登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:废旧锂离子电池有价金属高效回收技术已成为国内外的研究热点。本文针对废旧锂离子电池有价金属的回收技术现状,介绍了有价金属回收过程中预处理、正极材料处理等环节的研究方法,简要评价了各种方法的优缺点,最后,对有价金属回收处理过程中,分离与提纯工艺复杂、容易产生二次污染等技术难点进行了分析,指出了后续应深入开展回收工艺研究,探索高效回收处理工艺,将实验室研究成果工业化的发展趋势。
0 前言
在现代生活中,使用锂离子电池的照相机、摄像机、笔记本电脑、手机等电子通讯设备已为人们广泛使用。锂离子电池的主要组成部分为正极、负极、隔膜及电解液。其中电池正极是由正极活性材料、导电剂、粘结剂、集流体等组成。电池负极主要是由负极活性材料、集流体等组成。由聚合物构成的隔膜将正负极分离开。 电解液起着电池充放电的作用。但是,锂离子电池的使用寿命有限,通常不到3年。废弃电池中含有有毒物质,会对环境中土壤和水质造成损害。这些有毒物质扩散进入人和动物体内,会危害身体健康。对有价金属循环再利用,不仅能够改善环境,而且可提高企业的经济效益。因此,废旧锂离子电池中有价金属的绿色回收与再利用技术已成为近年来的研究热点[1-2]。 本文主要综述了国内外关于废旧锂离子电池中有价金属回收处理的工艺方法,展望了回收技术的发展趋势。
1 国内外研究的现状
在实际应用中,回收的核心技术主要分为火法和湿法两大类。火法是在高温条件下加热,根据不同金属的物理性质(熔点、蒸汽压)从电池材料中提取或分离有色金属的工艺过程。湿法是利用酸、碱或有机溶剂将电池中的有价值金属成分浸出的回收工艺过程。回收流程中大致可以分为三步:电池的前处理、活性物质和集流体的分离、有价金属的回收与再利用。
1.1 废旧锂离子电池前期预处理
1.1.1 放电
废旧锂离子电池里面有残余电量。为了防止拆卸电池中发生意外,须在拆卸前对电池放电。处理方法有物理放电法和化学放电法。物理放电法主要是利用低温强制放电,这种方法适用于小批量生产中,美国Umicore、Toxco公司利用液氮对电池进行低温预处理,在温度为-198℃下安全破碎电池,但是该种方法对设备要求较高。化学放电法,主要是利用电解方式来放电。电解液多为氯化钠溶液。将电池置于该溶液中,电池的正负极在导电液中发生短路,快速实现了电池的完全放电。此方法的弊端在于电解液浓度及温度会影响电池放电速度,电池内的有价金属会溶解至导电液中,降低金属回收率。同时,含有有价金属的溶液具有较强的污染性,造成回收困难,使回收成本增加[3-4]。
1.1.2 拆解、 破碎
在实验室中,因为电池体积小,多数采用手工方式拆解、分离电池。而在实际生产中,多采用机械破碎的方法拆解电池。机械破碎的一种方法是湿法。湿法是以各种酸碱性溶液为转移媒介,将金属离子从电极材料中转移到浸出液中,再通过离子交换、沉淀、吸附等手段,将金属离子以盐、氧化物等形式从溶液中提取出来。湿法回收技术工艺比较复杂,但对有价金属的回收率较高,是目前主要处理废旧镍氢电池和锂离子电池的技术。王元荪等[5-6]等尝试采用稀碱水浸泡电池,再进行粉碎处理。该法可以减少HF 的产生量,但是不能有效回收含氟电解液,从而易造成二次污染。另一种方法是干法。干法主要包括机械分选法和高温热解法(或称高温冶金法)。机械分选法回收工艺流程优点较短,回收的针对性强,是实现金属分离回收的初步阶段。