登录注册
请使用微信扫一扫
关注公众号完成登录
图 1 嵌入化合物电极中 Li+脱出和嵌入过程的典型电化学 阻抗谱
2.2 表观化学扩散系数的测量
式中,ω 为角频率,B 为 Warburg 系数,DLi 为 Li 在电极中的扩散系数,Vm 为活性物质的摩尔体积,F 为法拉第常数,(F=96487 C/mol),A 为浸入溶液中参与电化学反应的真实电极面积,dE/dx 为相应电极库仑滴定曲线的斜率,即开路电位对电极中 Li 浓度曲线上某浓度处的斜率。
2.3 电池材料的导电性测试
除了 2.1 和 2.2 中介绍的电极过程动力学和表观化学扩散系数的测量之外,电池研究中,非常重要的一类研究工作集中在测试电池材料的导电性;包括电极材料(粉末、单颗粒、多孔电极、薄膜电极)、电解质材料(液体电解质、固体陶瓷电解质、薄膜电解 质)、隔膜材料等。由于不同电池材料的物理形态及 物化性质各不相同,因此,在具体测试材料的导电特 性时使用的电极体系及电极构型也略有差异。总的来说,主要包括阻塞和非阻塞两种测试体系.
3 EIS 测试设备及数据拟合
用于电化学阻抗谱测试的设备及用于数据拟合的软件门类较多,如 IM6、Solartron、Autolab、Novo control、辰华等;常见的用于 EIS 数据处理的软件有 Zview、ZSimpWin、EIS300、LEVMW、Impedance spectroscopy、Autolab Nova 等。典型的用于 EIS 测 试的电化学工作站其规格参数如表 1 所示。
由表 1 可知,不同的设备,在测试精度,量程、 电压范围、测试通道的数量、频率范围等方面存在较大的差别。由于锂离子电池电极过程动力学测试涉及的频率范围较为宽广(μHz-MHz),从高频到低频,可能涉及电感、电容和电阻多元串并联组合 特性;实际测量对测试环境如湿度、温度、电磁屏 蔽等要求较高,因此,具体测试过程在设备选用时需要结合实践及理论知识进行。
3.1材料的 EIS 测试
以 Autolab 电化学工作站为例,介绍无机玻璃 陶瓷电解质样品的测试工步,如图 3 所示。
No.8 启动测试
No.9 数据保存
工步 1:按图 2(步骤 1)所示连接测试线,红 -红-红,黑-黑-蓝,绿-绿;将试样按正负极夹好, 陶瓷片不区分正负极;关闭屏蔽箱(步骤 2),依次 打开工作站和放大器电源,打开 Nova 2.1 软件。单击 Open library 选项后,选择 FRA impedance potentiostatic 选项卡。
工步2:单击Autolab control选项,将Bandwidth 选项设置为 High stability,单击 FRA measurement 选项,将 First appli 选项设置为 1E+06,将 Last appli 选项设置为 1,Nunber 设置为 20per decade(取点 密度视具体需要设定),单击三角形按钮,选择 ok,开始测量。
工步 3:测试完毕后,单击 File 选项卡,单击 Save FRA impedance potentiostatic as 选项,选择保 存位置,单击保存(save);重复测试,如测试完毕, 先关闭测试软件,再关闭放大器电源,最后关闭工 作站电源。
注意事项:① 测试过程保持屏蔽箱关闭状态;② 安装测试样品过程需佩戴塑胶手套;③ 测试过 程中尽可能保持移动电话等设备远离屏蔽箱。
3.2 EIS 数据拟合流程
以 Autolab 软件为例,介绍 EIS 数据拟合工步, 如图 3 所示。
工步 1:打开 Nova 2.1 软件,单击 Import data 选项,选择需要打开的文件,单击打开按钮。
