登录注册
请使用微信扫一扫
关注公众号完成登录
第二个研究样本来自出租车投运4年后的退役电池。电池为铝壳磷酸铁锂,单体电池额定容量200 Ah,单个模块由单体电池以8串1并组成(模块规格:25.6 V,额定容量200 Ah)。
从中选取了132个电池模块,对其放电容量进行了测试,测试方法与前述样本1的相同。测试结果见图2,从图中可以看出,模块最大容量为182.854 Ah,最小容量为150.139 Ah,最大、最小容量差值为32.715 Ah,剩余容量分布在75%~92.5%,均分布在75%及以上区间。
综上所述,大巴车和出租车退役电池模块剩余容量均表现出明显的离散性。但是,本文中样本2的剩余容量百分数及剩余容量一致性明显优于样本1。
图2 退役电池样本2的模块容量分布图
Fig.2 Distribution diagram of the capacities for retired power batteries from sample 2
新电池配组时通常按容量差不大于±3%的标准执行,若退役电池梯次利用配组时执行该标准,将有很大比例的电池无法配组再利用。鉴于退役电池离散性明显的特征,其电池模块不可能处于同一容量差区间内,而只有处于同一容量差区间的电池模块才可配组使用。以研究样本1为例,当配组标准定为±3%时,有66个模块(50%比例)处于同一容量差区间内,其余66个模块则分别分布于5个不同的容量区间。即若配组标准按容量差不大于±3%的标准执行时,分布于6个不同容量差区间内的电池模块无法配组成1组电池以梯次利用,详见表1。
因此,对于批量退役电池梯次利用,一种技术路线是通过电池管理技术弥补电池间的不一致性,另一种技术路线是在储能系统拓扑结构设计时采用更多的并联支路,使每一支路电池(或电池模块)数量较少,有较小的容量差和较好的一致性。
表1 当配组标准定为±3%时,退役电池样本2的模块容量差分布特征
Table 1 Distribution of the capacities for retired power batteries from sample 2 (when the capacity matching standard is ±3%)
2 退役电池衰减加速特征
图3 1C充放电条件下退役磷酸铁锂单体电池衰减特性及循环寿命
Fig.3 Capacity fading acteristic and lifetime for retired power LiFePO4batteries in 1C ging/disging condition[5]
之前的研究已发现,退役电池在寿命结束前衰减呈加速特征[5,15]。如图3所示[5],退役软包磷酸铁锂单体电池在1 C充放电条件下循环700次,剩余容量为80%左右,循环700次以后电池容量下降非常明显,到780 次时剩余容量仅剩2 Ah左右。
2.1 实验方法及条件
以前述电池样本1为研究对象,从近200个退役电池模块中随机抽取5个模块,将这5个退役电池模块拆成单体电池,共计120支单体电池,从中随机抽取12支(#1~#12),开展性能循环测试,共计循环2000次左右。
容量测试参考国家标准GB/T 743-2016,结合所选用电池样本的基本参数和出厂技术测试要求进行。实验中采用的电池容量测试方法如下:在20±5℃条件下,先将电池残余电量放完,静置15 min,以0.3 C对电池恒流充电至3.65 V转为恒压充电,至充电电流降至0.05 C,认为电池充满电。静置0.5 h后,以0.5 C恒流放电至电压降到2.8 V,记录放电电量作为电池的容量。
分别研究其循环性能和容量衰减特性,容量衰减特性计算如公式(1)所示
式中,Rn为退役电池第n次循环的容量衰减率;C0为退役电池初始放电容量;Cn为退役电池第n次循环的放电容量。
2.2 退役电池衰减特性
以#2~#4电池的容量循环测试数据为样本,研究分析了其衰减特性,初始放电容量分别为17.7、17.6 Ah及17.9 Ah。与新电池比,剩余容量分别为80.5%、80%、81.4%。经过近2000次循环后,其放电容量分别下降至16.4、16.5 Ah及16.7 Ah,与新电池比,剩余容量分别为74.5%、75%及75.9%。#2~#4退役单体电池的容量循环曲线见图4、图5及图6。
由图可见,在退役电池循环衰减过程中,其充放电容量与循环次数总体呈线性关系,但每发生一次容量衰减突变(即容量循环曲线的尖峰处),都会伴随有较为明显的容量下降趋势(虽然经历衰减突变后,其充放电容量都会有小幅上升)。直至下一次的容量衰减突变发生,电池充放电容量将开始下一阶段的明显下降趋势,如此往复循环。
