登录注册
请使用微信扫一扫
关注公众号完成登录
图7 构建精细化DR模型的数据基础
图7给出了代表性的DR事件执行前后的负荷迁移曲线。DR事件数据不需要实时响应的数据,采用分钟量级的数据即可。通过记忆型的方法加权回归以及集群学习的方法也可以实现类似于非参数统计方法的效果。当需要进行预测时,可以存储历史数据,并根据当前的查询条件找到历史曲线中的类似样本,通过加权回带方法进行预测。记忆型
的预测方法具有一定的自然适应性,预测总是根据最近的数据进行并且能够随时间推进不断优化。
目前虽然已有研究学者提出了基于人工智能的DR资源建模理论,但由于DR业务发展刚刚起步,现有试点项目平均每年仅执行1~2次,因此并没有太多的历史数据用于样本训练,仅可以作为辅助的数据支撑。此外,对于DR行为的建模难度较大,从用户的角度而言用电数据仅仅反映了用户的用电行为,如:日常较低的用电水平表明了用户外出行为,对于外界因素影响、心理行为、政策环境等均需要考虑。
2.3.3 补贴结算
合理的DR补贴结算方式可以有效提升用户参与需求响应的潜力,而用户基线负荷作为激励型需求响应项目的重要评估依据,其对制定合理的DR补贴结算标准具有重要的指导意义。目前国内外在基线负荷分析方面已有大量的研究成果。美国AEIC负荷研究委员会提出了基于DR动态量测数据的负荷基线分析方法,期待通过数据交互的方式对削减的电力和电量进行评估。用户的负荷基线与实际的电力负荷曲线的差值也即是用户的负荷削减贡献,但是在实际的系统测量中,负荷的基线估计往往不够准确。如果用户负荷基线被过高的估计,电力公司或者聚合商需要为此支付高昂的补贴费用。反之,如果用户基线被过低的估计,参与需求响应的用户将无法得到补贴,而且还面临着参与DR项目的信用风险,长此以往将严重打击用户参与电网互动的积极性,不利于DR市场的培育和健康发展。因此,通过动态交互的数据以及精准的状态评估算法,才能够帮助系统运营者能够更好的掌握用户的准确基线,文献[49]提出的负荷态势感知理论为精细化基线计算提供了一种有效的解决思路,未来在互操作规范完善后可实现单体DR资源的精细化补贴结算。
对于大型工商业用户,应当充分考虑用户在参与DR项目时的响应负荷与错避峰负荷重叠的情况,确保在电力供应缺口时,能够更好地应对短时区域性的电力供应缺口,同时也要避免对某一用户的长时间持续限电。目前,对于小型居民用户而言,计量、结算难度较大,也有相关研究在考虑通过区块链等新型信息通信技术(information communications technology,ICT)解决该问题[50]。未来还需要充分结合我国电力市场环境以及相关政策的制定情况,进一步研究基线负荷计算策略,将根据用户的性质制定多种基线负荷计算方法,如参考同比数据等,既要保障做出贡献的DR用户能够拿到足额补贴,又要防止相关机构不运营,吃补贴。需求响应单靠电力公司难以广泛推行,不仅需要提高用户对需求响应的认知程度,让用户广泛参与,还需要依靠政府的支持。通过出台相应政策,完善负荷聚合商培育机制和融资机制,充分发挥第三方服务企业的作用,加入DR市场管理的环节。
2.3.4 商业模式
目前试点项目中的最大问题就是没有建立起成熟的商业模式,我国全面放开售电侧市场后,社会资本参与售电业务的积极性较高,在后续试点中尤其需要进一步探索负荷聚合商的盈利途径[51-52]。由于缺少合理的商业模式,目前我国的DR试点城市大多依赖于半行政化的有序用电系统配合才能够顺利开展DR的业务,居民用户的参与积极性则很难调动起来。由于居民用户的单个负荷体量非常小,往往被电网企业所忽略,但在其聚合后会形成巨大的可调节潜力[53]。普通居民用户即使完全参与DR业务,每个月的收益也不会太高,因此仅仅靠直接电费节省是不能挖掘用户的深度参与潜力的,需要借鉴互联网共享经济理论,设计新型商业模式,才能提升居民用户的自主参与度。
