登录注册
请使用微信扫一扫
关注公众号完成登录
图 1 嵌入化合物电极中 Li+脱出和嵌入过程的典型电化学 阻抗谱
2.2 表观化学扩散系数的测量
式中,ω 为角频率,B 为 Warburg 系数,DLi 为 Li 在电极中的扩散系数,Vm 为活性物质的摩尔体积,F 为法拉第常数,(F=96487 C/mol),A 为浸入溶液中参与电化学反应的真实电极面积,dE/dx 为相应电极库仑滴定曲线的斜率,即开路电位对电极中 Li 浓度曲线上某浓度处的斜率。
2.3 电池材料的导电性测试
除了 2.1 和 2.2 中介绍的电极过程动力学和表观化学扩散系数的测量之外,电池研究中,非常重要的一类研究工作集中在测试电池材料的导电性;包括电极材料(粉末、单颗粒、多孔电极、薄膜电极)、电解质材料(液体电解质、固体陶瓷电解质、薄膜电解 质)、隔膜材料等。由于不同电池材料的物理形态及 物化性质各不相同,因此,在具体测试材料的导电特 性时使用的电极体系及电极构型也略有差异。总的来说,主要包括阻塞和非阻塞两种测试体系.
3 EIS 测试设备及数据拟合
用于电化学阻抗谱测试的设备及用于数据拟合的软件门类较多,如 IM6、Solartron、Autolab、Novo control、辰华等;常见的用于 EIS 数据处理的软件有 Zview、ZSimpWin、EIS300、LEVMW、Impedance spectroscopy、Autolab Nova 等。典型的用于 EIS 测 试的电化学工作站其规格参数如表 1 所示。
由表 1 可知,不同的设备,在测试精度,量程、 电压范围、测试通道的数量、频率范围等方面存在较大的差别。由于锂离子电池电极过程动力学测试涉及的频率范围较为宽广(μHz-MHz),从高频到低频,可能涉及电感、电容和电阻多元串并联组合 特性;实际测量对测试环境如湿度、温度、电磁屏 蔽等要求较高,因此,具体测试过程在设备选用时需要结合实践及理论知识进行。
3.1材料的 EIS 测试
以 Autolab 电化学工作站为例,介绍无机玻璃 陶瓷电解质样品的测试工步,如图 3 所示。
No.8 启动测试
No.9 数据保存
工步 1:按图 2(步骤 1)所示连接测试线,红 -红-红,黑-黑-蓝,绿-绿;将试样按正负极夹好, 陶瓷片不区分正负极;关闭屏蔽箱(步骤 2),依次 打开工作站和放大器电源,打开 Nova 2.1 软件。单击 Open library 选项后,选择 FRA impedance potentiostatic 选项卡。
工步2:单击Autolab control选项,将Bandwidth 选项设置为 High stability,单击 FRA measurement 选项,将 First appli 选项设置为 1E+06,将 Last appli 选项设置为 1,Nunber 设置为 20per decade(取点 密度视具体需要设定),单击三角形按钮,选择 ok,开始测量。
工步 3:测试完毕后,单击 File 选项卡,单击 Save FRA impedance potentiostatic as 选项,选择保 存位置,单击保存(save);重复测试,如测试完毕, 先关闭测试软件,再关闭放大器电源,最后关闭工 作站电源。
注意事项:① 测试过程保持屏蔽箱关闭状态;② 安装测试样品过程需佩戴塑胶手套;③ 测试过 程中尽可能保持移动电话等设备远离屏蔽箱。
3.2 EIS 数据拟合流程
以 Autolab 软件为例,介绍 EIS 数据拟合工步, 如图 3 所示。
工步 1:打开 Nova 2.1 软件,单击 Import data 选项,选择需要打开的文件,单击打开按钮。
工步 2:单击 FRA measurement 选项,然后单击显微镜按钮,单击第一项 Electrochemical circle fit,再单击第二项 Fit and simulation,双击 Electrochemical circle fit,用鼠标滚轮放大或缩小图,单击选取第一个弧线上的 8 个点,使生成的 曲线和弧线基本吻合,单击 Copy 后,单击返回箭头。
工步 3:单击 Fit and simulation,将窗口最大化,将 Properties 选项卡拉大,选择 Edit,按 Ctrl+V, 点击连接处断开 Rp连接,在空白处单击右键,选择 Add element,选择 Constant Phase Element(Q),拖动到连接处使电路连接,选择 Tools,选择 Run Fit and Simulation,记录 Rs,Rp和误差(χ2)数值。如圆片试样,需要记录试样厚度、重量、直径。
