抽汽为高温电解系统供热,可以提升高温电解系统的㶲效率与储能效率。
高温电解系统采用CHP作为外部热源时,其同时作为CHP的热负荷以及电力系统的电负荷,将剩余电、热以化学能的形式储存,在“电—热”多能系统中实现高效储能。
4.3 加压可逆规模化高效储气发电
根据1.2节中所述,高温电解池具有高度可逆的性质,可在电解、发电模式下自由转换。因此,其除了可在纯电电解和余热辅助电解模式下作为电、热负荷,还可作为电源发电上网,实现可逆储能的功能。
加压可以提升高温电解系统储能时的电—气—电循环效率。当加压高温电解系统运行在电解池模式时,由3.4节可知,会发生甲烷内合成反应。内合成反应放热供电解使用,可减少电解池内净吸热量。当系统以甲烷为进料,运行在燃料电池模式时,电池内存在吸热的内重整反应。甲烷氧化反应的放热量供内重整反应使用,减少了燃料电池内的净放热量。由于在电—气转换过程中输入的电能以及在气—电转换过程中损失的热能均减少,因此系统电—气—电效率得以提升[50]。
通过加压高温电解系统可逆运行的方式,有望实现80%的电—气—电循环效率[45],其放电时间可长达1000 h,储能成本约为3美分/kWh,具有高效率、长时间、低成本的特点[51]。
常见的储能技术最大放电时间、储能成本、循环效率如图13所示[51]。可见使用可逆固体氧化物电池(reversible solid oxide cell, ReSOC)储能与其他储能方式相比,具有特定的应用场景,在成本上有竞争力。
图13 储能技术对比图
Fig.13 Energy storage technology comparison t
5 总结与展望
得益于高温条件对电解反应的热力学与动力学提升,高温电解在转化效率、可逆工作、碳耐受等方面显著优于常温电解。在实现结构上,新兴的扁管式结构兼具了板式与管式的结构优点;在转换模式上,高温电解池可单独制取H2或CO,也可共电解直接合成CH4;在系统接入模式上,纯电电解接入、余热辅助电解接入、可逆的储气发电接入等多种模式,能够在高效消纳可再生能源的同时提供丰富的灵活性资源。随着高温电解材料与工艺研发的不断深入,配合以面向富余电量的新型购电模式和氢燃料电池汽车等终端需求的发展,高温电解在大规模储能方面的应用指日可待,将对全球能源互联网的运行形态产生长足的影响。
参考文献
[1]Buckley T, Nicholas S, Brown M. China 2017 review: World’s Second-biggest Economy Continues to Drive Global Trends in Energy Investment[R]. Institute for Energy Economics and Financial Analysis, Cleveland: OH, Jan. 2018.
[2]白建华,辛颂旭,刘俊,等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报,2015,35(14):3699-3705.Bai Jianhua, Xin Songxu, Liu Jun, et al. Roadmap of Realizing the High Penetration Renewable Energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705(in Chinese).
[3]姚金楠. 去年可再生能源弃电量超1000亿度[N/OL]. 中国能源报,2018: 2 (2018-1-29) [2018-5-10]. http://paper.people.com.cn/zgnyb/ html/2018-01/29/content_1833775.htm.
[4]Schiebahn S, Grube T, Robinius M, et al. Power to gas:Technological Overview, Systems Analysis and Economic Assessment for a Case Study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4285-4294.
[5]Lehner M, Tichler R, Steinmüller H, et al. Power-to-Gas:Technology and Business Models[M]. New York: Springer, 2014.
[6]Qadrdan M, Abeysekera M, Chaudry M, et al. Role of Powerto-Gas in an Integrated Gas and Electricity System in Great Britain[J]. International Journal of Hydrogen Energy, 2015,40(17): 5763-5775.
[7]Petipas F, Brisse A, Bouallou C. Model-Based Behaviour of a High Temperature Electrolyser System Operated at Various Loads[J]. Journal of Power Sources, 2013, 239: 584-595.
[8]Kopp M, Coleman D, Stiller C, et al. Energiepark Mainz:Technical and Economic Analysis of the Worldwide Largest Power-to-Gas Plant with PEM Electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13311-13320.
[9]Khani H, Farag H E Z. Optimal Day-Ahead Scheduling of Power-to-Gas Energy Storage and Gas Load Management in Wholesale Electricity and Gas Markets[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 940-951.