在未来完全竞争的电力市场环境中,负荷聚合商还需要具有可盈利的商业模式才能够生存,负荷聚合商对负荷的控制需要专用ICT设备或者相应的技术改造升级才能够实现,在DR低收益的条件下,该成本很难回收。不同于工商业用户,居民用户的主观行为随机性较大,而且在现有国内外的DR项目设计上均允许用户自由退出[54]。一旦用户收回负载的控制权,负荷聚合商在参与DR项目时将非常被动,必须通过更为高级的算法,从统计学的角度依概率对用户进行调度,否则甚至可能会由于对电网企业或者上一级负荷聚合商所承诺的服务没有完成而亏损。因此,负荷聚合商未来的增值业务模式也是决定该实体能否在市场环境下发挥作用的重要环节,DR业务在居民用户的推广,需要优先考虑在智能用电领域有相应规划的领头企业配合才能够大规模拓展应用。江苏电力公司已经与海尔、美的等家电企业签署《互联网+智能用电领域战略合作协议书》,并致力于智能用电及负荷级需求响应业务的推进。未来除了常规的数据采集、控制等基础功能外,还应当进一步调度其积极性,为需求侧资源提供额外的能源管理、设备维护、节能等增值服务,利用平台所积累的海量数据,深度推进智能用电业务的开展。
3 结语
我国虽然在多地实施了需求响应试点项目,积累了大量的实践经验,但需求响应在大规模推广应用方面仍存在许多问题。随着能源领域的变革进程推进,未来DR业务将会向实施主体多元化、运行机制市场化、系统决策智能化、执行方式自动化、应用场景多样化、能源种类综合化方向发展,业务模式将更为复杂和多样。本文基于当前国内外需求响应发展状况,分别从政策机制保障、信息化支撑、平台部署及组织实施层面,同时针对以上各方面存在的问题提出了一些未来发展建议,旨在为我国需求响应在大规模实施过程中提供一些参考。此外随着市场机制逐步健全、新型信息化技术不断发展,未来还需要充分挖掘DR用户的参与积极性,不断丰富和完善需求响应业务内涵,才能真正意义地实现DR业务大规模发展。
参考文献
[1]夏鑫.电力需求响应的推广与实践[J].供用电,2017,34(3):1-1.XiaXin.The promotion and practice of power demand response[J].Distribution & Utilization,2017,34(3):1-1(in Chinese).
[2]祁兵,张荣,李彬,等.自动需求响应信息交换接口设计.中国电机工程学报,2014,34(31):5590-5596.QiBing,ZhangRong,LiBin,et al.Design of automated demand response information exchange interface[J.Proceedings of the CSEE,2014,34(31):5590-5596(in Chinese).
[3]祖向荣,白焰,阳建坤.基于复杂事件处理的用户需求响应性能实时监测分析[J].电网技术,2016,40(10):3220-3227.ZuXiangrong,BaiYan,YangJiankun.Real-time monitoring analysis of customer demand response performance based on complex event processing[J].Power System Technology,2016,40(10):3220-3227(in Chinese).
[4]中华人民共和国国家发展和改革委员会.电力发展“十三五”规划(2016—2020年)[EB/OL].(2016-12-22)[2018-03-15]..
[5]国家能源局.2017年全国电力工业统计数据[EB/OL].(2018-01-22)[2018-03-10].
[6]全国智能电网用户接口标准化技术委员会.电力需求响应系统通用技术规范:GB/T 32672—2016[S].北京:中国标准出版社,2016.
[7]全国智能电网用户接口标准化技术委员会.智能电网用户自动需求响应:分散式空调系统终端技术条件:GB/T 34116—2017[S].北京:中国标准出版社,2017.
[8]全国智能电网用户接口标准化技术委员会.电力需求响应系统功能规范:GB/T 35681—2017[S].北京:中国标准出版社,2017.
[9]全国智能电网用户接口标准化技术委员会.需求响应效果监测与综合效益评价导则:GB/T 32127—2015[S].北京:中国标准出版社.2015.