工步 2:单击 FRA measurement 选项,然后单击显微镜按钮,单击第一项 Electrochemical circle fit,再单击第二项 Fit and simulation,双击 Electrochemical circle fit,用鼠标滚轮放大或缩小图,单击选取第一个弧线上的 8 个点,使生成的 曲线和弧线基本吻合,单击 Copy 后,单击返回箭头。
工步 3:单击 Fit and simulation,将窗口最大化,将 Properties 选项卡拉大,选择 Edit,按 Ctrl+V, 点击连接处断开 Rp连接,在空白处单击右键,选择 Add element,选择 Constant Phase Element(Q),拖动到连接处使电路连接,选择 Tools,选择 Run Fit and Simulation,记录 Rs,Rp和误差(χ2)数值。如圆片试样,需要记录试样厚度、重量、直径。
注意事项:若处理误差(χ2)数值大于 0.1,需 要单独记录,并重新拟合分析。
4 数据及案例分析
通过电化学阻抗谱测试,可以获得锂离子电池 电极过程动力学参数,如 SEI 的生长规律,包括不同 SOC、温度及循环周次、SEI 阻抗的变化;同时 可以测试 Rct 的变化及传质过程;除此之外,还可 以测试电极、电解质、隔膜等材料的电导率、离子 迁移数、表观化学扩散系数等。合理的使用 EIS 可以帮助研究人员更好的理解电池,提升电池研发的水平。以下结合具体的案例介绍 EIS 在锂离子电池中的应用。测试及分析对象包括单颗粒、半电池、全电池、 电极材料、电解质材料、隔膜材料、着重讨论电池 中 SEI 的生长规律, Rct阻抗的变化特性、不同温度、 循环周次、阻抗的变化和 SOC 之间的关系等。
4.1 电子导电性测试
构成锂离子电池的电极材料通常为混合导体,即同时具备电子和离子导电特性;电子和离子导电 特性的良莠对于电池的电化学性能影响非常显著, 因此,测量电子和离子电导率尤为重要。以电子电导率测试为例,为了准确测量电极材 料的电子导电特性,需要选用规整的样品进行测试, 如薄膜电极或致密陶瓷结构。通常,测量电极材料 的电子电导率使用粉末电阻仪进行测试,如日本三菱化学粉末电阻仪。这类测试方法获得的结果与粉末的压实密度正相关,因此,很难测定材料的本征导电特性。
除了粉末电阻仪,电化学阻抗谱在测试电极材 料的电子电导率方面也有重要的应用。YANG 等基于 SPS 技术制备了致密度高达 97%的陶瓷电极材料(LiCoO2,NMC-333,532,622,811);并在陶瓷材料的两端溅射 Au 作为工作电极,进行线 性V-I 和电化学阻抗谱测试研究,测试原理如图5(a) 所示。
图 4 块状样品电子电导率和离子电导率的测试方法, (a) 测试样品示意图,样品两侧为离子阻塞电极;(b)典型的 EIS 测试数据 Nyquist 图,由电子和离子的并联电路构成;(c)直流极化曲线和伏安特性曲线,斜率为电子电阻
图6展示了不同组成的正极材料变温V-I 曲线,直线的斜率代表电子电导率。对比图 6 中的 5 组测试结果可知,随着 Ni 含量的提高,正极材料的电子导电性在提升。为了进一步研究不同组成正极材料离子电导率的差别,YANG 等测试了不同温度下, 各组分陶瓷正极材料的电化学阻抗谱。如图 7 所示, 通过数据拟合分析可知,随着 Ni 含量的提升,正极材料的离子电导率也在显著的提升,而从 EIS 图谱 中剥离出来的电子电导率,其测试结果同使用线性伏安方法测试结果基本一致。这表明,通过交流阻抗技术结合直流极化测试可以提取、区分电极材料的电子电导率和离子电导率。
