登录注册
请使用微信扫一扫
关注公众号完成登录
直流场下绝缘材料容易注入和积聚空间电荷,畸变电场并影响老化、局部放电、击穿等绝缘特性。根据电磁场理论,平板试样内1 μC/cm3的空间电荷在1 mm处产生50 kV/mm 的电场[20]。空间电荷积聚会影响电场分布,并导致局部电场畸变。如果空间电荷密度很高,局部电场强度将超过绝缘击穿强度并引起初始电击穿。即使局部电场强度不太高,空间电荷积累也会逐渐使电介质发生老化,导致绝缘缺陷的形成,从而降低高压直流电缆长期运行的可靠性和使用寿命。
聚合物绝缘材料空间电荷的积累是一个复杂过程,取决于电荷注入、输运、入陷和脱陷等过程,同时受温度、电场等因素的影响[21]。绝缘材料中的空间电荷限制聚合物高压直流电缆的安全运行。所以,多场耦合条件下空间电荷的产生、输运、积累和消散是一个亟待解决的问题。
高压直流电缆绝缘用绝缘材料应满足电阻率受温度影响小、空间电荷注入和积聚量少、介电强度高、热导性好等特点。随着输送容量的进一步提高,高压直流电缆运行工况将更加严酷,如何改善直流场下绝缘材料的电导率温度特性和空间电荷特性,已成为影响我国电缆工业发展的重要研究课题。
2 高压直流电缆聚乙烯绝缘材料研究现状
2.1 纳米掺杂改性聚乙烯绝缘材料
2.1.1 纳米复合电介质改性
纳米复合电介质材料是指将一定量的尺度在1~100 nm的无机颗粒均匀分散到聚合物基体中形成的复合材料。在电介质与电气绝缘领域,“纳米电介质”的概念是由T. J. Lewis[22]于1994年率先提出的,其阐述了纳米材料在工程电介质绝缘领域中的应用前景,并阐述了“纳米尺度电介质”的理论基础和发展前景,为纳米电介质的后续研究提供了重要的理论支持。
2002年,J. K. Nelson等[23]报道了纳米电介质在介电性能和空间电荷抑制作用等方面表现出异于传统微米复合电介质的优势,纳米电介质逐渐成为国内外电气绝缘领域的研究热点之一。
目前的研究表明,纳米复合电介质在电树枝老化、空间电荷、局部放电、击穿强度、介质损耗、直流电导等诸多方面都具有优异的性质[24-26]。表1显示了纳米电介质绝缘性能方面的改善情况[27]。与未掺杂纳米颗粒或掺杂了微米颗粒的电介质相比,纳米电介质的击穿强度、耐局部放电、耐电晕、耐电树枝老化、沿面闪络、空间电荷等介电性能得到了不同程度的改善。
纳米聚合物的形态结构相对复杂,会在能带中形成很多局域态。这些局域态也被称为陷阱中心,可捕获电荷,影响电荷的输运。一方面,纳米颗粒的添加会增大体系陷阱深度或引入深陷阱,导致电荷载流子的密度减小,载流子有效迁移率降低,绝缘材料的电导率和电流密度减小。J. K. Nelson等[28]对XLPE/SiO2纳米电介质的研究表明,不同表面处理的纳米粒子添加后引入了新的陷阱。根据吸收电流结果计算出的载流子迁移率表明,纳米电介质的迁移率低于纯XLPE和微米复合电介质。
此外,在低密度聚乙烯(LDPE)/MgO[29,30]、LDPE/蒙脱土(MMT)[31]纳米复合材料中也发现了电导率降低、电导电流减小的现象。日本学者[32,33]对高温条件(90℃)下纳米掺杂聚乙烯聚合物进行了比较系统的研究,结果显示合适的纳米掺杂能够明显降低聚乙烯材料电导率的温度系数,一定程度上解决了高压直流电缆运行过程中由于温度梯度造成的“电场反转”问题。
图2是掺杂纳米颗粒的XLPE(S-XLPE和N-XLPE)电缆绝缘材料的体积电阻率ρ[33]。与非填充XLPE材料相比,掺杂某种S型纳米颗粒绝缘材料的体积电阻率的温度系数得到显著改善。
另一方面,纳米颗粒的添加能抑制空间电荷积聚,改善电场畸变情况。已有研究表明,包括纳米颗粒种类、配比、粒径等在内的纳米颗粒参数对纳米电介质的空间电荷特性均具有重要影响。R. Fleming等[34]研究了质量分数为10%纳米和微米LDPE/ZnO复合电介质的空间电荷特性,结果表明,纳米掺杂降低了电极处的同极性空间电荷积聚。
使用钛酸酯偶联剂处理ZnO纳米颗粒,并对处理后的ZnO 掺杂聚乙烯绝缘材料的电性能进行测试,结果表明,ZnO掺杂在一定程度上抑制了电极的同极性电荷注入,但同时却由于偶联剂及纳米颗粒本身电离而引入了明显的异极性空间电荷[34,35]。