[10]杨晓东,张有兵,赵波,等.供需两侧协同优化的电动汽车充放电自动需求响应方法[J].中国电机工程学报,2017,37(1):120-130.YangXiaodong,ZhangYoubing,ZhaoBo,et al.Automated demand response method for electric vehicles ging and disging to achieve supply-demand coordinated optimization[J].Proceedings of the CSEE,2017,37(1):120-130(in Chinese).
[11]王怡岚,童亦斌,黄梅,等.基于需求侧响应的空调负荷虚拟储能模型研究[J].电网技术.2017,41(2):394-401.WangYilan,TongYibin,HuangMei,et al.Research on virtual energy storage model of air conditioning loads based on demand response[J].Power System Technology.2017,41(2):394-401(in Chinese).
[12]孙毅,周晋宇,李彬,等.基于启动时间延迟的家庭负荷管理优化策略[J].电力自动化设备,2017,37(2):83-89.SunYi,ZhouJinyu,LiBin,et al.Optimization strategy based on start-time delay for domestic load management[J].Electric Power Automation Equipment.2017,37(2):83-89(in Chinese).
[13]鞠立伟,秦超,吴鸿亮,等.计及多类型需求响应的风电消纳随机优化调度模型[J].电网技术,2015,39(7):1839-1846.JuLiwei,QinChao,WuHongliang,et al.Wind power accommodation stochastic optimization model with multi-type demand response[J].Power System Technology,2015.39(7):1839-1846(in Chinese).
[14]沈运帷,李扬,高赐威,等.需求响应在电力辅助服务市场中的应用[J].电力系统自动化,2017,41(22):151-161.ShenYunwei,LiYang,GaoCiwei,et al.Application of demand response in ancillary service market[J].Automation of Electric Power Systems,2017,41(22):151-161(in Chinese).
[15]docs.cpuc.ca.gov/publisheddocs/published/g000/m205/k545/205545760.pdf.
[16]OpenADR Alliance.OPEN automated demand response communications specification(Version1.0)[EB/OL].Morgan Hill: California Energy Commission,2009.[2015-12-06].
[17]OpenADR Alliance.OpenADR2.0 profile specification a profile [EB/OL].Morgan Hill:California Energy Commission,2011- 12.[2015-11-02].https://openadr.memberclicks.net/assets/DoNotChange/penadr%202%200a%20profile%20specification_v1.0.zip.
[18]OpenADR Alliance.OpenADR2.0 profile specification B profile [EB/OL].Morgan Hill:California Energy Commission,2013-07.[2015-12-21].https://openadr.memberclicks.net/assets/DoNotChange/ openadr_2_0b_profile_specification_v1.1_package_public.zip.
[19]OpenADRAlliance.OpenADR:using OpenADR for DER [EB/ OL].(2017-01-22)[2018-03-11]..
[20]T&D World.Power Efficiency Corp.win 2-Year 12 MW bid in Con Edison BQDM auction[EB/OL].(2016-08-25)[2018-03-11]..
[21]ZhangX,Fields RL,AbreuK.Financial benefits of implementing Demand Response in CAISO market[C]//IEEE Power and Energy Society General Meeting.Providence,RI,USA:IEEE,2010:1-3.
[22]HaoH,LinY,Kowli AS,et al.Ancillary service to the grid through control of fans in commercial building HVAC systems[J].IEEE Transactions on Smart Grid,2014,5(4):2066-2074.
[23]White CD,Zhang KM.Using vehicle-to-grid technology for frequency regulation and peak-load reduction[J].Journal of Power Sources,2011,196(8):3972-3980.
[24]Heydarian-ForushaniE,Moghaddam MP,Sheikh-El-Eslami M K, et al. Risk-constrained offering strategy of wind power producers considering intraday demand response exchange[J].IEEE Transactions on Sustainable Energy,2017,5(4):1036-1047.
[25]SamadiP,Mohsenian-RadH,Wong V W S,et al.Real-time pricing for demand response based on stochastic approximation[J].IEEE Transactions on Smart Grid,2017,5(2):789-798.
[26]闫华光,陈宋宋,李世豪,等.需求响应发展现状及趋势研究[J].供用电,2017,34(3):2-8.YanHuaguang,ChenSongsong,LiShihao,et al.Research on the current situation and development trend of demand response[J].Distribution & Utilization.34(3):2-8(in Chinese).