图 5 直流极化或伏安特性曲线,用来测试钴酸锂和三元 NMC 的电子电导率。(a)钴酸锂;(b)NMC333;(c)NMC532;(d)NMC622;(e)NMC11;(f)与温度关联的电子电导率
图 6 钴酸锂和三元 NMC 的 EIS 测试结果20~100 ℃。(a)钴酸锂;(b)NMC333;(c)NMC532;(d)NMC622;(e) NMC811;(f)与温度关联的离子电导率
4.2 离子导电性测试
4.2.1 无机固体电解质
无机固体电解质是一类非常重要的快离子导电材料,在固态电池及固体传感器等器件中有着重要的应用。准确测量这类电解质材料的离子导电特性具有非常重要的意义。以 NASICON 结构快离子导体 LAGP 为例,介绍无机快离子导体电导率的测试 方法及可靠性。LING 等通过高温固相法制备了不同致密度 的 LAGP 玻璃陶瓷片,通过离子溅射仪在陶瓷片的两侧制备了 Au 薄层作为工作电极,使用 Novo control-Beta工作站,测试了陶瓷片的变温EIS曲线,测试结果如图 8 和图 9 所示。由图 8 可知,LAGP 陶瓷片的电导率,无论是总电导率,还是体相电导率,或者是表观晶界电导率,与温度之间的关系均很好的符合阿仑尼乌斯关系式。图 9 展示了不同致密度的陶瓷片在 233 K 时的阻抗谱,由图 9(d)可知,陶瓷片的体相电导率是本征量,与陶瓷片的表观几何参数及致密度等没有 切的关系,即使致密度从 65%变化到 91%,陶瓷片的体相电导率变化仍然非常小关系式.
图 7 无机固体电解质 LAGP 的阿仑尼乌斯曲线
图 8 不同温度烧结的 LAGP 陶瓷片阻抗谱(233 K)及电导率和 Cgb/Cbulk的比值关系
图 8 展示了不同质量比复合电解质膜的变温电导率曲线,由图 10 可知,高离子导电性的无机硫化物电解质的引入提升了复合电解质的总电导率,和纯 PEO 聚合物电解质相比,Li+迁移数也获得进一步的提升。
图 9复合电解质膜的变温电导率
4.2.3 薄膜电解质
图 10展示了采用上、下电极方式测试薄膜电导率的示意图及 N 掺杂 Li3PO4薄膜电解质 LiPON 的 SEM 表面及断面形貌图。图 11 展示了 LiPON 薄膜电解质的室温阻抗谱。从图 11中可以看出,阻抗谱由有一个规整的体相半圆响应和具有阻塞效应的容抗弧组成。
图 11 三明治结构薄膜电极用于 LPON 电导率的测量及 LPON 薄膜电解质的 XRD 和 SEM 表面及断面形貌
图11 LiPON 薄膜电解质在22 ℃时的阻抗谱Nyquist 图
图 12 和图 13 分别展示了使用叉指电极和面内 电极测试薄膜电解质 LLZO 和 LLTO 电导率的示意。
图及变温电导率曲线,其中图 14 展示了使用面内工作电极测试 LLTO 电导率的阿仑尼乌斯曲线。图 14 的测试结果显示 LLTO 的电导率和温度的关系很好的符合了阿仑尼乌斯关系式,由此可知,面内电极 EIS 测试可以很好的表征材料离子输运和温度之间的线性关系。
图 12 叉指电极用于 LLZO 薄膜电解质电导率测量
4.3 单颗粒 SELMAN 等运用不锈钢微电极和电化学阻
抗谱研究了高温(2800 ℃)热处理的介孔碳单颗粒中 Li+在嵌入和脱出过程中电极过程动力学信息,如电荷转移、锂离子表观化学扩散系数、SEI 的生长演变和电极电位之间的关系等,测试原理及表观化学扩散系数如图 14、15 所示,研究结论如下。
(1)石墨表面 SEI 阻抗不依赖于电极电位,由此可以推断出,表面 SEI 应该是离子导电行为;
(2)电荷转移电阻随电极电位的变化而变化,但不受阶转变过程的影响,这表明电荷转移过程发生在表面,而电位关联的阻抗变化可能是由于活化过程的影响;
(3)单颗粒 Li+的表观化学扩散系数的变化范 围在 10-6~10-10cm2/s。