注意事项:若处理误差(χ2)数值大于 0.1,需 要单独记录,并重新拟合分析。
4 数据及案例分析
通过电化学阻抗谱测试,可以获得锂离子电池 电极过程动力学参数,如 SEI 的生长规律,包括不同 SOC、温度及循环周次、SEI 阻抗的变化;同时 可以测试 Rct 的变化及传质过程;除此之外,还可 以测试电极、电解质、隔膜等材料的电导率、离子 迁移数、表观化学扩散系数等。合理的使用 EIS 可以帮助研究人员更好的理解电池,提升电池研发的水平。以下结合具体的案例介绍 EIS 在锂离子电池中的应用。测试及分析对象包括单颗粒、半电池、全电池、 电极材料、电解质材料、隔膜材料、着重讨论电池 中 SEI 的生长规律, Rct阻抗的变化特性、不同温度、 循环周次、阻抗的变化和 SOC 之间的关系等。
4.1 电子导电性测试
构成锂离子电池的电极材料通常为混合导体,即同时具备电子和离子导电特性;电子和离子导电 特性的良莠对于电池的电化学性能影响非常显著, 因此,测量电子和离子电导率尤为重要。以电子电导率测试为例,为了准确测量电极材 料的电子导电特性,需要选用规整的样品进行测试, 如薄膜电极或致密陶瓷结构。通常,测量电极材料 的电子电导率使用粉末电阻仪进行测试,如日本三菱化学粉末电阻仪。这类测试方法获得的结果与粉末的压实密度正相关,因此,很难测定材料的本征导电特性。
除了粉末电阻仪,电化学阻抗谱在测试电极材 料的电子电导率方面也有重要的应用。YANG 等基于 SPS 技术制备了致密度高达 97%的陶瓷电极材料(LiCoO2,NMC-333,532,622,811);并在陶瓷材料的两端溅射 Au 作为工作电极,进行线 性V-I 和电化学阻抗谱测试研究,测试原理如图5(a) 所示。
图 4 块状样品电子电导率和离子电导率的测试方法, (a) 测试样品示意图,样品两侧为离子阻塞电极;(b)典型的 EIS 测试数据 Nyquist 图,由电子和离子的并联电路构成;(c)直流极化曲线和伏安特性曲线,斜率为电子电阻
图6展示了不同组成的正极材料变温V-I 曲线,直线的斜率代表电子电导率。对比图 6 中的 5 组测试结果可知,随着 Ni 含量的提高,正极材料的电子导电性在提升。为了进一步研究不同组成正极材料离子电导率的差别,YANG 等测试了不同温度下, 各组分陶瓷正极材料的电化学阻抗谱。如图 7 所示, 通过数据拟合分析可知,随着 Ni 含量的提升,正极材料的离子电导率也在显著的提升,而从 EIS 图谱 中剥离出来的电子电导率,其测试结果同使用线性伏安方法测试结果基本一致。这表明,通过交流阻抗技术结合直流极化测试可以提取、区分电极材料的电子电导率和离子电导率。
图 5 直流极化或伏安特性曲线,用来测试钴酸锂和三元 NMC 的电子电导率。(a)钴酸锂;(b)NMC333;(c)NMC532;(d)NMC622;(e)NMC11;(f)与温度关联的电子电导率
图 6 钴酸锂和三元 NMC 的 EIS 测试结果20~100 ℃。(a)钴酸锂;(b)NMC333;(c)NMC532;(d)NMC622;(e) NMC811;(f)与温度关联的离子电导率
4.2 离子导电性测试
4.2.1 无机固体电解质
无机固体电解质是一类非常重要的快离子导电材料,在固态电池及固体传感器等器件中有着重要的应用。准确测量这类电解质材料的离子导电特性具有非常重要的意义。以 NASICON 结构快离子导体 LAGP 为例,介绍无机快离子导体电导率的测试 方法及可靠性。LING 等通过高温固相法制备了不同致密度 的 LAGP 玻璃陶瓷片,通过离子溅射仪在陶瓷片的两侧制备了 Au 薄层作为工作电极,使用 Novo control-Beta工作站,测试了陶瓷片的变温EIS曲线,测试结果如图 8 和图 9 所示。由图 8 可知,LAGP 陶瓷片的电导率,无论是总电导率,还是体相电导率,或者是表观晶界电导率,与温度之间的关系均很好的符合阿仑尼乌斯关系式。图 9 展示了不同致密度的陶瓷片在 233 K 时的阻抗谱,由图 9(d)可知,陶瓷片的体相电导率是本征量,与陶瓷片的表观几何参数及致密度等没有 切的关系,即使致密度从 65%变化到 91%,陶瓷片的体相电导率变化仍然非常小关系式.