He[7]等研究比较了湿法和机械分选法破碎对回收处理废旧锂离子电池的不同影响,结果表明,机械分选法破碎不会将电池组分破碎成易混合在一起的细小颗粒,回收率较高。但机械分选法回收并不能彻底分离废旧锂离子电池中的各元件,人们尝试采用了高温热解的方法,即把电池放在马弗炉中加热,除去电池中的有机溶剂。Joo[8]等采用机械分选法和高温热解法两种方法并用高效对废旧钴酸锂电池的钴和锂进行高效回收。但是高温热解法也会造成负面效应,如高温处理过程中产生有害气体, 易引起爆炸, 因此需要安装纯化装置。
1.2 活性物质、 集流体的分离
正极活性物质和铝箔集流体的分离主要采用的是包括有机溶剂溶解、高温分解法两种方法。有机溶剂放电主要利用有机溶剂溶解PVDF后,使得正极活性材料与集流体分离。 Zeng[9]使用NMP 浸泡电极片,对电池内的活性物质与集流体实现了有效分离。Yang[10]借助有机溶剂DMAC(N,N-二甲基乙酰胺)溶解,在100 ℃、60 min 的工艺条件下去除了集流体上的粘结剂。但是此回收方法得到的活性物质颗粒较小,固液分离困难,回收投资大。高温分解法是在高温下分离正极材料和活性体。Daniel[11]等采用了真空环境下高温处理的方法,使集流体中的有机物在高温下(600 ℃)分解,正极材料上有部分的正极材料从铝箔上分离,当温度大于650 ℃后,铝箔和正极材料都成颗粒状,混为一体。这种方法会产生有害气体,对空气造成污染。
1.3 有价金属分离回收与利用
废旧锂离子电池中有价金属回收利用主要是对正极活性物质的回收。正极回收处理方法主要包括生物法、高温燃烧法、酸溶解法和电化学溶解法等方法。
1.3.1 生物法
生物法是利用微生物的代谢功能将正极中金属元素转化成可溶化合物并选择性地溶解出来,得到金属溶液后,利用无机酸将正极材料各组分分离,最终实现有价金属的分离与回收。贾智慧[12]等采用了氧化亚铁杆菌和氧化硫杆菌处理废旧锂离子电池,该方法回收成本低,常温常压的工艺条件易于实现。但是该方法的不足是菌种不易培养,浸出液难分离。Zeng[13]等利用嗜酸菌以硫元素和亚铁离子为能量源,代谢产生硫酸和铁离子等产物,将废旧锂离子电池中的金属元素溶出。但是,较高含量的Fe(Ⅲ)与其他金属元素产生共沉淀作用,会降低金属的溶解性,影响生物细胞的生长速度,降低金属溶出率。生物法具有成本低、 污染小、可重复利用的特点,已成为废旧锂离子有价金属的回收技术重要发展方向。但是其也有需要解决的问题,比如微生物菌种的选择与培养,最佳浸出条件,金属的生物浸出机理等。
1.3.2 高温燃烧法
高温燃烧法指的是将拆除的正极材料在有机溶剂中浸泡后,再在高温下燃烧得到有价金属。日本的索尼和住友公司对废旧锂离子电池在草酸中浸泡后,于1 000 ℃进行火法焚烧,去除电解液及隔膜,并实现了电池的破解,焚烧后的残余物质通过筛分、磁选来分离Fe、Cu、Al等金属。结果表明:当草酸浓度为 1.00 mol·L-1,料液比为40~45 g·L-1,80℃下搅拌15~20 min溶解性最优。日本松田光明等将正极材料浸泡后利用机械破损法破碎,并在机械破碎后利用马弗炉高温热处理、浮选等手段分离金属。但是这种方法能耗大、温度高,会产生废气污染环境,得到的金属中杂质含量高,需要经过进一步提纯才能获得高纯度的金属材料。
1.3.3酸溶解法