图7为#2~#4电池的容量衰减率曲线,由图可见,退役电池容量衰减率与循环次数呈线性关系。循环近2000次后,其中#2电池的衰减率最大为7.38%,其次分别为#4电池(6.77%)和#3电池(6.33%)。
图4 #2退役单体电池的容量循环曲线
Fig.4 Capacity fading acteristic for #2 retired power cell in ging/disging condition
图5 #3退役单体电池的容量循环曲线
Fig.5 Capacity fading acteristic for #3 retired power cell in ging/disging condition
综上所述,在循环过程中,虽然退役电池不可避免存在性能衰减的现象,但是从其衰减后的剩余容量及容量衰减率看,退役电池具有较为理想的梯次利用价值。
2.3 退役电池容量衰减突变现象
在随机循环测试的12支退役单体电池中, #1电池在循环过程中出现容量衰减突变为0 mAh的现象。#1电池的初始放电容量为17.7 Ah,与新电池比,剩余容量为80.5%。在1243次循环之前,电池充放电容量与循环次数出现很好的线性关系,与#2~#4电池一样,每发生一次容量衰减突变,都会伴随有较为明显的容量下降趋势。在循环至1243次时,放电容量突然降至0.12 Ah,与新电池比,剩余容量为0.55%。此后继续衰减至接近0 Ah,如图8所示。
图6 #4退役单体电池的容量循环曲线
Fig.6 Capacity fading acteristic for #4 retired power cell in ging/disging condition
图7 #2~#4退役单体电池的容量衰减率曲线
Fig.7 Capacity fading rates for #2~#4 retired power cells in disging condition
图8 #1退役单体电池循环容量衰减曲线
Fig.8 Capacity fading and it’s mutation acteristic for #1 retired power cell in ging/disging condition
#1退役电池的容量衰减率曲线见图9,在循环至1242次之前,其衰减率平均为4.4%,且在1242次之前,容量衰减率与循环次数间保持较好的线性关系。循环至1243次及以后,容量衰减率突然增大近100%。
在本次抽样实验研究中,12支单体电池循环2000次左右后,仅#1电池出现了上述衰减突变现象,发生概率为8.3%。由此可见,退役电池性能衰减在2000次内突变是不可预测的现象,但存在发生可能性,且发生概率不低。这种容量衰减突变现象对梯次利用储能系统可靠运行是较大的挑战,一方面需要研究电池容量跳水等性能衰减、突变预警技术,另一方面应设计灵活的储能系统电气拓扑结构,以便可以隔离突然失效电池所在支路,保证尚未失效支路可以正常工作。
图9 #1退役单体电池容量衰减率曲线
Fig.9 Capacity fading rate for #1 retired power cell in disging condition
3 结论
(1)纯电动大巴和纯电动出租汽车两类退役磷酸铁锂电池模块容量测试结果表明,退役电池模块间容量差均较为明显,离散性突出,不利于电池重组。
(2)以退役单体电池为研究对象,抽样测试了12支单体电池的循环性能,2000次充放电循环试验数据表明,绝大多数退役电池仍具有较好的循环性能,其容量衰减与循环次数呈现明显的线性关系,其容量衰减率不超过8%,具有较理想的梯次利用价值。
(3)退役单体电池2000次充放电循环试验数据表明,个别退役电池存在容量突变为零的现象,本文研究抽样样本中,其发生概率为8.3%。为保证退役电池储能系统可靠性,应针对性开展容量跳水预警技术研究。
作者:
赵光金1,2,邱武斌1,2
(1. 国网河南省电力公司电力科学研究院,河南省 郑州市 450052;2. 国家电网公司电网废弃物资源化处理技术实验室,河南省 郑州市 450052)
国家电网公司科技项目(52170217000L)。
参考文献
[1]Etacheri V., Marom R., Elazari R., et al. Challenges in the Development of Advanced Li-Ion Batteries: a Review[J].Energy Environ. Sci., 2011, 4: 3243-3262.
[2]Guo Yuguo, Hu Jinsong, Wan Lijun. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices[J]. Adv. Mater., 2008, 20: 2878-2287.