图 7 无机固体电解质 LAGP 的阿仑尼乌斯曲线
图 8 不同温度烧结的 LAGP 陶瓷片阻抗谱(233 K)及电导率和 Cgb/Cbulk的比值关系
图 8 展示了不同质量比复合电解质膜的变温电导率曲线,由图 10 可知,高离子导电性的无机硫化物电解质的引入提升了复合电解质的总电导率,和纯 PEO 聚合物电解质相比,Li+迁移数也获得进一步的提升。
图 9复合电解质膜的变温电导率
4.2.3 薄膜电解质
图 10展示了采用上、下电极方式测试薄膜电导率的示意图及 N 掺杂 Li3PO4薄膜电解质 LiPON 的 SEM 表面及断面形貌图。图 11 展示了 LiPON 薄膜电解质的室温阻抗谱。从图 11中可以看出,阻抗谱由有一个规整的体相半圆响应和具有阻塞效应的容抗弧组成。
图 11 三明治结构薄膜电极用于 LPON 电导率的测量及 LPON 薄膜电解质的 XRD 和 SEM 表面及断面形貌
图11 LiPON 薄膜电解质在22 ℃时的阻抗谱Nyquist 图
图 12 和图 13 分别展示了使用叉指电极和面内 电极测试薄膜电解质 LLZO 和 LLTO 电导率的示意。
图及变温电导率曲线,其中图 14 展示了使用面内工作电极测试 LLTO 电导率的阿仑尼乌斯曲线。图 14 的测试结果显示 LLTO 的电导率和温度的关系很好的符合了阿仑尼乌斯关系式,由此可知,面内电极 EIS 测试可以很好的表征材料离子输运和温度之间的线性关系。
图 12 叉指电极用于 LLZO 薄膜电解质电导率测量
4.3 单颗粒 SELMAN 等运用不锈钢微电极和电化学阻
抗谱研究了高温(2800 ℃)热处理的介孔碳单颗粒中 Li+在嵌入和脱出过程中电极过程动力学信息,如电荷转移、锂离子表观化学扩散系数、SEI 的生长演变和电极电位之间的关系等,测试原理及表观化学扩散系数如图 14、15 所示,研究结论如下。
(1)石墨表面 SEI 阻抗不依赖于电极电位,由此可以推断出,表面 SEI 应该是离子导电行为;
(2)电荷转移电阻随电极电位的变化而变化,但不受阶转变过程的影响,这表明电荷转移过程发生在表面,而电位关联的阻抗变化可能是由于活化过程的影响;
(3)单颗粒 Li+的表观化学扩散系数的变化范 围在 10-6~10-10cm2/s。
图 14 不锈钢微电极用于介孔碳微颗粒电极的集流体
图 15 人造中间相碳微球在不同电位 vs. Li+/Li 下表观化学 扩散系数
4.4 三电极
三电极阻抗谱原理示意图如图 16 所示。WAN 等通过对比两电极和三电极的 Li/C 电池体系的 EIS 测试结果,研究了两电极阻抗和三电极阻抗的差别。研究结果表明,全电池(full cell)及两电极电池的阻抗谱为三电极阻抗谱之和,如图 17 所示, 通过系统的两电极与三电极的测试研究,WAN 等 得出了如下结论。
(1)在两电极研究中,两电极对称电池阻抗是必要的参考数据,如图 19 和图 20 所示,从对称电池阻抗谱上可以提取单个电极的信息;
(2)感应涡流在碳电极阻抗谱的低频区域出 现,随后在首次的锂潜入过程中,又消失了,如图 18 所示,这可能表明在电极电解液界面可能存在吸 附和脱附过程;
(3)对于内阻比较小的体系,容易在高频区出 现诱导电感现象,这些背景信号需要剔除,才可以 正确的分析阻抗谱数据;
(4)两电极阻抗等于三电极阻抗谱中正极部分 和负极部分的阻抗之和;(5)电池中的阻抗可能主要来源于正极。
图 16 三电极电池结构示意图
图 17 三电极电池用于测试锂离子首次潜入碳材料中的 阻抗
图 18 三电极开路电压状态下的阻抗谱
4.5 SEI的生长演化特性
JOW 等运用常规两电极 EIS 研究了石墨负极表面 SEI 的生长规律,测试体系为 Li/石墨半电池,非原位阻抗测试结果及拟合电路如图 21、22 所示,研究结果如下。