[10]Frank M, Deja R, Peters R, et al. Bypassing Renewable Variability with a Reversible Solid Oxide Cell Plant[J].Applied Energy, 2018, 217: 101-112.
[11]Gahleitner G. Hydrogen from Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2039-2061.
[12]Li Q, Zheng Y, Guan W, et al. Achieving High-Efficiency Hydrogen Production Using Planar Solid-Oxide Electrolysis Stacks[J]. International Journal of Hydrogen Energy, 2014,39(21): 10833-10842.
[13]Zhang X, O’Brien J E, Tao G, et al. Experimental Design,Operation, and Results of a 4 kW High Temperature Steam Electrolysis Experiment[J]. Journal of Power Sources, 2015,297: 90-97.
[14]Udagawa J, Aguiar P, Brandon N P. Hydrogen Production through Steam Electrolysis: Model-Based Steady State Performance of a Cathode-Supported Intermediate Temperature Solid Oxide Electrolysis Cell[J]. Journal of Power Sources,2007, 166(1): 127-136.
[15]Kazempoor P, Braun R J. Model Validation and Performance Analysis of Regenerative Solid Oxide Cells for Energy Storage Applications: Reversible Operation[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5955-5971.
[16]Li Q, He R, Gao J A, et al. The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200 C[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599-A1605.
[17]O’Brien J E, McKellar M G, Harvego E A, et al. High-Temperature Electrolysis for Large-Scale Hydrogen and Syngas Production from Nuclear Energy–Summary of System Simulation and Economic Analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819.
[18]Ishihara T, Kanno T. Steam Electrolysis Using LaGaO3 Based Perovskite Electrolyte for Recovery of Unused Heat Energy[J].ISIJ International, 2010, 50(9): 1291-1295.
[19]李杨,刘伟佳,赵俊华,等. 含电转气的电—气—热系统协同调度与消纳风电效益分析[J]. 电网技术,2016,40(12):3680-3688.Li Yang, Liu Weijia, Zhao Junhua, et al. Optimal Dispatch of Combined Electricity-Gas-Heat Energy Systems with Power-to-Gas Devices and Benefit Analysis of Wind Power Accommodation[J]. Power System Technology, 2016, 40(12):3680-3688(in Chinese).
[20]Clegg S, Mancarella P. Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems[J]. IEEE Transactions on Sustainable Energy, 2016,7(2): 718-731.
[21]Mathiesen B V, Ridjan I, Connolly D, et al. Technology Data for High Temperature Solid Oxide Electrolyser Cells,Alkali and PEM Electrolysers[J]. Denmark: Department of Development and Planning, Aalborg University, 2013.
[22]Subhash C.Singhal, Kevin Kendall. 高温固体氧化物燃料电池: 原理、设计和应用[M]. 北京:科学出版社, 2007.
[23]Lim T H, Park J L, Lee S B, et al. Fabrication and Operation of a 1kW Class Anode-Supported Flat Tubular SOFC Stack[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9687-9692.
[24]Luo Y, Shi Y, Li W, et al. Comprehensive Modeling of Tubular Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon Dioxide[J]. Energy, 2014, 70(3): 420-434.
[25]Kim J H, Song R H, Song K S, et al. Fabrication and Characteristics of Anode-Supported Flat-Tube Solid Oxide Fuel Cell[J]. Journal of Power Sources, 2003, 122(2): 138-143.
[26]牟树君,林今,邢学韬,等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术,2017,41(10):3385-3391.Mu Shujun, Lin Jin, Xing Xuetao, et al. Technology and Application Prospect of High-Temperature Solid Oxide Electrolysis Cell[J]. Power System Technology, 2017, 41(10):3385-3391(in Chinese).
[27]Park J, Kang J, Bae J. Computational Analysis of Operating Temperature, Hydrogen Flow Rate and Anode Thickness in Anode-Supported Flat-Tube Solid Oxide Fuel Cells[J].Renewable Energy, 2013, 54(6): 63-69.
[28]Lin B, Shi Y, Meng N, et al. Numerical Investigation on Impacts on Fuel Velocity Distribution Nonuniformity Among Solid Oxide Fuel Cell Unit Channels[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3035-3047.
[29]Park J, Bae J, Kim J Y. A Numerical Study on Anode Thickness and Channel Diameter of Anode-Supported Flat-Tube Solid Oxide Fuel Cells[J]. Renewable Energy, 2012,42(1): 180-185.
[30]Park J, Bae J, Kim J Y. The Current Density and Temperature Distributions of Anode-Supported Flat-Tube Solid Oxide Fuel Cells Affected by Various Channel Designs[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9936-9944.