[3]Manthiram A., Vadivel Murugan A., Sarkar A., et al.Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion[J]. Energy Environ. Sci., 2008,1: 621-638.
[4]Zhao Guangjin, Wu Wenlong, Qiu Wubin, et al. Secondary Use of PHEV and EV Lithium-Ion Batteries in Stationary Applications as Energy Storage System[J]. Advanced Materials Research, 2012, 528: 202-205.
[5]王刚,赵光金. 动力锂电池梯次利用与回收处理(第一版)[M]. 北京:中国电力出版社,2015.Wang Gang, Zhao Guangjin. Reuse and Recycling of Lithium-Ion Power Batteries(First press)[M]. Beijing: China Electric Power Press, 2015(in Chinese).
[6]Neubauer J., Pesaran A.. The Ability of Battery Second Use Strategies to Impact Plug-in Electric Vehicle Prices and Serve Utility Energy Storage Applications[J]. Journal of Power Sources, 2011, 196:10351-10358.
[7]Lih Wen-Chen, Yen Jieh-Hwang, Shieh Fa-Hwa, et al. Second Use of Retired Lithium-Ion Battery Packs from Electric Vehicles: Technological Challenges, Cost Analysis and Optimal Business Model[J]. 2012 International Symposium on Computer, Consumer and Control, 2012, 103:381-384.
[8]Schneider E.L., Oliveira C.T., Brito R.M., et al. Classification of Discarded NiMH and Li-Ion Batteries and Reuse of the Cells Still in Operational Conditions in Prototypes[J]. Journal of Power Sources, 2014, 262:1-9.
[9]郭剑波,刘道坦,王松岑,等. 一种电动汽车动力电池梯次利用的分级方法:ZL 2011 1 0410608.8[P]. 2014-03.Guo Jianbo, Liu Daotan, Wang Songcen, et al. A Classification Method for Reuse of EV’s Power Batteries: ZL 2011 1 0410608.8[P]. 2014-03(in Chinese).
[10]吴文龙,赵光金,郭静娟,等. 一种动力电池梯级利用分选评估方法:ZL 2012 1 0267131.7[P]. 2014-04.Wu Wenlong, Zhao Guangjin, Guo Jingjuan, et al. A Sorting and Assessing Method for Retired Power Batteries Reuse: ZL 2012 1 0267131.7[P]. 2014-04(in Chinese).
[11]Jiang Yan, Jiang Jiuchun, Zhang Caiping, et al. Recognition of Battery Aging Variations for LiFePO4Batteries in 2nd Use Applications Combining Incremental Capacity Analysis and Statistical Approaches[J]. Journal of Power Sources, 2017,360: 180-188.
[12]赵光金,吴文龙. 一种退役动力锂电池可用性评价方法:ZL 2014 1 0433190.6[P]. 2017-01.Zhao Guangjin, Wu Wenlong. A Usability Evaluation Method for Retired Power Lithium-Ion Batteries: ZL 2014 1 0433190.6[P]. 2017-01(in Chinese).
[13]Tong Shijie, Fung Tsz, Klein Matthew P., et al. Demonstration of Reusing Electric Vehicle Battery for Solar Energy Storage and Demand Side Management[J]. Journal of Energy Storage,2017, 11: 200-210.
[14]Chiang Yi-Hsien, Sean Wu-Yang, Wu Chien-Hsun.Development of a Converterless Energy Management System for Reusing Automotive Lithium-Ion Battery Applied in Smart-Grid Balancing[J]. Journal of Cleaner Production, 2017,156: 750-756.
[15]赵光金,吴文龙. 串联蓄电池组的主动被动协同混合均衡电路及均衡方法:ZL 2014 1 0338200.8[P]. 2016-08.Zhao Guangjin, Wu Wenlong. Active and Passive Combined Equalization Circuit and Method of Series Battery Packs: ZL 2014 1 0338200.8[P]. 2016-08(in Chinese).