对XLPE/SiO2复合材料空间电荷的研究结果表明,纳米颗粒的掺杂减少了试样内部的空间电荷积聚,其电场分布更均匀[28]。对温度梯度下单层、双层及多层纳米SiO2/LDPE空间电荷分布进行测量,发现电极-试样界面附近经纳米掺杂可较好抑制界面电荷的注入,同时有效抑制了试样内部的空间电荷[36]。
另外,LDPE/TiO2纳米复合电介质空间电荷试验表明,纳米掺杂抑制了陷阱捕获载流子,试样内部空间电荷积聚减少[37]。图3给出了50 kV/mm电场下不同TiO2含量的单层LDPE纳米聚合物空间电荷特性[38],添加质量分数为5%的纳米TiO2颗粒对空间电荷的抑制作用十分明显。
此外,尹毅等[39]研究了XLPE/MgO纳米复合电介质中的空间电荷,试验发现当MgO纳米颗粒含量小于2%时,复合物中注入的电荷量小于XLPE,MgO纳米掺杂提高了XLPE中空间电荷积累的阈值电场。根据纳米颗粒掺杂改性的原理,日本电缆公司已经成功研制出XLPE/MgO纳米复合电缆材料[40]。
聚合物材料中纳米颗粒的添加对电导率和空间电荷的改善会进一步影响材料的击穿特性,提高绝缘材料的击穿强度。Y. Murakami等[41]对LDPE/MgO 纳米复合电介质的电性能进行了研究,与LDPE 相比,LDPE/MgO 聚合物体积电阻率提高,电导电流降低,能够较好地抑制高电场强度下的空间电荷积累,纳米聚合物的直流击穿电场强度显著提高。
对XLPE/SiO2 纳米复合物的研究表明,纳米复合物在不同温度下的直流击穿电场强度均明显高于XLPE 及其微米复合物[34,42]。对LDPE/Al2O3纳米复合电介质的击穿研究表明,击穿电场强度随纳米Al2O3含量的增加先增大后减小[43]。类似的结果也出现在LDPE/TiO2等纳米电介质中[44]。张晓虹等[45]对MMT掺杂聚乙烯的研究表明,MMT与LDPE间存在较强的相互作用,形成的交联点能减少复合材料的电场破坏,从而提高聚乙烯的击穿性能。
采用无机纳米颗粒对聚乙烯聚合物进行改性是提高聚乙烯绝缘材料性能的重要手段。虽然已有各研究的试验条件不尽相同,导致不同学者的试验结果存在一定差异;但不同的试验结果均指出,合适的无机纳米颗粒添加对纳米电介质材料的电性能具有明显的提升作用。在定性表征无机纳米填充材料性能变化的基础上,定量探究不同无机纳米颗粒的最佳配比,对于无机纳米绝缘材料的实际工程应用具有重要意义。
2.1.2 界面区理论
由于纳米颗粒具有较大的比表面积,其对聚合物基体电介质材料电、热、力学性能改进的实质在于纳米颗粒-聚合物的界面,这是目前国内外学者较一致的观点。界面区特性受控于多种因素,如纳米粒子的选型、粒径、配比及聚合物基体等。这些因素造成界面区的复杂结构,对其认识和研究变得困难。自纳米电介质的概念提出以来,很多学者对界面区进行了研究,并取得了一些重要成果[46-50]。
T. J. Lewis[46]指出界面区是一个过渡区,包括一个双电层结构,并基于胶体化学的双电层理论提出了界面区的结构模型。该模型认为界面区为单层结构,是一个相态和特性分布态。在相态层次,界面区可视为不同于纳米粒子和基体,具有一定体积和介电常数的一个相态存在,纳米复合电介质可视为三相复合,从而改变纳米复合电介质的介电性能;由于纳米粒子表面存在电荷,可移动电荷会在纳米粒子周围的界面区形成双电层。这种双电层的分布会在界面区引入新的势垒或陷阱,从而改变纳米复合电介质的宏观电性能。
T. Tanaka[47]提出了如图4所示的界面区的多核结构模型。该模型认为界面区由三层组成,分别是第一层键合层(bonded layer)、第二层束缚层(bound layer)和第三层松散层(loose layer)及与以上三层叠加的一个双电层。
键合层中纳米粒子表面和聚合物分子链段存在较强的化学键合作用,将无机纳米颗粒与聚合物基体连接起来。键合层很薄,约为1 nm。束缚层是键合层外聚合物分子链段被紧紧束缚在粒子表面的区域,其厚度一般为2~10 nm,与聚合物基体与纳米粒子的相互作用强度有关。
束缚层是符合化学计量比的结构层,存在深陷阱。松散层是非化学计量比的交联层,存在离子陷阱或浅陷阱,其厚度为几十纳米。松散层与第二层存在耦合和相互作用,一般松散层的分子链构象、移动性、自由体积、结晶度等不同于聚合物基体。