这种方法指的是利用酸将正极材料溶解,再用有机萃取剂将溶液中金属萃取,实现金属离子的分离,经过处理后得到有价金属。贺理珀[14]等在80℃下,分别以1.5 mol/L和 0.9mol/L H2SO4和H2O2,溶解锂离子电池正极材料的钴酸锂。周涛[15]等人利用上述 得到的钴离子溶液,使用萃取剂 AcorgaM5640 萃取铜,使用Cyanex 272萃取钴,铜的回收率达到98%,钴的回收率为97%,而剩余的锂可用碳酸钠将其沉淀出来。Wang[16]等利用盐酸溶解正极材料,PC-88A 做萃取剂萃取钴离子,后续处理后得到了硫酸钴。该法的优点是得到的金属纯度高。缺点是萃取剂价格高,有毒性,对人身体有伤害,处理过程比较复杂。
1.3.4电化学溶解法
这种方法是将正极材料做阴极,铅做阳极,利用无机酸(硫酸或盐酸)与柠檬酸或双氧水的混合液做电解液,进行电解实验,析出钴等离子,再利用萃取剂萃取得到金属。常伟[17]等利用0.4mol/L硫酸与36g/L柠檬酸作为电解液,在 25 ℃下,电解 120 min,钴浸出率达到90.85%,铝溶解率为 5.8%。陆修远[18]等采取正交实验法,使用 3 mol/L硫酸与 2.4 mol/L 双氧水,反应时间为 20 min,钴的浸出率高达99.6%。电化学溶解法比较简单易行,有价金属的浸出率较高,但电解过程中耗能较大,因此仍需继续改进电化学方法,使其适合大规模生产。电解过程中,发生的电解反应方程式为:
阴极:
LiCoO2+4H++e-=Li++Co2++2H2O2H++2e=H2(g)
阳极:
2H2O-4e-=O2(g)+4H+
2 废旧锂离子电池回收利用问题
(1)废旧锂离子电池在拆解和破碎过程中,分离效果仍然不够理想。因此安全、有效地拆分和破碎废旧锂离子电池是废旧电池回收利用的前提条件。
(2)目前废旧锂离子电池有价金属研究过程中,有价金属回收工艺中主要以湿法为主。该法使用酸碱等化学物质,会产生有害的废气、废液,对人和环境造成一定的危害,因此工艺过程中二次污染也是需要解决的重要问题。
(3)在废旧锂离子电池有价金属回收过程中,多是以研究正极材料中有价金属回收为主。忽视了负极和电解液。尤其是电解液中多是由高浓度的有机溶剂、电解质锂盐、添加剂等原料组成的,这些物质有毒且污染环境,因此当前应当寻找这些材料的替代品,减少电解液对环境的危害。
(4)现在研究多是以废旧锂离子电池中磷酸铁锂电池为主,对镍钴锰酸锂和磷酸亚铁锂等类型电池研究较少。因此,应该扩大研究范围,开发不同类型锂离子电池的回收工艺,使各类废旧锂离子电池有价金属均能实现高效回收利用。
3 结语
综上所述,废旧锂离子电池的回收利用,仍处于实验室阶段,工业化的进程比较慢。废旧锂离子电池回收处理中仍存在着如何进行安全拆解、如何在避免二次污染情况下提高正极材料有价金属的回收率、如何绿色处理废旧电池中电解液、如何切实地提高回收过程的经济效益和改善环境效应等问题。因此,后续亟待加强锂离子电池回收处理和利用的研究,真正实现废旧电池的绿色回收和循环利用。
参考文献:
[1] 曹冬梅. 废旧手机电池的回收利用[J]. 北 方 环 境 ,2013 (2): 11-12.
[2] 李继睿, 禹练英, 赵敏. 微波辅助酸浸法回收废旧锂离子电池中的钴[J]. 化 工 设 计 通 讯 , 2016, 42(09): 69-71.
[3] 姚 路. 废旧锂离子电池正极材料回收再利用研究[D]. 河南师范大学, 2016.