(1)石墨半电池的 EIS 阻抗严重依赖于电极电位,即锂化状态,根据 RSEI和 E 之间的关系可知,石墨负极表面的 SEI 形成过程主要分两个电位区间,第一个电位区间在 0.15 V 以上,在这个电位区间内,SEI 的导电性比较差;第二个电位区间在 0.15 V 以下,这个区间 SEI 呈现出高导电特性;
(2)对于一个完整的电池,RSEI 随着充电和放电过程,其大小在可逆的发生变化,这主要归因于石墨的体积膨胀和收缩;
(3)在第二个电位区间,RSEI 的大小和电压之间的关系主要有两个影响因素。第一,形成高导电相的 SEI,这直接显著的降低 RSEI 阻抗;第二,石墨体积的膨胀导致了 SEI 阻抗的增加;
(4)首次锂化及 SEI 的形成对电解液的组分及配方非常的敏感。总的来说,溶剂和盐的反应活性越高,SEI 的阻抗越大,另外,SEI 的阻抗在首次锂化过程对微量的添加剂如 VC 非常的敏感。
图 19首次脱锂过程,锂/石墨半电池在不同电压的 阻抗谱
图20锂/石墨半电池在0.05 V电位下的阻抗谱及等效拟合电路
4.6 弛豫时间分布技术DRT在解析SEI生长规律中的应用
FRIEDRICH等结合了两电极和三电极阻抗测试,研究了石墨负极在不同荷电态 SOC、不同温度下SEI成膜特性,测试结果如图 21~图 23所示。并对电池中可能存在的电化学过程做了假设,建立了电极过程动力学模型,如图 22 所示,研究结果如下。
(1)通过对比两电极和三电极测试结果,发现石墨首次锂化过程中,在电压范围在 0.8~0.3 V 的 区间内,出现了 SEI 膜的峰值,这一最大值在第 2 圈的锂化过程中并没有出现,这可能是由于首圈形 成的 SEI 在第 2 圈的时候,促进了 Li+的去溶剂化, 而 SEI 阻抗的逐渐减小过程标志着 SEI 在逐步形成 完整膜的过程;
(2)温度相关的阻抗测试结果表明,在 -20~45 ℃之间,总阻抗随着温度的升高在逐渐减 小;这主要归因于温度的升高使电解液的电导率得 到提升,SEI 的电导率也获得了提升;同时,Rct过 程也变得更加迅速。但在 55 ℃以上,总电阻和 45 ℃时的总电阻相比,阻抗有所增加。这表明,温度过高诱导了副反应,导致阻抗增加;
(3)在 0~45 ℃之间,从第 1 周到第 2 周,SEI 的阻抗随着温度的升高在减小,但在 0 ℃以下,从 第 1 周到第 2 周,SEI 的阻抗有所增加。这表明,在低温下,首周不能形成致密的 SEI 膜。
图 21 石墨负极首次和第二次嵌锂过程阻抗谱如图(a)和(b)所示;(c)和(d)分别展示了首次和第二次锂化过程的 弛豫时间谱
图 22(a)展示了阻抗谱特征频率点,不同电化学过程和关联的阻抗谱元件及相应区域显示在(b)中;(b)展示了半电 池的阻抗分析和响应区域;蓝色的并联电路表示电流导电行为,这种电流存在于电极和集流体之间,红色的并联电路表示的是 SEI 的影响,绿色的并联电路表示的是负极电荷转移过程,橘黄色阻抗谱元件表示的是扩散及离子潜入过程,此外,欧姆阻抗和导体导电行为,(a)中欧姆阻抗来源于 Celgard 的三层隔膜电阻
图 23 石墨负极对金属锂电位在 0.5V 附近时,不同温度下的阻抗谱, (a)显示的第一周锂化过程;(b)展示了第二周锂 化过程;(c)和(d)展示列了周和第二周锂化过程的弛豫时间分布图
5 结语
电化学阻抗谱是一种重要的电化学测试方法,在电化学领域尤其是锂离子电池领域具有广泛的应 用,如电导率、表观化学扩散系数、SEI 的生长演 变、电荷转移及物质传递过程的动态测量等。合理的使用 EIS 可以帮助研究人员更好的理解电池,提 升电池研发的水平。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近期,多座储能电站获最新进展,北极星储能网特将2025年6月23日-2025年6月27日期间发布的储能项目动态整理如下:国内首座大型锂钠混合储能站黑启动试验成功近日,南方电网公司在位于文山壮族苗族自治州的国内首座大型锂钠混合储能站——丘北县宝池储能站圆满完成国内规模最大、电压等级最高的构网型储