图 14 不锈钢微电极用于介孔碳微颗粒电极的集流体
图 15 人造中间相碳微球在不同电位 vs. Li+/Li 下表观化学 扩散系数
4.4 三电极
三电极阻抗谱原理示意图如图 16 所示。WAN 等通过对比两电极和三电极的 Li/C 电池体系的 EIS 测试结果,研究了两电极阻抗和三电极阻抗的差别。研究结果表明,全电池(full cell)及两电极电池的阻抗谱为三电极阻抗谱之和,如图 17 所示, 通过系统的两电极与三电极的测试研究,WAN 等 得出了如下结论。
(1)在两电极研究中,两电极对称电池阻抗是必要的参考数据,如图 19 和图 20 所示,从对称电池阻抗谱上可以提取单个电极的信息;
(2)感应涡流在碳电极阻抗谱的低频区域出 现,随后在首次的锂潜入过程中,又消失了,如图 18 所示,这可能表明在电极电解液界面可能存在吸 附和脱附过程;
(3)对于内阻比较小的体系,容易在高频区出 现诱导电感现象,这些背景信号需要剔除,才可以 正确的分析阻抗谱数据;
(4)两电极阻抗等于三电极阻抗谱中正极部分 和负极部分的阻抗之和;(5)电池中的阻抗可能主要来源于正极。
图 16 三电极电池结构示意图
图 17 三电极电池用于测试锂离子首次潜入碳材料中的 阻抗
图 18 三电极开路电压状态下的阻抗谱
4.5 SEI的生长演化特性
JOW 等运用常规两电极 EIS 研究了石墨负极表面 SEI 的生长规律,测试体系为 Li/石墨半电池,非原位阻抗测试结果及拟合电路如图 21、22 所示,研究结果如下。
(1)石墨半电池的 EIS 阻抗严重依赖于电极电位,即锂化状态,根据 RSEI和 E 之间的关系可知,石墨负极表面的 SEI 形成过程主要分两个电位区间,第一个电位区间在 0.15 V 以上,在这个电位区间内,SEI 的导电性比较差;第二个电位区间在 0.15 V 以下,这个区间 SEI 呈现出高导电特性;
(2)对于一个完整的电池,RSEI 随着充电和放电过程,其大小在可逆的发生变化,这主要归因于石墨的体积膨胀和收缩;
(3)在第二个电位区间,RSEI 的大小和电压之间的关系主要有两个影响因素。第一,形成高导电相的 SEI,这直接显著的降低 RSEI 阻抗;第二,石墨体积的膨胀导致了 SEI 阻抗的增加;
(4)首次锂化及 SEI 的形成对电解液的组分及配方非常的敏感。总的来说,溶剂和盐的反应活性越高,SEI 的阻抗越大,另外,SEI 的阻抗在首次锂化过程对微量的添加剂如 VC 非常的敏感。
图 19首次脱锂过程,锂/石墨半电池在不同电压的 阻抗谱
图20锂/石墨半电池在0.05 V电位下的阻抗谱及等效拟合电路
4.6 弛豫时间分布技术DRT在解析SEI生长规律中的应用
FRIEDRICH等结合了两电极和三电极阻抗测试,研究了石墨负极在不同荷电态 SOC、不同温度下SEI成膜特性,测试结果如图 21~图 23所示。并对电池中可能存在的电化学过程做了假设,建立了电极过程动力学模型,如图 22 所示,研究结果如下。
(1)通过对比两电极和三电极测试结果,发现石墨首次锂化过程中,在电压范围在 0.8~0.3 V 的 区间内,出现了 SEI 膜的峰值,这一最大值在第 2 圈的锂化过程中并没有出现,这可能是由于首圈形 成的 SEI 在第 2 圈的时候,促进了 Li+的去溶剂化, 而 SEI 阻抗的逐渐减小过程标志着 SEI 在逐步形成 完整膜的过程;
(2)温度相关的阻抗测试结果表明,在 -20~45 ℃之间,总阻抗随着温度的升高在逐渐减 小;这主要归因于温度的升高使电解液的电导率得 到提升,SEI 的电导率也获得了提升;同时,Rct过 程也变得更加迅速。但在 55 ℃以上,总电阻和 45 ℃时的总电阻相比,阻抗有所增加。这表明,温度过高诱导了副反应,导致阻抗增加;