[31]Suzuki T, Liang B, Yamaguchi T, et al. Development of Novel Micro Flat-Tube Solid-Oxide Fuel Cells[J]. Electrochemistry Communications, 2011, 13(7): 719-722.
[32]Suzuki T, Yamaguchi T, Sumi H, et al. Evaluation of Micro Flat-Tube Solid-Oxide Fuel Cell Modules Using Simple Gas Heating Apparatus[J]. Journal of Power Sources, 2014, 272:730-734.
[33]Petipas F, Brisse A, Bouallou C. Benefits of External Heat Sources for High Temperature Electrolyser Systems[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5505-5513.
[34]Meng N, Leung M K H, Leung D Y C. Energy and Exergy Analysis of Hydrogen Production by Solid Oxide Steam Electrolyzer Plant[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4648-4660.
[35]Wang Z, Mori M, Araki T. Steam Electrolysis Performance of Intermediate-Temperature Solid Oxide Electrolysis Cell and Efficiency of Hydrogen Production System at 300Nm3h-1[J].International Journal of Hydrogen Energy, 2010, 35(10): 4451-4458.
[36]Giglio E, Lanzini A, Santarelli M, et al. Synthetic Natural Gas via Integrated High-Temperature Electrolysis and Methanation:Part I—Energy Performance[J]. Journal of Energy Storage,2015, 1(12): 22-37.
[37]黄明,吴勇,文习之,等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力,2013,33(4):39-42.Huang Ming, Wu Yong, Wen Xizhi, et al. Feasibility Analysis of Hydrogen Transport in Natural Gas Pipeline[J]. Gas & Heat,2013, 33(4): 39-42(in Chinese).
[38]Zheng Y, Wang J, Yu B, et al. A Review of High Temperature Co-Electrolysis of H2O and CO2to Produce Sustainable Fuels Using Solid Oxide Electrolysis Cells (SOECs): Advanced Materials and Technology[J]. Chemical Society Reviews,2017, 46(5): 1427-1463.
[39]Shi Y, Luo Y, Cai N, et al. Experimental Characterization and Modeling of the Electrochemical Reduction of CO2in Solid Oxide Electrolysis Cells[J]. Electrochimica Acta, 2013, 88(2):644-653.
[40]Fu Q, Mabilat C, Zahid M, et al. Syngas Production via High-Temperature Steam/CO2Co-Electrolysis: An Economic Assessment[J]. Energy & Environmental Science, 2010, 3(10):1382-1397.
[41]Becker W L, Braun R J, Penev M, et al. Production of Fischer–Tropsch Liquid Fuels from High Temperature Solid Oxide Co-Electrolysis Units[J]. Energy, 2012, 47(1): 99-115.
[42]Al-Kalbani H, Xuan J, García S, et al. Comparative Energetic Assessment of Methanol Production from CO2: Chemical Versus Electrochemical Process[J]. Applied Energy, 2016,165: 1-13.
[43]Stempien J P, Ni M, Sun Q, et al. Production of Sustainable Methane from Renewable Energy and Captured Carbon Dioxide with the Use of Solid Oxide Electrolyzer: Athermodynamic Assessment[J]. Energy, 2015, 82: 714-721.
[44]Luo Y, Shi Y, Li W, et al. Synonous Enhancement of H2O/CO2, Co-Electrolysis and Methanation for Efficient One-Step Power-to-Methane[J]. Energy Conversion & Management,2018, 165: 127-136.
[45]Wendel C H, Gao Z, Barnett S A, et al. Modeling and Experimental Performance of an Intermediate Temperature Reversible Solid Oxide Cell for High-Efficiency, Distributed-Scale Electrical Energy Storage[J]. Journal of Power Sources,2015, 283: 329-342.
[46]Petipas F, Brisse A, Bouallou C. Benefits of External Heat Sources for High Temperature Electrolyser Systems[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5505-5513.
[47]O’Brien J E, Mckellar M G, Harvego E A, et al. High-Temperature Electrolysis for Large-Scale Hydrogen and Syngas Production from Nuclear Energy – Summary of System Simulation and Economic Analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819.
[48]Manage M N, Sorensen E, Simons S, et al. A Modelling Approach to Assessing the Feasibility of the Integration of Power Stations with Steam Electrolysers[J]. Chemical Engineering Research & Design, 2014, 92(10): 1988-2005.