[4] 齐婷, 陈家锋, 李佳,等. 废旧锂离子电池电极材料中钴的无氧焙烧回收[J]. 有色金属 (冶炼部分),2017 (5): 11-14.
[5] 王元荪. 将废旧锂离子电池中的磷酸铁锂回收再生的方法[J].再生资源与循环经济, 2017, 10 (9):45.
[6] 刘银玲, 王冰冰, 孙晶雨,等. 废旧锂离子电池正极材料磷酸钒锂的回收利用[J]. 南阳师范学院学报, 2016, 15 (12): 43-47.
[7] ZHANG T, HE Y, GE L, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium -ion batteries [J]. Journal of Power Sources, 2013, 240: 766-771.
[8] JOO S H, SAM S M, YUNG C H. Extractive separation studies of manganese from spent lithium battery leachate using mixture of PC88A and Versatic 10 acid in kerosene [J]. Hydrometallurgy. 2015 (6):3-10.
[9] ZENG X L, JIN H L, BING Y S. Novel approach to recover cobalt and lithium from spent lithium -ion battery using oxalic acid [J]. Journal of Hazardous Materials. 2015 (38): 23-28.
[10] YANG Y, HUANG G Y, XU S M. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries[J]. Hydrometallurgy. 2015 (30):80-83
[11] DANIEL A B, CAMILA T, BERNARDO M. Application of spouted bed elutriation in the recycling of lithium ion batteries [J]. Journal of Power Sources. 2015 ( 60) :388-401.
[12] 贾智慧. 废弃电池的生物质浸出及金属回收研究[D]. 西华师范大学, 2017.
[13] ZENG X L, LI J H, SHEN B Y. Novel approach to recover cobalt and lithium from spent lithium -ion battery using oxalic acid [J]. Journal of Hazardous Materials. 2015, 295: 112-118.
[14] 贺理珀, 孙淑英,于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化 工 学 报, 2018, 69 (1):327-340.
[15] 周涛, 徐莉萍, 范百林, 等. 从废旧钴镍锰酸锂电池中回收有价金属的新工艺[J]. 徐州工程学院学报(自然科学版), 2017, 32 (01): 6-12.
[16] WANG X, GAUSTAD G, BABBITT C W. Targeting high value metals in lithium -ion battery recycling via shredding and size -based separation [J]. Waste Management, 2016, 51: 204-213.
[17] 常 伟.电化学还原技术从废旧锂离子电池中浸出LiCoO2[J].中国有色金属学报, 2014 (3): 787-790.