[27]YaoM,HuZhaoguang,ZhangN,et al.Low-carbon benefits analysis of energy-intensive industrial demand response resources for ancillary services[J].Journal of Modern Power Systems & Clean Energy,2015,3(1):131-138.
[28]高赐威,董力,孙玲玲,等.售电侧放开下的需求响应[J].供用电,2017,34(3):21-25.GaoCiwei,DongLi,SunLingling,et al.Demand response under deregulated electric power retail market[J].Distribution & Utilization,2017,34(3):21-25(in Chinese).
[29]高志远,曹阳,田伟,等.需求响应概念模型及其实现架构研究[J].电力信息与通信技术,2016,14(11):8-13.GaoZhiyuan,CaoYang,TianWei.Research on conceptual model of demand response and its implementation architecture[J].Electric Power ICT,2016,14(11):8-13(in Chinese).
[30]ShakeriM,ShayesteganM,AbunimaH,et al.An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid[J].Energy & Buildings,2017(138):154-164.
[31]孙建伟,唐升卫,刘菲,等.面向需求响应控制的家用电热水器建模和控制策略评估[J].电力系统及其自动化学报,2016,28(4):51-55.SunJianwei,TangShengwei,LiuFei,et al.Modeling method and control strategy evaluation of electric water heater for demand response program[J].Proceedings of the CSU-EPSA,2016,28(4) :51-55(in Chinese).
[32]宋梦,高赐威,苏卫华.面向需求响应应用的空调负荷建模及控制[J].电力系统自动化,2016,40(14):158-167.SongMeng,GaoCiwei,SuWeihua.Modeling and controlling of air-conditioning load for demand response applications[J].Automation of Electric Power System,2016,40(14):158-167(in Chinese).
[33]侯建朝,胡群丰,谭忠富.计及需求响应的风电-电动汽车协同调度多目标优化模型[J].电力自动化设备,2016,36(7):22-27.HouJianchao,HuQunfeng,TanZhongfu.Multi-objective optimization model of collaborative WP-EV dispatch considering demand response[J].Electric Power Automation Equipment,2016,36(7):22-27(in Chinese).
[34]高赐威,曹晓峻,闫华光,等.数据中心电能管理及参与需求侧资源调度的展望[J].电力系统自动化,2017,41(23):1-7.GaoCiwei,CaoXiaojun,YanHuaguang,et al.Energy management of data center and prospect for participation in demand side resource scheduling[J].Automation of Electric Power System,2017,41(23):1-7(in Chinese).
[35]SevlianR,RajagopalR.A scaling law for short term load foreing on varying levels of aggregation[J].International Journal of Electrical Power & Energy Systems,2018(98):350-361.
[36]李彬,贾滨诚,曹望璋,等.边缘计算在电力需求响应业务中的应用展望[J].电网技术,2018,42(1):79-87.LiBin,JiaBincheng,CaoWangzhang,et al.Application prospect of edge computing in power demand response business[J].Power System Technology,2018,42(1):79-87(in Chinese).
[37]张铁峰,张旭,赵云,等.OpenADR2.0标准架构及应用[J].电力科学与工程,2017,33(3):55-60.ZhangTiefeng,ZhangXu,ZhaoYun,et al.A review of standard architecture and application of OpenADR2.0[J].Electric Power Science and Engineering,2017,33(3):55-60(in Chinese).
[38]高赐威,梁甜甜,李慧星,等.开放式自动需求响应通信规范的发展和应用综述[J].电网技术,2013,37(3):692-698.GaoCiwei,LiangTiantian,LiHuixing,et al.Development and application of open automated demand Response[J].Power System Technology,2013,37(3):362-368(in Chinese).
[39]Andrén FP,StrasserT,KastnerW.Applying the SGAM methodology for rapid prototyping of smart Grid applications[C]//Industrial Electronics Society,IECON 2016-Conference of the IEEE.IEEE,2016:3812-3818.
[40]Rahman MS,BasuA,KiyomotoS,et al.Privacy-friendly secure bidding for smart grid demand-response[J].Information Sciences,2016(379):229-240.