(3)在 0~45 ℃之间,从第 1 周到第 2 周,SEI 的阻抗随着温度的升高在减小,但在 0 ℃以下,从 第 1 周到第 2 周,SEI 的阻抗有所增加。这表明,在低温下,首周不能形成致密的 SEI 膜。
图 21 石墨负极首次和第二次嵌锂过程阻抗谱如图(a)和(b)所示;(c)和(d)分别展示了首次和第二次锂化过程的 弛豫时间谱
图 22(a)展示了阻抗谱特征频率点,不同电化学过程和关联的阻抗谱元件及相应区域显示在(b)中;(b)展示了半电 池的阻抗分析和响应区域;蓝色的并联电路表示电流导电行为,这种电流存在于电极和集流体之间,红色的并联电路表示的是 SEI 的影响,绿色的并联电路表示的是负极电荷转移过程,橘黄色阻抗谱元件表示的是扩散及离子潜入过程,此外,欧姆阻抗和导体导电行为,(a)中欧姆阻抗来源于 Celgard 的三层隔膜电阻
图 23 石墨负极对金属锂电位在 0.5V 附近时,不同温度下的阻抗谱, (a)显示的第一周锂化过程;(b)展示了第二周锂 化过程;(c)和(d)展示列了周和第二周锂化过程的弛豫时间分布图
5 结语
电化学阻抗谱是一种重要的电化学测试方法,在电化学领域尤其是锂离子电池领域具有广泛的应 用,如电导率、表观化学扩散系数、SEI 的生长演 变、电荷转移及物质传递过程的动态测量等。合理的使用 EIS 可以帮助研究人员更好的理解电池,提 升电池研发的水平。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月30日,宁夏电投永利(中卫)新能源有限公司300万千瓦光伏基地项目300MW/600MWh储能电站EPC工程招标公告发布,项目位于宁夏回族自治区中卫市沙坡头区常乐镇,光伏基地储能工程拟建形式为电源侧储能,储能项目包含3座储能电站,分别设置于三座新建330kV升压站内。每座升压站的储能设施容量均为100MW/2
北极星储能网获悉,4月30日,星云股份发布投资者活动关系记录表。针对未来行业发展前景,公司表示,随着全球对减少温室气体排放和应对气候变化的共识加深,新能源的需求持续增长,电动化应用场景不断丰富,电动飞机、电动船舶、机器人等诸多新型应用场景层出不穷,固态及半固态电池技术也陆续取得突破
5月6日,中国电建水利水电第十二工程局有限公司发布中国电建水电十二局凉山盐源牦牛坪光伏发电项目升压站EPC工程项目68MW/136MWh构网型储能采购项目招标公告,项目位于四川凉山,本次采购的范围为额定容量68MW/136MWh储能系统所需设备的供货及指导安装,包括电池系统(集装箱形式)、储能变流、箱变、
欧洲最大的锂电池企业Northvolt破产后,一系列后续问题接踵而至。5月5日,沃尔沃旗下锂电池公司NOVOEnergy宣布启动深度重组计划,将采取措施降低成本并调整运营规模,这将导致50%的员工面临裁员。据了解,此次裁员涉及多个部门,仅保留关键技术团队及首期工厂运维人员。其位于瑞典谢莱夫特奥的首期电池
北极星储能网获悉,4月30日,海目星发布2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”行动方案。其中提到,公司深度参与新一代锂电池技术固态电池设备的开发,与某固态电池的技术领军企业达成5年期战略合作协议,并签订了价值4亿元的2GWh固态电池设备量产订单,成为了行
2025年,锂电池行业发生关键性转折的一年,多年后回望,也许你会发现2025年将成为诸多技术产品的爆发元年。其中,固态电池、硅碳负极、高压密磷酸铁锂、9系超高镍、磷酸锰铁锂、无极耳大圆柱、兆瓦超充、盐湖提锂、新型钠电池,以及更加安全的锂电池系统,以上10大技术和对应产品将推动新能源产业的快