[16]Zhao Guangjin. Reuse and Recycling of Lithium-ion Power Batteries(First press)[M]. Singapore: Wiley, 2017,05.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,4月30日,孚能科技发布2025年度“提质增效重回报”行动方案。其中提到,在全固态电池方面,公司硫化物及复合物路线均取得较大突破,其中硫化物全固态电池已进入产品产业化开发阶段,产品、工艺及生产设备均处于开发中。硫化物固态电池沿用公司完善的叠片软包电池的制备工艺及设备,
北极星储能网获悉,5月5日晚间,比亚迪发布2025年4月产销快报。在新能源汽车领域,比亚迪继续强势领跑,公司2025年4月新能源汽车产量385,064辆,销量380,089量,同比增长21.34%,2025年1-4月累计产量1442143辆、累计销量1380893量。2025年4月公司海外销售新能源汽车合计79,086辆,2025年1-4月累计海外
北极星储能网获悉,4月29日消息,欧洲汽车巨头Stellantis与美国初创公司FactorialEnergy联合研发的FEST固态电池成功通过车规级验证。据了解,FEST固态电池容量为77Ah,能量密度达到375Wh/kg,理论上可使电动车续航突破1000公里。经600次充放电循环后仍保持90%以上容量,达到车规级耐久标准。具备4C放电
北极星储能网在天眼查APP获悉,4月27日,东营时代新能源科技有限公司成立,法定代表人为曲涛,注册资本20亿元,经营范围包含:新兴能源技术研发;电池制造;电池销售;电子专用材料制造;电子专用材料销售等。股东信息显示,该公司由宁德时代全资持股。值得注意的是,近几个月,宁德时代在山东接连注册
动力电池出货量同比增长41%,储能电池出货量增长120%。高工产研锂电研究所(GGII)初步调研数据显示,2025Q1中国锂电池出货量314GWh,同比增长55%。其中动力、储能电池出货量分别为210GWh、90GWh,同比增长分别为41%、120%。2024-2025Q1中国锂电池出货量(GWh)说明:动力锂电池含乘用车、商用车、工程
北极星储能网获悉,4月25日晚间,振华新材发布公告,公司于2025年4月24日召开董事会和监事会,审议通过了《关于募集资金投资项目重新论证并暂缓实施的议案》。根据该议案,公司将暂缓实施正极材料生产线建设项目(义龙三期)。根据公告显示,义龙三期项目原计划总投资62.45亿元,其中使用募集资金10亿
4月27日,宁德时代获得两张GB38031-2025《电动汽车用动力蓄电池安全要求》(以下简称“新国标”)检测报告,成为国内首家通过新国标的企业。其中,通过检测的产品含电池单体与电池包。GB38031-2025新版动力电池安全强制性国家标准于2025年3月28日发布,将于2026年7月1日正式实施。此次送检产品是麒麟电
LG新能源4月29日宣布,与法国环境服务商Derichebourg成立电池回收合资企业,将投建电池回收工厂。按照计划,两家公司在合资公司中的持股比例各为50%,电池回收工厂选址于法国北部瓦兹河畔布吕耶尔,预计2026年动工,2027年投产,年处理能力超2万吨。随着新能源汽车行业的蓬勃兴起,动力电池回收正逐渐
4月28日,佛山市发展和改革局佛山市财政局关于印发《佛山市2025年大规模设备更新和消费品以旧换新实施方案》的通知,通知指出,积极争取超长期特别国债资金支持高水平废弃物回收循环利用项目,重点支持回收体系建设和废钢铁、废有色金属、废纸、废塑料、废旧纺织品、废旧家电、废旧汽车、退役动力电池
中国动力电池行业的扩张步伐正在持续,头部企业中创新航与国轩高科近期的投资动作再次印证了这一趋势。与此同时,一个显著的并行现象是,围绕大圆柱电池、固态电池及其相关新材料的产能布局正变得日益密集,呈现出“拥挤”的态势。中创新航公布了大规模的扩产计划。其成都项目二期已于3月底动工,该项