[41]GongY,CaiY,GuoY,et al.A privacy-preserving scheme for incentive-based demand response in the smart grid[J].IEEE Transactions on Smart Grid,2017,7(3):1304-1313.
[42]李彬,卢超,陈宋宋,等.面向电力需求响应业务的P圈保护算法[J].电力系统自动化,2017,41(23):8-14.LiBin,LuChao,ChengSongsong,et al.P-cycle protection algorithm oriented to demand response service[J].Automation of Electric Power Systems,2017,41(23):8-14(in Chinese).
[43]曹望璋.基于多代理技术的需求响应资源预留策略研究[D].北京:华北电力大学,2018.
[44]姜勇,杨雪纯,王蓓蓓,等.计及需求响应不确定性的智能用电双向互动仿真[J].电力系统及其自动化学报,2016,28(9):48-55.JiangYong,YangXuechun,WangBeibei,et al.Simulation of smart power consumption and bilateral interaction considering uncertainty of demand response[J].Proceedings of the CSU-EPSA,2016,28(9):48-55(in Chinese).
[45]张硕,曾鸣,李英姿,等.新能源电力系统用户需求响应复杂适应行为研究[J].电力建设,2017,38(11):136-143.ZhangShuo,ZengMing,LiYingzi,et al.Complex adaptive behaviors of user’s demand response in renewable energy power system[J].Electric Power Construction,2017,38(11):136-143(in Chinese).
[46]朱文超.计及用户响应不确定性的负荷聚合商运营决策模型研究[D].北京:华北电力大学,2016.
[47]沈瑜,岳园园,闫华光,等.地区电网需求响应资源聚合与调控策略研究[J].电网技术,2017,41(10):3341-3347.ShenYu,YueYuanyuan,YanHuaguang,et al.Research on aggregation and optimization strategies of demand response resources for district power grid[J].Power System Technology,2017,41(10):3341-3347(in Chinese).
[48]史俊祎,文福拴,崔鹏程,等.参与需求响应的工业用户智能用电管理[J].电力系统自动化,2017,41(14):45-53.ShiJunyi,WenFushuan,CuiPengcheng,et al.Intelligent energy management of industrial loads considering participation in demand response program[J].Automation of Electric Power Systems,2017,41(14):45-53(in Chinese).
[49]许鹏,孙毅,石墨,等.负荷态势感知:概念、架构及关键技术[J].中国电机工程学报,DOI:10.13334/j.0258-8013.pcsee.171328.XuPeng,SunYi,ShiMo,et al.Load situation awareness:concept,framework,and key technologies[J].Proceedings of the CSEE,DOI:10.13334/j.0258-8013.pcsee.171328(in Chinese).
[50]李彬,卢超,曹望璋,等.基于区块链技术的自动需求响应系统应用初探.中国电机工程学报,2017,37(13):3691-3702.LiBin,LuChao,CaoWangzhang,et al.A preliminary study of block chain based automated demand response system[J].Proceedings of the CSEE,2017,37(13):3691-3702(in Chinese).
[51]黄甜.面向智能电网的电力需求响应商业运作模式研究[D].南京:东南大学,2016.
[52]梁茜.智能用电环境下的工业用户双向互动需求响应技术研究[D].南京:东南大学,2013.
[53]祁兵,柏慧,陈宋宋,等.基于互联网家电的需求响应聚合系统信息接口研究与设计[J].电网技术,2016,40(12):3918-3922.QiBing,BaiHui,ChenSongsong,et al.Research and design of aggregate system information interface based on demand response of internet appliance[J].Power System Technology.2016,40(12):3918-3922(in Chinese).