此外,界面区还存在库仑相互作用的叠加,当聚合物基体中有可移动电荷载流子时,它们在界面区结构上建立起一个扩散层,对纳米复合电介质的介电、电导和击穿性能起重要作用。在此基础上,T. Tanaka[51,52]又提出了纳米颗粒的量子点模型,认为纳米颗粒可等效为具有极低介电常数甚至是负介电常数的量子点。受量子效应影响,纳米粒子在低电场条件下具有库仑阻塞作用,高电场下又表现出电荷束缚效应,该模型的提出进一步发展了多核结构模型。
界面区模型的提出可定性地解释很多试验结果,例如介电常数的下降、空间电荷的积聚减小、高击穿电场强度、高场电导的变化等。尽管如此,目前在纳米电介质界面区的理论研究依然不够完善,彻底理清纳米电介质微观电荷输运过程与宏观电性能变化之间的联系仍是未来的研究重点。
2.1.3 新型纳米聚乙烯绝缘材料
无机纳米颗粒表面能很高,纳米颗粒间存在较强的相互作用力;同时无机纳米颗粒的极性较强,与非极性有机物相容性差,纳米颗粒之间很容易产生团聚。现有研究表明,提高纳米颗粒的分散性是充分发挥纳米电介质优异性能的前提。纳米颗粒的团聚会使其失去原有特性,降低纳米复合材料的性能。纳米颗粒分散性差异直接导致现有的许多试验研究结果往往难以在其他实验室环境下重复。因此,改善纳米粒子在基体材料中的分散性是制备纳米复合材料的关键[53]。
对无机纳米颗粒进行适当的表面处理,能够大幅度改善纳米颗粒在基体材料中的分散性,进而提高材料的电学性能。在聚乙烯基纳米复合材料的制备中,采用偶联剂等表面活性剂对纳米颗粒进行表面处理可使纳米颗粒达到很好的分散效果。
目前常用的偶联剂主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂等,具有两亲的化学基团,可与无机纳米颗粒表面的羟基发生缩合反应,同时又能与有机物反应或形成氢键而相容。通过对纳米颗粒表面进行化学处理,一定程度改善了纳米颗粒的分散性。
试验结果表明,纳米颗粒表面处理后,导致纳米聚合物陷阱密度及深陷阱的比例提高,空间电荷的注入和积聚受到抑制,交流击穿强度有不同程度的提高[54-57]。钟琼霞等[58]发现利用铝酸酯偶联剂表面修饰的纳米MgO颗粒能够更有效地抑制空间电荷。
田付强[59]研究了经硅烷偶联剂KH550处理的ZnO纳米颗粒对LDPE材料的改性效果,经过表面处理的纳米聚合物陷阱能级密度明显增加,较未处理的纳米聚合物表现出更优异的电学性能和空间电荷抑制作用。
纳米颗粒比表面积很大,形成的纳米颗粒-聚合物界面是提高纳米聚合物材料性能的关键。在保证纳米颗粒对聚乙烯绝缘材料改性效果的前提下,尽可能地减少纳米颗粒的添加量,从而最大程度保证纳米颗粒的分散性,提高聚乙烯材料性能。石墨烯具有单原子层结构,其理论比表面积可达2 630 m2/g,较传统无机纳米颗粒能够提供更多的纳米颗粒-聚合物界面,这使极低填充量的石墨烯及其氧化物能够极大程度地改善聚乙烯绝缘材料的性能。
杜伯学[60]等研究了纳米石墨烯(Graphene)填充对低密度聚乙烯电学性能和空间电荷的影响,试验结果表明,仅添加0.05%质量分数的石墨烯纳米颗粒,LDPE/Graphene材料的电阻率、介电常数、直流击穿强度和抑制空间电荷效果均得到明显改善,低填量的石墨烯纳米颗粒保证了其在LDPE基体中的分散性。
对氧化石墨烯改性LDPE的研究表明,低填量的氧化石墨烯颗粒对材料的电学性能提高明显,同时材料的陷阱能级密度增加,空间电荷注入和积聚量减少[61,62]。对以石墨烯为代表的新型无机纳米颗粒进行的相关尝试,为高压直流电缆用纳米复合绝缘材料的开发提供了新的思路和可能,其对XLPE绝缘材料性能的影响还有待进一步的研究和评估。
对于无机纳米颗粒掺杂改性的聚乙烯绝缘材料,其与聚乙烯本体的不同之处受到诸多因素的影响,如纳米复合工艺、纳米分散性、纳米颗粒表面修饰等。特别是纳米颗粒的分散性,直接关系许多研究结果能否真正应用到实际工程中。因此,制备分散性良好的纳米聚乙烯绝缘材料是后续实验室研究和分析的基础,也是未来工程应用的最基本要求。
2.2 共混改性聚乙烯绝缘材料