北极星储能网获悉,4月28日,工信部发布2025年汽车标准化工作要点。其中提出,分析评估前沿技术发展趋势和潜在应用场景,识别研判未来汽车标准化发展方向,推动制定及发布车用人工智能、固态电池、电动汽车换电等标准子体系,启动数据治理及应用等新领域标准体系建设,超前开展飞行汽车等新业态标准化
近日,内蒙古通辽市经济技术开发区就通辽市昌通新能源科技有限公司新能源再生利用项目进行了环境影响评价首次信息公示。公示信息显示,项目主要回收利用废旧锂离子电池、报废光伏机组、风机叶片等,项目建成后年梯次利用废旧锂离子电池1万吨、拆解破碎废旧锂离子电池2万吨,拆解报废风电、光伏机组2万
4月23日,宁德时代在2025上海车展举办巧克力换电新车型发布仪式。现场,宁德时代与一汽、长安、北汽、奇瑞、广汽五大车企共同发布10款巧克力换电新车型。其中,一汽红旗推出首款巧克力B+级换电轿车EH7;长安汽车推出十万内通勤轿车启源A05、中大型数智轿车启源A07和深蓝SL03运动轿跑;北汽极狐推出高品
4月23日,宁德时代于第21届上海国际汽车工业展览会,举办巧克力换电新车型发布仪式,并与广汽集团签署全面战略合作协议。仪式现场,宁德时代与一汽、长安、北汽、奇瑞、广汽五大车企共同发布10款巧克力换电新车型。一汽红旗运营委员会副总裁柳长庆、长安汽车副总裁张法涛、北汽董事长张建勇、奇瑞汽车i
北极星储能网获悉,4月21日,中国五矿旗下的湖南云储循环新能源科技有限公司,联合丰田汽车(中国)投资有限公司、明和产业(上海)有限公司等,共同出资1亿元设立湖南云储斯蔚普新能源技术有限公司。据悉,新公司主营业务除了动力蓄电池回收及梯次利用之外,还包含电池销售、储能技术服务等。其中中国
北极星储能网获悉,4月22日,安徽省先进光伏和新型储能产业集群建设领导小组办公室发布《关于征集先进光伏和新型储能领域专家库的通知》。其中明确要求,应具有高级以上专业技术职称,或具有丰富的相关工作经历和管理经验,专业造诣较深,熟知其所在专业或者行业的国内外情况及相关法律、法规、政策和
2025年4月15日,工业和信息化部发布了堪称“史上最严电池安全令”的强制性国家标准《电动汽车用动力蓄电池安全要求》(GB38031-2025),该标准将于2026年7月1日起正式施行。新国标首次明确电池在因内短路引发热失控后不得起火爆炸,这一严苛要求不仅将成为电池行业发展的重要里程碑,更将对兼具动力电
芳源股份17日公告,决定终止投资不超过30亿元的“电池级碳酸锂生产及废旧磷酸铁锂电池综合利用项目”,并将在股东大会审议通过本次终止投资事项后办理后续芳源锂业注销等有关事项。公告称,该决定旨在优化资源配置、降低经营风险,提高公司运营效率,不会对公司业务发展产生不利影响。历时两年,战略性
4月10日,领航投资与德赛电池在长沙正式签署《2025年度200MWh储能系统合作采购协议》,领航投资董事长管华与德赛电池高级副总裁郭庆明代表双方公司郑重签约。此次签约标志着两家行业领军企业迈入深度协同的新阶段,这不仅是双方战略互信的里程碑,更是以技术创新与生态共建为核心,推动工商业储能行业
豪鹏科技发布的2025年第一季度业绩预告显示,公司预计2025年第一季度营收11.5亿元~12.5亿元,比上年同期增长15.74%~25.81%;归属于上市公司股东的净利润为3000万元~3500万元,比上年同期增长846.70%~1004.48%。资料显示,豪鹏科技创立于2002年,公司致力于锂离子电池、镍氢电池的研发、设计、制造和销
4月12日讯,北京证券交易所上市委员会2025年第3次审议会议于2025年4月11日上午召开。审议结果显示,岷山环能高科股份公司(简称“岷山环能”)符合发行条件、上市条件和信息披露要求。这是今年过会的第12家企业。岷山环能的保荐机构(主承销商)是德邦证券股份有限公司,保荐代表人是蔡畅、陈培生。岷
4月7日上午,辰致安奇(重庆)循环科技有限公司产能建设项目(一期)开工仪式在重庆潼南高新区举行。项目总规划建成7万吨电池破碎打粉,7万吨湿法再生,2.1GWH电池梯次利用年处理能力,计划于2025年底完成项目交付竣工验收,2026年3月投产。项目采用智能化、数字化工艺,发挥公司优势建设“绿色环保智