[54]陆俊,朱炎平,彭文昊,等.计及用电行为聚类的智能小区互动化需求响应方法[J].电力系统自动化,2017,41(17):113-120.LuJun,ZhuYanping,PengWenhao,et al.Interactive demand response method of smart community considering clustering of electricity consumption behavior[J].Automation of Electric Power Systems,2017,41(17):113-120(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
浙江电网具有高外电依赖、高新能源渗透、高峰谷差压力“三高”特征,与此同时,煤电占比下降,新能源随机性加剧,极端气候下频率、电压稳定性承压。新型电力系统背景下,需求侧资源已具备发挥更大价值的技术条件。虚拟电厂通过聚合空调、储能、充电桩等分散资源,可形成百万千瓦级可调能力,其“灵活聚
自2015年国家发展改革委将贵州列为全国第一批电力体制改革综合试点省份以来,经过近9年的探索与实践,贵州电力市场建设和市场化交易取得了丰硕的成果,已经基本构建了体系完备、竞争充分、健康有序的中长期电力市场。同时,圆满完成7轮次现货市场结算试运行。贵州电力市场化改革的有序推进,为贵州能源
最近,国网江苏省电力有限公司发布《2024年社会责任报告》,对外发布其在履行社会责任方面的意愿、行动、绩效等情况,全面展现国网江苏电力在服务地方经济社会高质量发展中的积极作为与显著成效,同时也勾勒出其在新一年的奋进蓝图,奋力服务能源绿色低碳转型,准备在今年新增2400万千瓦新能源接网消纳
虚拟电厂近年来已成为能源转型的焦点,各类主体围绕顶层设计、市场模式、应用落地方面加快探索。政策方面,国家层面近一年来出台的电力需求侧管理、电力市场、配电网发展、新型主体发展等相关政策中均有条款提及虚拟电厂,涵盖其发展方向、功能作用、参与市场方式等多个方面;山西、宁夏、上海、广东等
促进虚拟电厂高质量发展为加快构建新型电力系统注入新动能——《关于加快推进虚拟电厂发展的指导意见》解读高长征韩超杨萌(中电联电力发展研究院)2025年能源工作指导意见提出“统筹推进新型电力系统建设,推进虚拟电厂高质量发展”。近日,国家发展改革委、国家能源局联合印发《关于加快推进虚拟电厂
近年来,我国风光新能源高速增长,在促进经济社会绿色低碳转型、保障国家能源安全等方面发挥了积极作用。与此同时,电力系统安全稳定运行压力不断加大,虚拟电厂作为聚合需求侧资源参与电网调节和市场交易,促进供需协同的新型经营主体,受到社会各界高度关注。《国家发展改革委国家能源局关于加快推进
北极星售电网获悉,4月8日,浙江省江山市发展和改革局发布关于印发《江山市2024-2025年度电力移峰填谷、需求响应等需求侧管理补贴实施办法》的通知,包括空调负荷柔性调控补贴、工业企业计划性移峰填谷补贴、电力需求响应补贴、用户侧储能、V2G车网互动激励补贴等。上述四项补贴总额上限为50万元,其中
2024年12月15日,德国EPEXSPOT电力市场电价跌至-150欧元/兆瓦时,这是该国第37次出现负电价。与此同时,中国山东电力现货市场连续21小时电价低于-0.08元/千瓦时,创国内纪录。当光伏电站在正午时分“倒贴钱发电”,微电网运营商在电价低谷期“反向盈利”,一场由负电价引发的能源革命正在重塑行业格局
新技术涌现让新型电力系统的建设有了更多可能。(来源:能源新媒文/欧阳昌裕作者系国家电网有限公司副总工程师兼国网能源研究院董事、党委书记)2021年3月15日,习近平总书记创造性提出“构建以新能源为主体的新型电力系统”战略构想。2023年7月11日进一步明确“清洁低碳、安全充裕、经济高效、供需协
今年的政府工作报告提出,加快建设“沙戈荒”新能源基地,发展海上风电,统筹就地消纳和外送通道建设。吉林省地处国家九大清洁能源基地之一——松辽清洁能源基地的核心区域,正大力推广“绿电+消纳”模式,构建具有区域特色的新型能源体系。截至2024年年底,全省可再生能源发电装机达2919.62万千瓦,占