[18] 陆修远, 张贵清, 曹佐英,等. 采用硫酸-还原剂浸出工艺从废旧锂离子电池中回收 LiNi0.6Mn0.2Co0.2O2[J].稀有金属与硬质合, 2017, 45 (06): 14-23.
《金属材料与冶金工程》2018年 第2期
尹文艳魏致慧 兰州资源环境职业技术学院冶金工程系甘肃兰州730020
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,11月17日,宁德时代首席科学家吴凯在世界青年科学家峰会上透露,宁德时代第二代钠离子电池已经研发完成,能够在零下40度的严寒环境中正常放电,这意味着电池可以大规模在极严寒地区应用,预计2025年上市。宁德时代第一代钠电池已于2021年发布,具有高能量密度和良好低温性能,宁德时
北极星储能网获悉,近日,经深圳市市场监督管理局批准的《生产经营单位锂离子电池存储使用安全规范》(DB4403/T508—2024)(以下简称《规范》)发布,将于2024年11月1日正式实施。该《规范》由深圳市应急管理局制定并归口,深圳市电池行业协会、欣旺达电子股份有限公司等单位参与编写,明确了锂离子电
11月15日,财政部税务总局调整出口退税政策,明确将光伏、电池、部分非金属矿物制品的出口退税率由13%下调至9%。其中附件显示,锂离子电池、锂电池组、全钒液流电池都在此范围。原文如下:关于调整出口退税政策的公告财政部税务总局公告2024年第15号现就调整铝材等产品出口退税政策有关事项公告如下:
北极星电池网获悉,10月30日,位于美国密苏里州弗雷德里克敦的一家大型电池回收厂发生爆炸。据悉,火灾是在CriticalMineralRecovery拥有的一家锂离子电池加工厂引发的,报道显示没有人员伤亡。该公司网站显示,这座工厂占地225000平方英尺,主要用于回收来自全球电池制造商、汽车OEM、电池经销商、回收
11月11日,工信部发布电子行业54项行业标准报批公示,其中包括《储能用钛酸锂锂离子电池电性能规范》、《锂离子电池管理系统技术规范》、《电力系统用压接式绝缘栅双极晶体管(IGBT)门类规范》、《便携式光伏组件》、《锂离子电池电解液中金属杂质含量测试方法》等标准。原文如下:电子行业54项行业标
虽然2024年以来钠离子电池热度相较前两年有所降温,但依然备受资本关注。据高工产业研究院(GGII)不完全统计,2024年前三季度国内共有23家钠离子电池领域企业进行26轮融资,同比减少近一半。但与同为新技术的固态电池相比,钠离子电池行业融资轮数约为同期固态电池领域融资轮数的两倍(2024年前三季度
2024年10月,国际航空运输协会(IATA)发布了第66版DGR(危险品规则),从2025年1月1日起,第66版IATA危险品条例(DGR)和第12版锂电池运输条例(LBSR)正式生效。2026年1月1日起,航空运输时,与由锂离子电池供电的设备和车辆包装在一起的锂离子电池将需要在电池处于较低的充电状态下进行航空运输。这些变
近期,澳大利亚新南威尔士州(NSW)公平交易部宣布,从2025年2月起,将对用于电动移动设备中的锂离子电池实施新的强制性安全标准。这些标准旨在通过降低这些产品相关的火灾风险来增强消费者安全。具体来说,以下电动移动设备及其使用的锂离子电池现在被视为2017年《燃气和电力(消费者安全)法》下的“
北极星储能网获悉,11月7日,浙江杭州市经信局(市数字经济局)发布关于市政协十二届三次会议第412号提案的答复。文件提到,当前杭州明确重点发展方向。其中绿色能源产业生态圈“建圈强链”的重点聚焦在储能、光伏、风电、节能环保4条产业链。2023年,全市储能规上企业40家,实现产值279.2亿元,同比增
10月31日,浙江丽水遂昌县发布《遂昌县关于培育发展未来产业的实施意见》(遂政办发〔2024〕11号),其中提到,重点发展五个具有基础优势的未来产业,分别是高端金属材料,精细化工,新型储能,先进装备及零部件,元宇宙。抢抓新型储能万亿级风口,以现有龙头企业为引领,加快提升电化学储能技术性能,