5月6日,中国电建中南院内蒙古能源集团达拉特旗防沙治沙50万千瓦光伏一体化一期项目光伏支架(Ⅰ、Ⅱ、Ⅲ标)采购项目成交结果公布,I标中标企业为江苏国强兴晟能源科技股份有限公司,II标中标企业为鄂尔多斯市中伏绿能科技发展有限公司,III标中标企业为江西省交工金属构件有限公司。本项目位于在内蒙古
5月6日,重庆市能源局关于市政协六届三次会议第1177号提案的复函中表示为促进农村户用光伏市场健康可持续发展,下一步我局将加快出台《重庆市分布式光伏发电开发建设管理实施细则》,督促指导各区县尽快制定并公开分布式光伏发电项目备案服务指南,优化项目审批流程,加强在建项目监管;持续优化农村地
4月30日,宁夏电投永利(中卫)新能源有限公司300万千瓦光伏基地项目300MW/600MWh储能电站EPC工程招标公告发布,项目位于宁夏回族自治区中卫市沙坡头区常乐镇,光伏基地储能工程拟建形式为电源侧储能,储能项目包含3座储能电站,分别设置于三座新建330kV升压站内。每座升压站的储能设施容量均为100MW/2
北极星储能网获悉,4月30日,星云股份发布投资者活动关系记录表。针对未来行业发展前景,公司表示,随着全球对减少温室气体排放和应对气候变化的共识加深,新能源的需求持续增长,电动化应用场景不断丰富,电动飞机、电动船舶、机器人等诸多新型应用场景层出不穷,固态及半固态电池技术也陆续取得突破
4月30日,《浙江省虚拟电厂运营管理细则(试行)》(以下简称《细则》)正式印发,首次系统明确虚拟电厂从“注册接入-能力认证-运行管理-交易管理-保供管理-退出管理”的全流程闭环管理要求,并依托新型电力负荷管理系统实现资源“可观、可测、可调、可控”,推动虚拟电厂健康运营,助力新型电力系统高
近日,西班牙部分地区出现大规模停电,引发国内媒体广泛关注。有不少报道将矛头指向可再生能源,认为西班牙“过度依赖”风电和太阳能,又“过快退出”煤电和核电,才导致电网不堪重负。这种观点听上去直观易懂,但实则是一种误解。(来源:能源新媒作者:秦旗柳力)系统稳定的关键打个比方:水管爆裂了
5月6日,中国电建水利水电第十二工程局有限公司发布中国电建水电十二局凉山盐源牦牛坪光伏发电项目升压站EPC工程项目68MW/136MWh构网型储能采购项目招标公告,项目位于四川凉山,本次采购的范围为额定容量68MW/136MWh储能系统所需设备的供货及指导安装,包括电池系统(集装箱形式)、储能变流、箱变、
5月6日,深圳市工业和信息化局发布《市工业和信息化局关于征集2025年度国家工业和信息化领域节能降碳技术装备的通知》,征集范围包括重点行业领域节能降碳技术、用能低碳转型技术、工业减碳技术、数字化绿色化协同转型技术、高效节能装备等。全文如下:市工业和信息化局关于征集2025年度国家工业和信息
4月30日,江苏分时电价新政颁布。靴子落地,一时让整个工商业储能圈躁动。最大争论在于,工商业用户分时电价计价基础从下游“到户电价”调整为上游“用户购电价”,尽管浮动比例提高,但峰谷/平谷价差缩小,进而削弱了工商业储能的套利空间。虽然有征求意见稿“打预防针”,但正式落地让“收回成命”的
北极星太阳能光伏网获悉,5月6日,国家电投旗下电投能源发布《关于筹划发行股份及支付现金购买资产并募集配套资金暨关联交易事项的停牌公告》,公告称,国家电投拟以国家电投集团内蒙古白音华煤电有限公司股权与电投能源进行资产重组。电投能源拟通过发行股份及支付现金方式购买国家电投集团内蒙古白音
随着光伏行业的发展,TOPCon技术凭借低成本、高效率、高产业链配合度等多种优势,已明确成为未来5年的主流技术。得益于其高达90%的双面率,TOPCon在沙戈荒大基地等典型双面场景下比BC提高单瓦发电能力1.5%以上,具备更高的综合发电效率。TOPCon高双面率和优异的低辐照性能使得其在全球所有双面场景中,
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!