北极星储能网获悉,6月26日,乌海市20万千瓦/80万千瓦时固态电池储能电站项目开工仪式举行。该项目位于内蒙古乌海市海南区乌海高新技术产业开发区低碳产业园内,包括20万千瓦/80万千瓦时储能场区、1座110千伏升压站(含综合楼),项目占地面积100亩,计划总投资近7亿元,建设规模为20万千瓦/80万千瓦时
近日,蓬溪生态环境局对四川省盈达锂电新材料有限公司10万吨/年锂离子电池正极材料磷酸铁锂前驱体技改项目进行环评公示。项目位于四川蓬溪经济开发区,投资3000万元在现有厂区内进行技术改造,最终形成年产10万吨锂离子电池正极材料磷酸铁锂前驱体的生产能力。资料显示,四川省盈达锂电新材料有限公司
美国海岸警卫队拍摄的“MorningMidas”号近日,持续燃烧十余天的汽车运输船“MorningMidas”号最终沉没,此次事故再次将电动汽车海上运输的火灾风险推至舆论焦点。国际船舶管理公司ZodiacMaritime当地时间6月24日发布声明称,旗下的“晨曦迈达斯”号(MorningMidas)滚装汽车运输船因火灾导致船体进水
北极星储能网获悉,6月26日,平顶山市恒展100MW400MWh独立共享储能电站项目工程总承包中标候选人公示。第一中标候选人为中车株洲电力机车有限公司,投标报价47888.0849万元,折合单价1.197元/Wh;第二中标候选人为湖南省工业设备安装有限公司,投标报价49232万元,折合单价1.231元/Wh;第三中标候选人
北极星储能网获悉,2025年6月26日晚,小米“人车家全生态”发布会在北京盛大召开。小米集团创始人、董事长兼CEO雷军在会上宣布,小米汽车旗下首款SUV车型——小米YU7正式上市小米YU7共推出三个配置版本,分别为标准版、Pro版和Max版,售价区间为25.35万至32.99万元。此外,小米SU7Ultra赛道专业套装和
北极星储能网获悉,6月18日,安克创新与宁德新能源正式签署战略合作协议,战略提升双方的电芯采购合作关系。根据协议,安克创新将把ATL作为核心充电宝电芯供应商,从ATL锁定采购首批4500万片高能量密度锂离子电芯。
6月26日,工业和信息化部办公厅印发《关于深入推进工业和信息化绿色低碳标准化工作的实施方案》的通知,通知指出,产品碳足迹核算规则标准。按照急用先行原则,优先聚焦钢铁、电解铝、水泥、化肥、氢、石灰、玻璃、乙烯、合成氨、电石、甲醇、锂电池、新能源汽车、光伏和电子电器等重点产品,以及其他
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
北极星储能网获悉,6月13日,新疆自治区发展改革委与国网新疆电力有限公司联合印发《关于提高新能源发展韧性加快构建新型电力系统的通知》(新发改能源〔2025〕327号),其中明确提出:在调峰辅助服务补偿上限由0.7元/千瓦时下调至0.262元/千瓦时的基础上,新疆电力现货市场结算试运行期间,电力调峰市
2025年6月19日,欧洲议会在法国斯特拉斯堡通过《清洁工业协议决议》及《电网自主倡议报告》,旨在推动欧盟工业脱碳进程并提升能源系统灵活性。《清洁工业协议决议》核心内容该决议聚焦工业部门的绿色转型,提出以下措施:能源成本降低:通过《可负担能源行动计划》推广清洁能源,目标到2030年将欧盟能