北极星储能网获悉,10月21日,北京市房山区人民政府发布北京卫蓝高性能固态锂离子电池量产建设项目于近日开工。消息显示,北京卫蓝高性能固态锂离子电池量产建设项目位于窦店镇新城组团FS00-0308街区0030地块,总建筑面积约为11.23万平方米,包含12栋建筑单体。一期项目总建筑面积约为4.2万平方米,重
日前,湖南裕能循环科技有限公司2万吨废旧锂离子电池拆解回收利用项目环境影响评价公众参与第二次公示。环评显示,项目位于湖南湘乡经济开发区,建设电池拆解回收仓库和电池拆解回收车间等,综合利用废旧电池、电池包和电池极片等,最终产出电池黑粉。此外,厂区已批复项目(一期)主要建设年产2万吨电
北极星电池网获悉,10月30日,位于美国密苏里州弗雷德里克敦的一家大型电池回收厂发生爆炸。据悉,火灾是在CriticalMineralRecovery拥有的一家锂离子电池加工厂引发的,报道显示没有人员伤亡。该公司网站显示,这座工厂占地225000平方英尺,主要用于回收来自全球电池制造商、汽车OEM、电池经销商、回收
11月1日下午,在上杭县首批揭榜招商项目集中签约仪式上,湖洋镇与福建芳达科技股份有限公司成功签约锂电新材料项目——退役动力锂电池回收再生利用项目。项目总投资2.5亿元,规划用地面积约50亩,总建筑面积约3万平方米,新建办公楼、生产厂房、道路、绿化等设施,择优选购引进国内领先水平的退役锂电
北极星电池网获悉,11月1日,云南昆明工信局印发《昆明市支持新能源汽车废旧动力蓄电池综合利用产业高质量发展若干政策措施(征求意见稿)》。文件提出:支持梯次利用、有价金属再生循环利用等关键环节制造项目落地。自2025年至2027年三年内,市级每年对全市动力电池综合利用产业发展情况实行动态绩效
10月18日,中国资源循环集团有限公司在天津正式挂牌成立。该公司注册资本达100亿元人民币,成为我国第98家中央企业,也是国内首家专注于资源循环利用的中央企业。股权结构看,国务院国资委、中国宝武钢铁集团有限公司、中国石油化工集团有限公司、华润(集团)有限公司各占20%,中国铝业集团有限公司、中
当地时间21日,梅赛德斯-奔驰在德国库彭海姆开设了欧洲首个集成机械-湿法冶金工艺的电池回收工厂,成为全球首家在自有工厂内实现电池回收闭环的汽车制造商。据介绍,该回收工厂在欧洲首次覆盖了从粉碎电池模块到干燥和处理电池活性材料的所有步骤,预期回收率超过96%。工厂回收材料每年可用于生产超过5
北极星电池网获悉,10月17日,九号公司和格林美股份有限公司(以下简称“格林美”)下属子公司——武汉动力电池再生技术有限公司在江苏无锡达成合作协议。双方将基于彼此优势和需求,以九号门店为触点,利用“格林回收”数字化平台和回收网络体系合作开展针对九号旗下的电动两轮车、电动滑板车、电动平
北极星储能网获悉,10月10日,江苏省科技厅公布了2024年度江苏省碳达峰碳中和科技创新专项资金拟立项目,共有14个项目列入,其中包括宿迁时代储能科技有限公司的百兆瓦时长时储能水系有机液流电池关键技术研究,江苏国信苏盐储能发电有限公司的300MW级高温绝热压缩空气储能集成系统与智能运行关键技术
北极星储能网获悉,10月8日,福建省发展和改革委员会等8单位关于加快构建废弃物循环利用体系有关工作的函,文件提出,推进废旧动力电池循环利用。鼓励动力电池企业积极开展产品碳足迹认证,引导龙头企业积极参与制定动力电池循环利用国际标准。完善新能源汽车动力电池回收利用溯源管理体系,引导新能源
北极星电池网获悉,近日,总投资3.5亿元的冰川锂电池全产业链绿色综合利用项目顺利投产,项目位于福建省龙岩市新罗区能源互联网产业园,新建锂电池梯次拆解回收、破碎分选回收生产线及相应的配套设施设备,实现年拆解回收、生产2万吨锂电池。
9月22日,北京祥龙资产经营有限责任公司(以下简称“祥龙公司”)与宁德时代在北京举行战略合作签约仪式。祥龙公司党委书记、董事长范宏利,祥龙博瑞集团党委书记、董事长刘万国,祥龙博瑞集团党委副书记、董事、总经理张雷,祥龙物流党委书记、董事长陈虹桥;宁德时代监事会主席、生态发展委员会主席