近年来,环保型电缆绝缘材料的开发研究逐渐得到重视。环保型电缆采用热塑性电缆绝缘材料,不仅满足环保可回收的要求,而且生产过程不需要交联处理,可降低生产过程中的污染和能耗,避免交联、脱气等复杂的生产步骤及交联过程带来的杂质[63],展现出了很好的发展前景。
聚乙烯作为一种常用的热塑性材料,由于工作温度低,抗热变形能力弱,限制了其广泛应用。目前的研究表明,采用共混的方法对聚乙烯绝缘材料进行改性,不仅能使聚乙烯材料的机械性能和热性能得到提高,同时也在一定程度上提高了其抑制空间电荷的能力,并且兼具操作工艺简单、成本较低廉等优点。
国外研究人员采用物理方法将聚乙烯体内的分子链交联起来,使得这种新型材料具备了优异的机械和电气性能。除此之外,该材料可回收利用,生产较简单,具有良好的经济性[64]。目前对于线性低密度聚乙烯(LLDPE)/高密度聚乙烯(HDPE)共混材料的机械性能和不同温度下的电气性能的研究表明,与XLPE的各项参数对比,LLDPE/HDPE共混材料在室温和高温条件下均表现出比XLPE优异的性质,其在可回收电缆领域有很大的发展前景[65,66]。
针对LLDPE/LDPE 共混材料的研究表明,共混物结晶度远高于LDPE,部分结晶形成的浅陷阱能够改善空间电荷的分布[67]。在此基础上,对 LDPE和HDPE的共混物及线性聚乙烯和支化聚乙烯的共混物进行了进一步研究,通过调节材料制备工艺(主要是冷却条件),获得了性能优异的聚乙烯共混物材料[68,69]。也有学者将HDPE和不同质量分数的乙烯-乙酸乙烯酯共聚物(EVA)共混,研究发现,EVA可改善HDPE的脆性,与XLPE相比,HDPE/EVA共混物具有较高的熔点、优异的耐热性和较高的击穿强度,作为环保型高压直流电缆绝缘材料具有一定的可行性[70]。
目前,针对共混改性可回收聚乙烯绝缘材料的研发仍处在探索阶段,共混聚乙烯绝缘材料在长期运行和高温条件下的老化、高温短路后绝缘材料再结晶对机械和电学性能的影响等方面还需要更多的研究。
2.3 化学改性(电压稳定剂)聚乙烯绝缘材料
关于电压稳定剂的研究工作最早开始于20世纪60年代,此后A. C. Ashcraft等[71]研究并报道了电压稳定剂在固体绝缘材料中的作用机理,其作为一种改善绝缘材料电气性能的化学改性方法得到了广泛关注。针对电压稳定剂改性聚乙烯绝缘材料的研究已持续了多年,到目前为止,在绝缘材料击穿和电树枝引发的相关研究已取得了较多的进展。同时,随着量子化学计算方法的兴起,通过量子化学计算实现理论评估和设计合成更高效的新型电压稳定剂的研究工作也得到越来越多的报道。
目前已有文献报道的电压稳定剂的种类有很多,如二茂铁[72,73]、多环化合物(萘、蒽及其衍生物)[74-76]、二苯甲酮衍生物[77,78]、 酚类和硫类抗氧剂[79,80]等。在最早关于电压稳定剂的报道中,将一系列基于苯环结构的衍生物加入到聚乙烯材料中,明显提高了聚乙烯绝缘材料的耐电树枝能力和极不均匀电场下的耐电强度,但此类电压稳定剂在电缆挤出和交联的过程中易降解且挥发严重[74]。
对萘、蒽及其衍生物等多环化合物的研究表明,LDPE绝缘材料的直流击穿强度和耐电树枝能力得到明显提高,其中蒽的添加对材料耐电性能的改善效果最优;同时发现分子基团的引入对电压稳定剂的效应具有明显的影响,合适的分子基团能进一步提高材料的击穿强度[75,76]。
日本学者研究了酚类、硫类抗氧剂对XLPE绝缘材料直流接地电树枝引发的影响,研究结果表明硫类抗氧剂能降低绝缘材料的电导率从而提高材料在不同极性下的直流接地电树枝起始电压[81]。此外,对交流条件下两类抗氧剂的研究表明,两类抗氧剂均能提高材料的耐电树枝能力,并且在同时添加时能够产生协同作用,进一步提高材料耐电能力[79,80]。
国内很多学者也开展了电压稳定剂相关的研究工作,提出将一种位阻哌啶类自由基清除剂作为电压稳定剂并进行了不同温度下绝缘材料电树枝引发试验,结果表明该种电压稳定剂能够明显提高聚乙烯材料的电树枝起始电压,并且这种对电树枝的抑制作用随着温度提高得到加强[82],但这种电压稳定剂在聚乙烯交联的过程中会和交联剂发生反应,导致聚乙烯材料交联度降低。
目前的研究表明,电压稳定剂的主要作用是能够俘获强电场下材料中的高能电子,降低电子能量,削弱高能电子对聚乙烯绝缘材料分子链的冲击,从而提高材料耐局部放电和电树枝能力,提高材料直流击穿强度。