内蒙古华电氢能科技有限公司实施的工业天然气掺烧绿氢示范项目天然气掺烧绿氢排放物降低20%以上!这一突破性成果不仅有效助力自治区绿氢“制储输用”全产业链发展,同时也为包头市零碳能源转型注入强劲动能。在华电氢能工业天然气掺烧绿氢示范项目现场,各类设备有条不紊地运转着,制氢站集控室内,工
今年6月25日是全国低碳日,主题是“碳路先锋、绿动未来”。近年来,江苏积极践行绿色低碳理念,有效发挥城市、园区、企业等不同主体的主动性和创造性,探索行之有效的经验做法,形成了一批可操作可复制可推广的发展模式和典型经验。现推出江苏绿色低碳发展创新实践企业篇:南京钢铁股份有限公司南钢积
北极星储能网获悉,6月27日,国缆检测发布投资者关系管理信息,主要介绍公司业务及未来发展方向。公司表示,作为公司拓展业务领域跨出线缆检测的方向之一,公司新培育电化学储能检测业务,目前主要围绕液流电池的材料、电堆、电池系统等进行能力建设,未来根据市场需求和公司业务实际等情况,探索向储
近日,阿拉善盟能源局发布《关于内蒙古华电腾格里400万千瓦风电项目核准延期的通知》。《通知》指出,内蒙古华电腾格里400万千瓦风电项目建设单位为内蒙古华电腾格里绿色能源有限公司,项目总投资1861464万元。该项目新建风电装机容量400万kW,采用7.0MW及以上风力发电机组;配套建设8座220kV升压站和3
6月23日,浙江省瑞安市发展和改革局发布关于公开征求《瑞安市本级2025年度迎峰度夏(冬)电力保供补贴实施方案(征求意见稿)》意见的公告,瑞安市电力保供前置措施(移峰填谷、集中检修,下同)执行期间,对工业企业开展电力保供用电生产进行补助。错避峰补贴:对参与电力紧张时段有效压降的工业企业
今天起,全国各地陆续公布2025年高考分数线,成绩“出炉”后,如何选择院校及专业?中关村储能产业技术联盟(CNESA)对当下热门专业——储能科学与工程进行了解读,包括专业特点、院校选择、就业前景与发展潜力、重点高校专业培养特色等方面进行了梳理和更新,供考生和家长决策参考。专业背景与战略意
作者:汪红辉1,3李嘉鑫1,3储德韧1,2,3李彦仪1,3许铤2,3单位:1.上海化工研究院有限公司;2.上海化工院检测有限公司;3.工信部工业(电池)产品质量控制和技术评价上海实验室引用本文:汪红辉,李嘉鑫,储德韧,等.磷酸铁锂电池存储失效机理及热安全性研究[J].储能科学与技术,2025,14(5):1797-1805.DOI:10.1
近期,多座储能电站获最新进展,北极星储能网特将2025年6月16日-2025年6月20日期间发布的储能项目动态整理如下:宁夏两座长时储能电站并网投运近日,宁夏两座长时储能电站——枣园第一储能电站和麦垛山第一储能电站日前相继在中卫市并网投运。位于中宁工业园区内的枣园第一储能电站,作为宁夏电网首座
北极星储能网获悉,6月19日,化德县人民政府办公室消息,化德县电网侧独立储能示范项目施工现场本月底基础建设将完成90%。内蒙古乌兰察布化德县电网侧独立储能示范项目采用“电化学储能+氢储能”双重储能方案。项目规划建设一座总装机容量100兆瓦/400兆瓦时的新型集中式电网侧储能电站。其中,电化学储
北极星储能网讯:6月17日,广州市发展和改革委员会公示广州市节能减排技术应用典型案例(2025年),本次入围9个,与能源相关的3个,包括光储充氢、综合能源等。其中广州发展新能源集团股份有限公司申报的广州发展南沙电动汽车充电站光储充一体式站点项目入围。广州发展南沙电动汽车充电站光储充一体式
近日,采日能源成功助力浙江省用户侧储能项目接入省级电化学储能管理平台,此举标志着采日能源已具备接入省级平台的技术条件,未来可助力更多储能项目完成接入并网工作。政策引导,统一接入势在必行2024年12月,浙江省能源局发布《关于启用浙江省电化学储能管理平台加强储能项目管理工作的通知》,要求