11月13日,浙江伟明环保股份有限公司和深圳盛屯集团有限公司就福建泉州年产6万吨碳酸锂项目达成战略合作协议。伟明环保拟参股该项目少数股权,并承担项目设备采购安装总承包工作。此前消息显示,盛屯集团年产6万吨锂盐材料加工项目于今年6月落地福建泉州泉港石化工业园区,计划一年左右初步投产,两年
11月6日晚间,深圳新星发布关于全资子公司资产转让签署《补充协议》的公告。根据公司战略发展需要,旨在优化产业结构并剥离不良资产,公司全资子公司松岩新能源材料将六氟磷酸锂项目的相关设备和劳动力转移至赣州市松岩新能源材料有限公司,转让价款为1.6亿元。截至公告披露日,松岩新能源已收到汇凯化
从2023年到2024年,锂电材料企业经历了近两年的周期性洗礼。过去两年,可以看到,产能退坡,上下游产业链重构带动利润重新分配成为行业的主要变化。在此期间,锂电材料企业利润大退坡。根据主要锂电材料上市公司财报数据,从2022年到2023年利润下降了60%,从2023年前三季度到2024年前三季度利润下降70%
杉杉股份11月5日公告,公司于近日收到控股股东杉杉集团有限公司的通知,其所持有的上市公司部分股份,发生被司法冻结、轮候冻结的情况。此次被冻结的股份共计4.3亿股,占上市公司总股本19.08%,占其所持上市股份54.97%,冻结申请人为四川省绵阳市中级人民法院。杉杉集团成立于上世纪90年代,仅仅三年做
相较于传统液态锂电池,固态电池有着优异的安全性和更高的能量密度,因此是被誉为新能源时代的“圣杯”。近期,国内外头部企业不断推进固态电池的研发与应用,行业有望再迎催化。受市场消息带动,11月6日,5家固态电池产业链企业涨停。重磅消息发布近段时间,固态电池产业利好消息不断。长安汽车:长安
近日,《东亚日报》报道了LG化学与中国新能源正极材料巨头容百科技之间的一场专利争议,这一事件迅速成为新能源行业的焦点。根据报道,LG化学向韩国首尔地方法院提起诉讼,指控容百科技的韩国子公司载世能源侵犯其五项韩国专利权。面对这一指控,容百科技通过韩国媒体进行了强有力的反驳。公司明确表示
北极星储能网获悉,近日,天齐锂业披露2024年三季报。报告显示今年前三季度营业收入为100.65亿元,和上年同期相比(同比)减少69.87%;归属于上市公司股东的净利润为-57.01亿元,同比减少170.40%。其中,2024年第三季度单季营收为36.46亿元,同比减少57.48%;归属于上市公司股东的净利润为-4.96亿元,
北极星储能网获悉,近日,贵州振华新材料股份有限公司2024年第三季度报告。公告显示,振华新材前三季度营业收入1,459,327,650.68元,同比减少72.37%,归属上市公司股东的净利润-331,261,643.80元,同比减少981.19%。对此振华新材表示,因受市场竞争加剧、原材料价格波动、开工率不足等因素影响,告期内
北极星储能网获悉,10月30日,宁波容百新能源科技股份有限公司发布2024年第三季度报告。报告显示,第三季度,容百科技主营业务产品总销量3.64万吨,其中三元材料销量超过3.5万吨,同比增长27%,环比增长33%,自2022年以来,市占率持续保持全球第一。同期,容百科技全球三元市占率达到14.4%,相较于第二
9月8日,盐湖锂资源第一股—青海盐湖工业股份有限公司(以下简称“盐湖股份”)发布了一份公告,拉开了国内盐湖资源整合的大幕。该公告称,公司实际控制人青海省政府国有资产监督管理委员会(以下简称“青海省政府国资委”)、控股股东青海省国有资产投资管理有限公司(以下简称“青海国投”)将与中国
10月24日,中国有色金属工业协会锂业分会公布2024年9月锂行业运行情况。锂价跌势不改数据显示,2024年9月,锂行业受价格影响,企业延续减产趋势,江西地区部分产线关停。锂价低位运行,仍在8万元/吨以下,企业产量多数下调。需求端,电池与新能源车产量保持增长态势,新能源车销量小幅增加。其中,2024
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!