图5是以芳香族化合物为代表的电压稳定剂的作用机理[71]。由于大多数芳香族类化合物的电离能都低于聚乙烯基聚合物分子链的键能,在高电场作用下,芳香族化合物能与高能电子结合发生电离,从而大幅削弱聚合物中注入的电子能量,提高了聚乙烯绝缘材料的耐电性能;同时,芳香族化合物还能与已发生电离的聚乙烯大分子链反应,“修复”已电离的分子链,防止进一步破坏分子链。
已发生电离的芳香族化合物与电子发生作用,通过相对无害的方式将能量释放出来并被还原成初始状态。从作用机理看,该类电压稳定剂不具有消耗性,具有极高的研究和应用价值。
近年来,随着量子化学计算方法的应用,基于理论化学计算结果,国内外学者在新型电压稳定剂的设计评估方面做了大量的尝试和报道[83-85]。关于苯乙酮、苯偶酰等电压稳定剂及其合成衍生物的量子计算和试验结果对比表明,具有较高的电子亲和能和较低的电离能的电压稳定剂对聚乙烯电性能提升效果更明显[86,87]。同时,分子侧链性质对电压稳定剂的效果也有影响,相关研究提出具有较短分子侧链的电压稳定剂对聚乙烯绝缘材料耐电树枝能力提升效果更好[88]。
电压稳定剂作为一种提高高压直流电缆用聚乙烯绝缘材料性能的方法,近年来得到了原来越多的关注。从目前的发展趋势来看,通过理论化学计算与具体试验结合的方法设计合成电压稳定剂具有较好的研究前景和可行性。同时,综合考虑设计电压稳定剂的分解性、挥发性及聚乙烯交联过程中与各种助剂的反应,这也是目前很多电压稳定剂不能应用到实际电缆绝缘材料生产中的主要限制因素。
此外,电压稳定剂在加工和处理等方面仍面临着很多问题,电压稳定剂对绝缘材料中电子传输机制的影响仍不明确,电压稳定剂在聚乙烯基高压直流电缆绝缘材料中的实际应用仍需要大规模的试验验证。
2.4 超纯净聚乙烯绝缘材料
基于纳米掺杂、绝缘材料共混和添加电压稳定剂抑制空间电荷、提高聚乙烯绝缘材料性能,都是在超净聚乙烯基料的基础上进行的。研发符合高压直流电缆絶縁材料技术标准的超纯净聚乙烯基料是高压直流电缆绝缘材料研究的首要问题。
绝缘材料中的杂质能引起电缆绝缘中局部电场畸变倍增,是导致高压直流电缆绝缘电气性能降低的主要因素之一,也是绝缘材料质量的重要指标。聚乙烯树脂原料和各类助剂材料添加过程中混入的杂质是超纯净聚乙烯绝缘材料中杂质的主要来源。目前国产的聚乙烯材料的洁净度很难达到高压直流电缆绝缘材料的使用标准,这也成为了限制我国高压超高压直流电缆绝缘材料开发的主要原因。
高压直流电缆超净聚乙烯料研发的关键问题是如何提高聚乙烯树脂洁净度,控制绝缘材料中杂质的数量[89,90]。目前国内外对聚乙烯树脂的净化方法主要有两种:
①从石油裂解乙烯树脂生产开始,使用专用的合成装置生产超净料,生产是密闭连续的,树脂的合成、造粒、储存、运输都保持在洁净状态,该类产品具有耐用性能优异、抗击穿强度高、抗老化稳定性高和加工性优良等特点,BOREALIS、DOW等化学公司多采用此种方法;
②直接采购已生成的树脂产品,通过熔体过滤的方式,把树脂中存在的杂质去除,达到要求的洁净指标,该方法生产的超净料兼具更洁净、低成本、易操控、流程短等特点。
目前,国内生产超纯净聚乙烯绝缘材料的技术尚不成熟。一方面,关于高压聚乙烯电缆绝缘材料基础树脂的研究很少,超净聚乙烯基础树脂供应缺乏[91];另一方面,尚未完全掌握制备和保存超净电缆绝缘材料的技术,无法保障超净电缆绝缘材料生产的稳定性和连续性。
由于长期无法实现自主生产高压直流电缆所需超净聚乙烯基料,造成现阶段我国高端直流电缆产品技术含量低、生产成本高、竞争力弱,极大限制了我国直流电缆行业的发展。因此,实现超纯净聚乙烯绝缘材料的自主生产对我国高压超高压直流电缆的研发和生产具有重要意义。
结论
交联聚乙烯由于具有优异的机械性能、耐热性能和介电性能,目前被广泛应用于高压直流电缆绝缘材料。但交联聚乙烯直流电缆在运行过程中由于电导率温度特性和空间电荷积聚引起电场畸变和绝缘老化,严重时造成局部放电和绝缘击穿。因此,高压直流电缆聚乙烯绝缘材料面临的最严峻问题是温度梯度下直流电导率和空间电荷的调控。