内蒙古华电氢能科技有限公司实施的工业天然气掺烧绿氢示范项目天然气掺烧绿氢排放物降低20%以上!这一突破性成果不仅有效助力自治区绿氢“制储输用”全产业链发展,同时也为包头市零碳能源转型注入强劲动能。在华电氢能工业天然气掺烧绿氢示范项目现场,各类设备有条不紊地运转着,制氢站集控室内,工
最近《人民日报》通过专访任正非对外释放了重要信号。其中也讲到了,AI竞争的背后,是要有充足的电力、发达的信息网络,而中国有这样的优势。可以说,AI的尽头是算力,算力的尽头是电力,这已成为科技行业的共识。本期「电网深谈」邀请了阿里云能源行业首席架构师黄振、浙江省电力负荷管理中心孙钢、浙
为进一步贯彻落实《氢能产业发展中长期规划》要求,引导行业健康有序发展,国家能源局组织行业相关机构和专家编制了《中国氢能发展报告(2025)》(以下简称《报告》)。4月28日,国家能源局能源节约和科技装备司副司长徐继林在解读《报告》时称,发展氢能产业对加快规划建设新型能源体系,实现碳达峰
北极星氢能网获悉,6月20日,象山县人民政府发布了《关于印发象山县低空经济“百岛千航”实施方案(2025—2030年)的通知》。《通知》提出:主要目标产业发展初具规模。培育壮大一批具有市场竞争力的低空经济企业,着力构建以生产重载长航时低空运载器为主体,以低空安全监测、数据通信及动态感知一体
今年6月25日是全国低碳日,主题是“碳路先锋、绿动未来”。近年来,江苏积极践行绿色低碳理念,有效发挥城市、园区、企业等不同主体的主动性和创造性,探索行之有效的经验做法,形成了一批可操作可复制可推广的发展模式和典型经验。现推出江苏绿色低碳发展创新实践企业篇:南京钢铁股份有限公司南钢积
北极星氢能网获悉,6月18日,龙海区人民政府与厦门大学嘉庚创新实验室就“海上未来能源科学中心——厦漳海岛绿氢科研示范工程”进行签约,双方将打造可再生能源与氢能全方位综合利用解决方案和示范场景,共同开展关键技术攻关、高层次复合型人才培养和产业应用示范推广工作。据悉,该项目选址落地龙海
6月27日,云南勐腊县2025年第一批集中式光伏发电项目投资主体优选中选结果公布,中标人为华能澜沧江水电股份有限公司。本项目划分为3个标段,项目规模合计340MW,项目建成时限均为8个月,项目投资人负责项目的开发、并网投产的全部资金筹措,项目建设过程中的招投标管理、项目建设管理、项目并网、运营
6月25日,宁德时代与浙江省海港投资运营集团有限公司(以下简称“浙江省海港集团”)在宁德签署战略合作协议。双方将聚焦低碳港区与园区建设、船舶电动化、港口机械设备电动化和重卡充换电、仓储物流、电池回收等方面,共同探索并实践港口物流领域的“产业新能源化”发展路径,助力港口智慧绿色转型。
在祖国北疆,内蒙古乌兰察布广袤的大地上,成片的光伏板如蓝色海洋泛起涟漪。不远处,一排近百米高的风电机组擎天而立,勾勒出一幅壮美的绿色画卷。四个月前,蒙西电力现货市场转入正式运行。作为全国首个实现新能源全电量入市的现货市场,蒙西地区以“发用双侧全电量参与”“日前预出清+实时市场”等
为推动国家能源规划、政策和项目落实,按照国家能源局规划监管工作要求,湖南能源监管办建立健全湖南“十四五”能源规划重点项目建设进度监测机制,分月开展监测分析,督促协调重点项目按规划推进落实。现将2025年6月监测情况简要通报如下:截至2025年5月底,纳入监测机制的能源建设项目计划投资共3395
近期,多座储能电站获最新进展,北极星储能网特将2025年6月23日-2025年6月27日期间发布的储能项目动态整理如下:国内首座大型锂钠混合储能站黑启动试验成功近日,南方电网公司在位于文山壮族苗族自治州的国内首座大型锂钠混合储能站——丘北县宝池储能站圆满完成国内规模最大、电压等级最高的构网型储
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!