[49]Balta M T, Kizilkan O, Yılmaz F. Energy and Exergy Analyses of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8032-8041.
[50]Bierschenk D M, Wilson J R, Barnett S A. High Efficiency Electrical Energy Storage Using a Methane–Oxygen Solid Oxide Cell[J]. Energy & Environmental Science, 2011, 4(3):944-951.
[51]Jensen S H, Graves C, Mogensen M, et al. Large-Scale Electricity Storage Utilizing Reversible Solid Oxide Cells Combined with Underground Storage of CO2and CH4[J].Energy & Environmental Science, 2015, 8(8): 2471-2479.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,3月18日,浙江湖州吴兴区发布虚拟电厂建设项目中标公告,项目包含共享储能设施配置约35MWh储能电池预装舱。公告显示,湖州华承综合能源有限公司、万帮数字能源股份有限公司联合体以投标报价84990.3209万元中标。据了解,招标人湖州吴城数字能源有限公司以及中标人湖州华承综合能源有
北极星储能网获悉,3月20日,协鑫能科发布使用部分募集资金对子公司提供借款以实施募投项目的公告,拟使用15.2亿元募资募投新型储能电站建设项目、分布式光伏电站建设项目、南通协鑫热电有限公司热电联产项目、石柱七曜山玉龙风电二期项目。其中,协鑫能科拟使用募集资金不超过69,004.07万元对公司控股
3月18日,全球领先的储能解决方案提供商天合储能亮相2025年澳洲储能峰会(EnergyStorageSummitAustralia),并隆重发布新一代升级储能系统——Elementa2Pro5MWh。作为全球储能行业最具影响力的峰会之一,澳洲储能峰会汇聚了来自全球超过250个代表团及众多顶级行业专家。天合储能在峰会上的重磅发布不仅
春风拂过,刚并网的储能电站在阳光下熠熠生辉曾经以花鼓戏和农耕文化闻名的凤阳早已借助光伏发电的翅膀实现了从“靠天吃饭”到“向天要电”的华丽转身近期,采用正泰电源液冷储能系统的凤阳一期大型工商业储能电站成功并网,总容量15MW/45MWh。该电站将依据工厂用电特性实施削峰填谷与需量管理,有效降
3月18日,国际独立第三方检测、检验和认证机构德国莱茵TV大中华区(简称“TV莱茵”)在上海举办2025“AllQualityMatters”光储盛典启动仪式暨发布会,宣布今年的“光储盛典”将于9月在常州举行,并公布了本届“AllQualityMatters”优胜奖奖项设置及评选规则。TV莱茵2025光储盛典启动仪式上海交通大学太
近日,运达股份联合洪都拉斯当地电力企业EQUINSA,成功中标中美洲地区首个储能项目——洪都拉斯储能EPC项目,实现了国际储能业务“首投首中”的重要突破,不仅标志着公司正式迈入全球储能市场,更为未来的国际化发展奠定了坚实基础。据悉,该项目系洪都拉斯国家重点工程,建成后,将显著提升洪都拉斯电
日前,英国一家投资机构代表在“2025年储能峰会”上指出,日益加剧的贸易战尚未影响到电池储能系统定价。日前,英国最大养老金管理机构之一Railpen公司的投资经理CristianaDochioiu在伦敦举办的“2025年储能峰会”发表讲话时指出,虽然贸易战日益加剧,但尚未对电池储能系统定价产生直接影响。在回答有
北极星储能网获悉,3月19日,江苏扬州江都经济开发区发布77MW/154MWh分布式储能电站项目招标公告,本项目投资总价17457万元,约合1.134元/Wh。本工程利用项目区内企业现有场地建设储能电站,规划安装容量为77MW/154MWh。本期储能电站磷酸铁锂电池采用全预制舱布置形式,户外放置77个2.0MWh储能电池舱。