1)无机纳米颗粒掺杂能够有效抑制聚乙烯绝缘材料中空间电荷的积聚,并在一定程度上提高聚乙烯绝缘材料的直流电导率温度特性、直流击穿强度等介电性能。保证无机纳米颗粒在聚乙烯绝缘材料中均匀分散是实现纳米改性绝缘材料优异性能的前提,也是目前制约纳米改性聚乙烯绝缘材料研发和生产的关键问题。寻找新型无机纳米颗粒或在现有基础上对纳米颗粒进行接枝设计,以提高纳米颗粒与聚乙烯绝缘材料的相容性,是未来纳米改性聚乙烯绝缘材料的研究重点。
2)环保型绝缘材料可实现绝缘材料的回收再利用,采用共混改性的方法生产免交联聚乙烯绝缘材料,能够改善因交联过程中引入杂质而带来的空间电荷问题,同时在一定程度上提高绝缘材料的介电性能和机械性能,具有很好的发展前景。
3)使用电压稳定剂对聚乙烯绝缘材料进行化学改性能够显著改善聚乙烯绝缘材料的耐电性能,随着量子化学计算的兴起,利用理论计算结合具体试验设计合成性能优异的电压稳定剂具有极高的可行性。目前关于电压稳定剂的研究主要局限于抑制聚乙烯绝缘材料的电树枝生长,对电压稳定剂改性聚乙烯绝缘材料空间电荷特性研究还需要大量的工作。此外,将电压稳定剂与无机纳米颗粒共混或直接将电压稳定剂接枝到纳米颗粒上对聚乙烯绝缘材料进行改性,还有待进一步试验研究。
4)超纯净聚乙烯基料是高压直流电缆用聚乙烯绝缘材料研发的基础,目前国内关于此方面的研究相对较少,超纯净聚乙烯绝缘基料国产化存在较大瓶颈。超纯净聚乙烯基料的研究急需高校、科研院所和生产企业有机结合,以提升国产材料的竞争力。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
“130开关合上,成功送电!”8月28日,随着南方电网广东佛山供电局操作人员完成操作,110千伏接枝聚丙烯绝缘环保电缆线路示范工程在广东佛山顺利投运。据介绍,该新型电缆应用于佛山供电局大良电缆隧道110千伏凤霞线,投运的接枝聚丙烯绝缘环保电缆总长度达到了1千米。该工程的投运标志着新型环保电缆
根据实际工作需要,现组织开展深圳供电局有限公司2024年主网一次材料、仪器仪表、主网一次设备类(电力电缆、导线、电缆附件、线路精确故障定位监测装置、变压器电容隔直装置)第一批次物资专项公开竞争性谈判竞争性谈判采购工作,公告符合条件的潜在谈判对象就此项目进行谈判响应。对此项目有意向的潜
5月11日,国内首条110千伏聚丙烯绝缘电缆在广州成功挂网并安全运行超过168小时,这标志着我国绿色电缆正式进入工业化应用阶段,为未来进一步推广应用到大型城市群建设、海上风电并网接入等领域打下坚实基础。新型绝缘电缆生产能耗降低超过40%此次投运的110千伏泮南源乙线输电线路采用非交联型绿色聚丙
1月14日获悉,山东首条35千伏光纤复合聚丙烯绝缘电缆在青岛挂网运行,标志着青岛供电公司在35千伏环保电缆领域迈出重要一步。青岛供电公司在株洲路迁改工程的重要组成部分——35千伏李韩甲线支线应用聚丙烯绝缘电缆650米。该公司创新将光纤复合技术应用到电缆生产中,能够更有效地监测电缆运行状态,为
中电联近日公布了《配电网电线电缆节能评价技术规范(征求意见稿)》对额定电压35kV及以下架空绝缘电缆的电缆结构能效评价方法做了相关规定。[$NewPage$][$NewPage$]
7月31日晚,通达股份对外披露2019年半年报,据公告显示,2019年上半年公司实现营业收入9.35亿元,比上年同期增长4.56%;归属于上市公司股东的净利润5583.99万元,比上年同期增长321.97%;扣非后净利润5181.73万元,同比增长322.57%。实现基本每股收益0.13元,同比增长333.33%。截止2019年6月30日,通达
今天,由河北省产品质量监督检验研究院主持起草的河北省地方标准《额定电压1kV及以下钢芯铝绞线导体架空绝缘电缆通用技术要求》通过了专家组审定,该标准填补了国家标准《额定电压1kV及以下架空绝缘电缆》的技术空白。钢芯铝绞线导体架空绝缘电缆作为特种电缆的一种,具有结构简单、架设与维护方便、线
北极星输配电网获悉,近日,市场监管总局通报2018年非阻燃(耐火)电线电缆产品质量国家监督专项抽查情况,本次专项抽查共抽查13个省(自治区、直辖市)349家企业生产的349批次产品。经检验,18家企业生产的18批次产品不合格,不合格发现率为5.2%。按抽查产品类型划分,抽查交联聚乙烯绝缘电缆125批次、聚