事实表明,当前电网运营商需在确保电网可靠性与应对前所未有的需求增长之间寻求平衡,尽管传统的需求响应计划在过去几十年中为公用事业公司提供了有效服务,但可再生能源的持续整合以及极端天气事件频发,都要求采取更为复杂的解决方案。在这一背景下,储能系统成为这一转型过程中的关键工具,为需求管
北极星售电网获悉,4月17日,山东省发展和改革委员会等部门发布关于推动虚拟电厂试验示范工作高质量发展的通知(鲁发改运行〔2025〕279号),其中提到,给予符合条件的试验示范项目政策支持。对符合《虚拟电厂试验示范项目建设成效评价细则》相关要求,且定期检验合格,能够按规定参与需求侧响应的试验
浙江电网具有高外电依赖、高新能源渗透、高峰谷差压力“三高”特征,与此同时,煤电占比下降,新能源随机性加剧,极端气候下频率、电压稳定性承压。新型电力系统背景下,需求侧资源已具备发挥更大价值的技术条件。虚拟电厂通过聚合空调、储能、充电桩等分散资源,可形成百万千瓦级可调能力,其“灵活聚
虚拟电厂近年来已成为能源转型的焦点,各类主体围绕顶层设计、市场模式、应用落地方面加快探索。政策方面,国家层面近一年来出台的电力需求侧管理、电力市场、配电网发展、新型主体发展等相关政策中均有条款提及虚拟电厂,涵盖其发展方向、功能作用、参与市场方式等多个方面;山西、宁夏、上海、广东等
近年来,我国风光新能源高速增长,在促进经济社会绿色低碳转型、保障国家能源安全等方面发挥了积极作用。与此同时,电力系统安全稳定运行压力不断加大,虚拟电厂作为聚合需求侧资源参与电网调节和市场交易,促进供需协同的新型经营主体,受到社会各界高度关注。《国家发展改革委国家能源局关于加快推进
奋力谱写中国式现代化安徽能源高质量发展新篇章安徽省能源局局长汪振宇2024年以来,安徽省能源系统坚持以习近平新时代中国特色社会主义思想为指导,深入学习宣传贯彻习近平总书记考察安徽重要讲话精神,坚定践行“四个革命、一个合作”能源安全新战略,安全保障取得新成效,绿色转型取得新进步,改革创
北极星售电网获悉,4月8日,浙江省江山市发展和改革局发布关于印发《江山市2024-2025年度电力移峰填谷、需求响应等需求侧管理补贴实施办法》的通知,包括空调负荷柔性调控补贴、工业企业计划性移峰填谷补贴、电力需求响应补贴、用户侧储能、V2G车网互动激励补贴等。上述四项补贴总额上限为50万元,其中
虚拟电厂(VirtualPowerPlant,VPP)是将分布式发电机组、可控负荷和分布式储能设施有机结合,通过配套的调控技术、通信技术实现对各类分布式能源进行整合调控的载体,以作为一个特殊电厂参与电力市场和电网运行。(来源:能源新媒文/李忆作者供职于华电电力科学研究院有限公司金璐作者供职于中国华电集团
3月3日,安徽省工业和信息化厅关于做好全国工业领域电力需求侧管理典型案例(2025年)及第七批参考产品(技术)申报工作的通知。本次申报重点方向包括电力可调节负荷资源开发及应用、需求响应、电能替代、新型用户侧储能、虚拟电厂、源网荷储一体化、多能协同、能源数字化管理、用能智能化控制、电能质
北极星售电网获悉,3月10日,国家能源局综合司发布关于印发《2025年能源行业标准计划立项指南》的通知。文件提出,2025年能源行业标准计划立项重点方向包括:电力市场和供电服务、电力需求侧管理等。电力市场和供电服务:A501电力市场准入技术要求(包括新型储能、虚拟电厂、智能微电网等新型主体参与
3月6日,四川省经济和信息化厅四川省生态环境厅发布关于《四川省零碳工业园区试点建设工作方案》的通知。通知指出,探索发展“绿电直供”模式,强化园区与周边光伏、风电、水电等电力资源匹配对接,创新实施“隔墙售电”政策,提高园区可再生能源直供和消费比例。因地制宜发展分布式能源系统,推进园区
北极星储能网获悉,3月6日,四川省经济和信息化厅和四川省生态环境厅印发《四川省零碳工业园区试点建设工作方案》。其中提到,加快布局发展新型储能,规模化应用锂电池、钒液流电池、氢能、飞轮等先进储能技术。大力发展绿色智能微电网,建立“源网荷储充放”能源供应系统,强化电力需求侧管理,确保园