北极星储能网获悉,3月20日,金发科技股份有限公司发布2024年度“提质增效重回报”行动方案评估报告。一、锚定战略引领,聚焦主业发展2024年,公司围绕新质生产力加强科技创新,强化一体化产业链优势,依托全球领先的应用创新能力,为全球客户提供了更具竞争力的新材料整体解决方案,公司的行业竞争力
北极星储能网获悉,3月19日,兴建普睿(宜兴)储能科技有限公司发布宜兴新建镇60MW/120WMh储能电站EPC项招标,项目资金来源为私有资金16000万元,约合1.33元/Wh。该项目位于江苏省无锡市宜兴市新建镇。
北极星储能网获悉,3月19日,申能集团旗下上海申能新动力储能研发有限公司发布奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)项目全钒液流电池储能系统采购招标公告。本标的全钒液流电池储能总容量10MW/40MWh,合同分两批次生效,第一批次为可扩展的最小单元容量(不大于5MWh),剩余容量为第二
3月11日,中国能建中电工程东北院中标宝清350兆瓦/1750兆瓦时压缩空气储能国家级示范项目EPC+F总承包。作为中国首个350兆瓦级采用人工硐室储气库技术的大规模压缩空气储能电站,项目实施标志着中国在新型长时储能技术、规模化应用领域取得重大突破,对构建新型电力系统、实现“双碳”目标具有重要战略
北极星储能网获悉,3月14日,北京市通州区经济和信息化局对《关于促进北京城市副中心绿色低碳产业发展的实施细则》征求意见。其中提出,鼓励有条件的工业企业和软件信息服务业企业开放应用场景,开展新型储能、智能微网、碳捕集封存利用等领域绿色低碳新技术、新产品、新服务首次应用。对符合要求的工
作者:李岳峰1,2(),丁纬达1,2,韦银涛1,2,孙勇1,2,饶庆1,2,项峰1,2,姚颖聪1nbsp;nbsp;单位:1.运达能源科技集团股份有限公司;2.运达智储科技(河北)有限公司引用:李岳峰,丁纬达,韦银涛,等.关键因素对储能浸没式锂电池包温度特性影响的研究[J].储能科学与技术,2025,14(1):152-161.DOI:10.19799/j.cnki.
北极星储能网获悉,近日,广州首个飞轮储能试点项目完成安装,即将进入投运前测试工作。据悉,飞轮储能技术作为一种高效、环保的物理储能方式,在轨道交通领域优势显著。在列车频繁制动过程中,回收制动能量,实现电能与动能的高效转换存储,并在列车启动时迅速释放能量,有效提升能源利用效率、节省电
北极星储能网讯:3月14日,新疆华电1.5GW/6GWh储能系统采购开标。6个标段共吸引57家企业参与投标,整体报价范围为0.398元/Wh-0.565元/Wh,投标均价0.4452元/Wh。据悉,此次采购的项目分别为乌鲁木齐1GW/4GWh、喀什1GW/4GWh,合计采购规模为1.5GW/6GWh划分为6个标段。其中标段一、二、六,采用构网型+跟
北极星储能网获悉,3月10日,中煤于田新能源有限公司成立,法定代表人为于建民,注册资本约8.4亿人民币,经营范围包括太阳能发电技术服务、新兴能源技术研发、储能技术服务等,由中国中煤旗下中煤电力有限公司全资持股。今年以来,中煤电力有限公司已成立中煤电力(哈密)新能源投资有限公司、中煤(南
国家能源局发布的数据显示,截至2024年年底,全国已建成投运的新型储能项目,累计装机规模达73.8GW/168GWh,较2023年底增长超过130%。平均储能时长2.3小时,较2023年底增加约0.2小时。从储能时长看,4小时及以上新型储能电站项目逐步增加,截至2024年年底装机占比为15.4%,较2023年底提高约3个百分点。
在全球应对气候变化的背景下,加勒比地区正以低成本的可再生能源解决方案为突破口,积极探索一条通往碳中和的可持续发展之路。这一转型不仅有望大幅降低能源系统的整体成本,还将有效缓解气候变化带来的风险。拉彭兰塔理工大学(LUTUniversity)的最新研究为这一目标提供了科学依据,揭示了加勒比地区
文丨北京城市管理委员会北极星储能网讯:3月12日,北京市地方标准《电力储能系统建设运行规范》公开征求意见,该文件于2021年首次发布,本次为第一次修订。本文件由北京市城市管理委员会提出并归口,由北京市城市管理委员会组织实施。规定了电力储能系统的设计、施工、验收、运行维护及退役和应急处置
2025年3月3日,中国电力企业联合会中小企业分会联合北极星电力网在杭州举办“2025储能新产品与前沿技术探索沙龙”。此次沙龙活动聚焦储能及配套技术迭代升级与产业化实践,围绕储能及配套技术产业高质量发展路径进行了深入交流。中电联中小企业分会专职副会长张文建、秘书长张盛勇,北极星总裁周荃、总