2017年6月,按照《质检总局办公厅关于印发〈电线电缆生产企业专项监督检查工作实施方案〉的通知》(质检办监[2017]400号)和《孝感市质监局关于开展电线电缆生产企业专项监督检查工作的紧急通知》要求,汉川市质监局迅速对此进行安排部署,成立了工作专班,对全市电线电缆生产企业开展专项监督检查,具体
6月28日,远东智慧能源股份有限公司(简称:智慧能源)旗下全资子公司远东电缆有限公司研制开发的十项新产品,由江苏省经济和信息化委员会组织专家在宜兴召开了新产品新技术鉴定会。来自国际大电网绝缘电缆中国研究委员会、西安交通大学、上海交通大学、江苏省电力公司、国家电线电缆质量监督检验中心
据悉,山西代表团向大会提交全团建议,支持山西进一步巩固和扩大电力外送基地建设。山西是国家重要的能源基地,同时也是全国西电东送、北电南送的枢纽,最大外送能力3162万千瓦,2025年开工大同—天津南交流特高压工程,建成后外送能力将达到3600万千瓦左右。2024年6月,“西电东送”通道调整完成,山
3月6日,国家“十四五”电力发展规划的重点工程——甘肃—浙江±800千伏特高压直流输电工程(下称“甘肃—浙江特高压工程”)首个线路标段在杭州市富阳区正式动工建设。据国网浙江电力消息,甘肃—浙江特高压工程是世界首条柔性直流特高压输电工程,作为第四条落地浙江的“西电东送”工程,其也是中国能
北极星输配电网获悉,河南开封市政府工作报告中指出,2025年开工建设投资75亿元的陕豫±800千伏特高压直流输电工程(开封境)等项目,建成投资100亿元的兰考国电投绿色能源项目。同时,持续完善农村基础设施,完成10千伏配电网项目700个以上,新建、改建农村公路150公里。2025年,还将支持开封时代建设
近年来,新能源经柔性直流输电(voltagesourcedconverterbasedHVDC,VSC-HVDC)(以下简称“柔直”)送出系统被广泛应用,推动全球电力向着清洁和绿色发展。但是,新能源经柔直送出系统的交流输电线路受两端电力电子装置及控制策略影响,故障时短路电流会存在波形畸变、相角受控、幅值受限等特征。基于
3月2日,由内蒙古电力集团主办、内蒙古能源研究院承办的“大规模可再生能源基地特高压直流输电示范工程”专家论证会在北京成功召开,该项目是内蒙古自治区政府与国家科技部签署《部区联动组织实施国家重点研发计划“储能与智能电网技术”重点专项框架协议》的首批落地项目。自治区副主席孙俊青,中国科
2月19日,国网山东省电力公司组织开展±800千伏陇东—山东特高压直流线路工程山东段及接地极线路工程竣工验收工作。此次验收包括259基铁塔及对应档导地线。国网山东超高压公司共投入7个专业大组、37个小组、131名验收人员,应用多项新技术、新手段为现场作业提供支撑。高空作业人员应用“无人机+挂架+
2月18日,南方电网超高压公司牵头研发的基于6.5kV/3kAIGBT(绝缘栅双极型晶体管)的柔性直流换流阀装备,顺利通过中国机械工业联合会组织的新产品技术鉴定,由中国工程院院士李立浧等11位行业权威专家组成的鉴定评审委员会一致认为:产品性能总体达到国际领先水平。该装备的成功研发,实现了我国重大装
北极星输配电网获悉,近日,生态环境部拟对甘肃~浙江±800千伏特高压直流输电工程作出环评意见公示。项目名称:甘肃~浙江±800千伏特高压直流输电工程环境影响报告书建设地点:甘肃省、宁夏回族自治区、陕西省、河南省、安徽省、浙江省建设单位:国家电网有限公司环境影响评价机构:中国电力工程顾问集
甘肃省政府办公厅近日印发《甘肃省打造全国重要的新能源及新能源装备制造基地行动方案》(以下简称《方案》)。《方案》指出,甘肃省将打造以国家新能源综合开发利用示范区、新能源消费转型引领区、能源产业融合集聚区、能源领域深化改革先行区、能源多边合作试验区等“五个功能区”为支撑的全国重要的
北极星输配电网获悉,近日,国网江苏省电力有限公司召开扬州—镇江直流输电二期工程建设推进会。扬镇直流一期工程作为国内首个“交改直”嵌入式直流工程,二期工程将在国内首次应用SLCC直流技术和长距离交直流线路共塔建设,在不新增跨江输电通道的情况下,将工程输电容量再增加120万千瓦,有效缓解北