2015年电改9号文出台开启的新一轮电力体制改革已历经十年,处于改革潮头的南方区域从独具特色的省级市场发展为创新融合的区域市场,走过了一条破冰、融合、发展的电力市场化改革之路。正可谓前事不忘后事之师,让我们重温十年改革历程,总结经验教训,在新的历史起点再出发。(来源:电联新媒作者:梁
北极星售电网获悉,4月20日,国家能源局新疆监管办发布关于公开征求《新疆电力辅助服务市场运营规则(征求意见稿)》意见的通知。文件明确,本规则适用于新疆电力辅助服务市场交易,新疆电力辅助服务市场所有成员必须遵守本规则。新疆电力辅助服务市场主体具体指新疆省调直调、参与疆内电力电量平衡,
北极星售电网获悉,4月20日,国家能源局新疆监管办发布关于公开征求《新疆电力中长期交易实施细则部分条款修订稿》意见的通知。文件明确,《新疆电力中长期交易实施细则》(新监能市场〔2022〕93号)第一章第四条修改为:规则所称电力中长期交易主要是指符合注册基本条件的发电企业、售电企业、电力用
自2015年3月《关于进一步深化电力体制改革的若干意见》(中发〔2015〕9号)(以下简称“电改9号文”)发布以来,我国电力体制改革已走过十载峥嵘岁月。这份被誉为“新电改”纲领的文件,系统提出了“全面实施国家能源战略,加快构建有效竞争的市场结构和市场体系,形成主要由市场决定能源价格的机制”
北极星电力网获悉,甘肃能源公告,2024年,公司通过发行股份及支付现金方式购买控股股东甘肃省电力投资集团有限责任公司持有的甘肃电投常乐发电有限责任公司(以下简称“常乐公司”)66.00%股权,主营业务新增火力发电业务,已发电控股装机容量达到753.97万千瓦,同比增加113%。同时,不断强化对电力中
加强党的建设,以高质量党建引领保障高质量发展;落实国家重大战略,全力保障经济社会用电需求;加快构建新型电力系统,推动能源绿色低碳转型;全面提高服务品质,满足人民美好生活用电需要;深化改革创新,不断激发动力活力……一季度,国家电网有限公司坚持干字当头、开拓进取,推动各项工作开局良好
市场主体一头连着经济发展,一头连着民生福祉。作为社会生产力的基本载体,市场主体是经济活动的主要参与者、技术进步的主要推动者、就业机会的主要提供者,作用举足轻重。人才是最活跃的先进生产力,市场的基石则在于培育先进的市场主体。当发电企业开始研究负荷曲线,当售电公司开始重视天气预测,当
“2024年,山东电力交易中心完成市场化电量4219亿千瓦时,同比增长5.8%。服务经营主体数量超过4万家。绿电交易电量22.3亿千瓦时,同比增长37%。”3月26日,在山东电力交易中心有限公司召开的公司“三会”上,山东电力交易中心董事长、党委书记李锋全面总结2024年工作时,一组组亮眼数据,勾勒出其蓬勃
自2015年国家发展改革委将贵州列为全国第一批电力体制改革综合试点省份以来,经过近9年的探索与实践,贵州电力市场建设和市场化交易取得了丰硕的成果,已经基本构建了体系完备、竞争充分、健康有序的中长期电力市场。同时,圆满完成7轮次现货市场结算试运行。贵州电力市场化改革的有序推进,为贵州能源
在山西电力交易大厅里,一场“春天的交易”正在进行——山西电力市场正式启动2025年3月至8月连续电力交易,这是全国首次开展的中长期多月连续撮合交易,标志着山西电力市场化建设又实现重要突破。“市场经营主体可提前6个月锁定电价,高频次博弈让价格发现更透明。”山西电力交易中心交易部主任弓建华
新一轮电力体制改革10年来,广东电力市场实现了从“价差传导”向“顺价联动”、从“只降不升”向“能升能降”、从现货“间断运行”向“连续运行”等根本性突破,从2015年全国第一个实现中长期集中交易,到2019年全国第一个开展现货结算试运行,再到2021年全国第一批现货市场“转正”,广东电力市场为电
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!