据了解,化工行业属于高耗电行业之一,特别一些树脂聚合生产厂,他们的反应釜需要24小时维持高温,电力消耗十分巨大。既然如此,化工厂为什么不愿意通过布置储能设备来节省电费呢?化工厂聚合釜其中一个重要的原因是大部分化工工厂属于危化品工厂,因为担心储能设备的安全性,不敢随意布设储能节能设备
北极星储能网获悉,2025年2月27日,在2025国际新能源产业营销峰会期间,北京卫蓝新能源副总经理魏纪周发表了《固态锂电池当前商业化进展》的主题演讲。他表示,固态电池的大规模起量会在储能领域。在固态电池的复合路线中,最大的问题是界面的问题,原位固态化的解决思路有助于解决这一问题,助力混合
北极星储能网获悉,2月24日消息,南非国家电力公司(Eskom)表示,由于大部分故障机组已成功恢复,限电措施将从周一(2月24日)凌晨00:30起降至第四阶段。此前,Eskom因马朱巴(Majuba)电站五个机组和梅杜皮(Medupi)电站一个机组发生故障,不得不在周六实施三级限电。周日凌晨,卡姆登(Camden)电
北极星储能网获悉,1月16日,2024年度中国科学院杰出科技成就奖颁奖仪式在京举行。中国科学院院长、党组书记侯建国颁奖,副院长、党组副书记吴朝晖宣读表彰决定。中国科学院物理研究所陈立泉院士、中国科学技术大学陈仙辉院士获个人成就奖,“银河系早期形成与演化”等4项成果获基础研究奖,“大规模压
欧洲电力市场再现“负电价”。美东时间1月2日,由于风能发电量高达40吉瓦,远超当时的需求,德国隔夜市场再次出现了4小时的负电价,发电商不得不向用户付费以消耗多余电力。“负电价”是指电力市场中供大于求导致市场结算价为负值。意味着,发电企业每发出一度电需要向购电者支付费用,购电者不仅不需
电池中国获悉,日前,中石油开启了总容量为2.5GWh储能系统的集采招标,共分为4个标包,各标包所列需求量均为其2025年全年预估量。值得一提的是,此次集采的磷酸铁锂电池储能系统,须在合同签订后90天内交货,投标人必须是有效的中石油供应商资源库中的“一级资质供应商”。实际上,自11月以来,中国电
北极星储能网获悉,12月31日,多氟多在投资者互动平台表示,公司新能源电池主要聚焦在新能源汽车市场、大规模储能市场和轻型车及小储能市场,已与多家企业形成长期合作关系,销量稳定。
当地时间12月23日,中国能建江苏院EPC总承包的马来西亚首个大规模电化学储能项目赛京卡特60MW项目顺利并网运行,标志着中马绿色能源合作的又一重要成果落地。项目坐落于砂拉越首府古晋的赛京卡特燃煤电站内,建设容量为60MW/80MWh。项目采用预制舱式风冷磷酸铁锂电池储能系统,高稳定性、长寿命和出色
北极星储能网获悉,12月16日,新疆华电昌吉木垒凯升1050MW风光储大基地项目构网型储能电站EPC总承包批次评标结果公示,本工程分两个区域,其中风电区域装机容量800MW,储能容量112.5MW/450MWh,光伏区域装机容量250MW,储能容量150MW/600MWh。合计储能规模262.5MW/1050MWh。第一中标候选人为中国能源建
11月27日,中国船舶集团旗下广船国际有限公司储能项目竣工验收揭牌,并顺利送电并网。这是粤港澳大湾区船企中最大规模的储能电站项目,将进一步助力广船国际实现节能降碳、绿色发展。据介绍,该储能项目是广船国际与南网能源继光伏发电、智慧空压站改造、照明节能改造战略合作框架下的又一项合作新成果
11月15日6时,220千伏安泰升压站1号主变第五次冲击合闸成功,标志着国网河北邢台供电公司原集体企业兴力集团有限公司、设计院联合承建的邢台悟思110兆瓦/240兆瓦时、钒锂结合电网侧独立储能电站并网成功,这也是邢台电网目前最大规模的并网储能电站。为确保项目顺利投运,邢台供电成立专项服务团队,主
据报道,目前,德国约有161GW储能项目向该国四家主要输电系统运营商申请并网,而这一数字并没有包括储能系统运营商向配电系统运营商(DSO)提出的并网请求。这一消息让业界人士为之振奋。德国太阳能开发商Enerparc公司的首席运营官StefanMüller日前在接受行业媒体采访时表示,根据挪威能源数据分析商M
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!