北极星输配电网获悉,近日,陇东—山东±800千伏特高压直流输电工程山西段全线贯通。据介绍,山西段长度325.4公里,达到输电工程总长度35%,新建铁塔625基,工程横贯山西,跨越了太行、太岳山脉,穿越林区最长、高山大岭占比最高,自然条件复杂,施工难度大。
北极星输配电网整理了3月10日~3月14日的一周电网项目动态。内蒙古库布齐—上海特高压直流工程全国人大代表、国家电网有限公司副总工程师兼华东分部主任杨勇在接受媒体采访时表示,近三年,华东电网风电、光伏发电等新能源发电装机容量年均增长超过40%。杨勇建议,要强化规划统筹。坚持大型风电光伏基地
推进“十大工程”建设1.藏东南至粤港澳大湾区±800千伏特高压直流工程2.广东阳江三山岛海上风电柔直输电工程(一期)3.云南楚雄500千伏光辉变百万千瓦级新能源汇集站源网储协同控制示范工程4.广东广州220千伏天河棠下柔直背靠背工程5.广西北海涠洲岛并离网智能微电网工程6.深圳超充网络及车网互动示范工
3月13日,疆电(南疆)送电川渝特高压配套火电750千伏送出工程环境影响评价公众参与第一次信息公示。项目名称:疆电(南疆)送电川渝特高压配套火电750千伏送出工程建设单位:国网新疆电力有限公司建设性质:新建建设地点:项目位于新疆维吾尔自治区巴音郭楞蒙古自治州若羌县。项目概要:本工程线路起
3月13日上午,位于甘肃省武威市古浪县的甘肃至浙江±800千伏特高压直流输电工程(甘1标)基础首浇顺利完成,陇电入浙工程甘肃段开工。陇电入浙工程是国家“十四五”电力发展规划重点项目,工程起于甘肃省,止于浙江省,全长约2370公里,建成投运后,预计每年可向浙江输送电量超360亿千瓦时,其中新能源
3月7日上午,全国政协十四届三次会议举行第二次全体会议,全国政协委员、新疆维吾尔自治区人大监察和司法委员会副主任委员巴音克西在发言中表示,新疆作为我国连接中亚、南亚、西亚和欧洲的重要通道,在国家区域协调发展战略中具有特殊地位。巴音克西指出,在资源优势转化为经济优势的过程中,新疆仍面
“加快规划建设新型能源体系,新型电力系统为关键支撑。”2025年全国能源工作会议指出。构建新型电力系统是建设新型能源体系的重要组成部分和关键举措。习近平总书记多次对构建新型电力系统作出重要指示批示:在2021年3月15日召开的中央财经委员会第九次会议上指出,构建以新能源为主体的新型电力系统
3月6日,陕西富县电厂二期750kV送出工程环评征求意见。陕西省位于西北内陆腹地,是我国重要能源生产基地,根据国家电力发展规划,“十四五”期间计划新建陕北-安徽±800kV特高压直流输电工程(以下简称“陕皖直流”),将陕北煤电等多种形式能源送往安徽消纳,实现陕北能源基地开发外送、满足安徽电网
党的二十届三中全会提出,加快规划建设新型能源体系,完善新能源消纳和调控政策措施,深化能源管理体系改革,建设全国统一电力市场。山东是经济大省,也是能源生产与消费大省,在新型能源体系、新型电力系统建设中具有先发优势和示范作用。3月5日下午,全国人大代表,国网山东电力董事长、党委书记王志
3月7日,《烟威1000kV特高压交流输变电工程环境影响报告书》报批前公示。工程建设必要性(1)2030年前烟台和威海地区计划投产的大型电源项目装机容量合计8388MW,其中煤电和燃机10488MW、核电10400MW、海上新能源17500MW(风电和光伏分别为13500MW和4000MW),根据平衡计算,2027年、2030年、2035年烟
全国人大代表、国网重庆市电力公司董事长、党委书记刘勇公开表示,坚持绿色低碳发展,能源革命不断深化,通过加强跨区互联,能够有效提高电网的互济共保能力和故障支援能力;建议坚持川渝电网一体化发展,支持川南—渝南—涪陵的特高压交流南环网建设,支持渝陕背靠背和渝湘背靠背互济互联工程纳入国家
据悉,山西代表团向大会提交全团建议,支持山西进一步巩固和扩大电力外送基地建设。山西是国家重要的能源基地,同时也是全国西电东送、北电南送的枢纽,最大外送能力3162万千瓦,2025年开工大同—天津南交流特高压工程,建成后外送能力将达到3600万千瓦左右。2024年6月,“西电东送”通道调整完成,山
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!