北极星储能网讯:4月30日,国家电投2025年度第一批5GWh储能系统中标候选人公示,海博思创、融和元储、新源智储、天合储能、中车株洲所、天诚同创6家企业入围。整体报价为0.422-0.477元/Wh。据悉,此次集采规模共5GWh,其中标段一集中式4GWh,标段二组串式1GWh。其中,集中式储能系统的中标候选人分别为
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂电产业链上市公司高质量发展白皮书(2025年)》。白皮书统计数据显示,2024年度,纳入EVTank研究范围的140家锂电产业链上市公司合计营业收入达到21842.54亿元,合计研发投入达到1235.33亿元,行业总体研发投入占营业收入的比重达到5.66%。从
近期,多座储能电站获最新进展,北极星储能网特将2025年4月27日-2025年4月30日期间发布的储能项目动态整理如下:65MW/100MWh!广东韶关市浈江区首个电网侧独立储能站开工4月25日上午,广东韶关浈江独立储能项目开工奠基仪式在国粤(韶关)电力有限公司举行。该项目由广东电网能源投资有限公司与国粤(
4月25日,四川省天府锂业有限责任公司成立,注册资本5亿人民币,经营范围包括矿产资源勘查、非煤矿山矿产资源开采、非金属矿及制品销售等。值得注意的是,该公司由四川省自然资源投资集团有限责任公司全资持股,后者是四川省自然资源领域省管国有资本投资公司,集团资产总额近343亿元。可以说,新公司
日前,河北张家口南山汽车产业基地与三维(陕西)电池技术有限公司举行三维固态特种电池生产基地项目签约仪式。项目将建设第四代智能化电池工厂,计划总投资10亿元,总占地70亩,规划建筑面积10.2万平方米,分两期实施。其中,一期投资6亿元,二期投资4亿元,预留产能扩展空间。建成后可新增1GWh三维固
据北极星氢能网不完全统计,4月共计16个氢能项目传来消息,涉及氢能制储输用多个领域,详情如下:签约4月,甘泉堡经济技术开发区(工业区)与江苏富仕宝新能源科技有限公司签订投资协议,建设绿氢智慧能源一体化示范项目。项目建成后,可实现年产15万吨绿氢、60万吨绿色甲醇和40万吨绿氨项目。据了解,
在全球能源转型的大背景下,可再生能源的大规模接入给电力系统带来了诸多挑战。储能作为一种能够实现电能时间维度转移的关键技术,对于提升电力系统的灵活性、稳定性和韧性具有重要意义。同时,随着电力市场改革的不断推进,储能参与电力市场交易成为其实现商业化运营的重要途径。因此,深入研究储能参
4月25日,浙江华昱欣科技有限公司(以下简称“华昱欣”)、国网浙江省电力有限公司营销服务中心电力负荷管理室(以下简称“国网浙江营销服务中心”)、浙江华电器材检测研究院有限公司能源低碳研究所(以下简称“华电检测研究院”)正式签署技术合作框架协议,标志着三方将在能源综合利用领域开展深度
4月23日,由中国能建中电工程投资、江苏院参股,江苏院、辽宁院EPC总承包,江苏电建一公司施工总承包,西北电力工程监理有限公司监理的国家第二批大型风电光伏基地项目——中能建共和100万千瓦光伏光热项目开工建设。该工程是青海省能源领域重点项目,位于青海省海南州共和县绿色产业发展园区光伏园区
北极星氢能网获悉,4月19日,中船海装风电有限公司以5.5亿元预中标内蒙古华电孪井滩60万千瓦风光制氢一体化项目配套风电设备采购。规划建设40万千瓦风电、20万千瓦光伏、90Mw/90Mmh电化学储能及4.5万标方/小时电解水制氢设施。
作为支撑新能源大规模、高比例消纳的重要手段,服务新型电力系统和新型能源体系构建的重要装备,以及融入电力“源网荷储”和能源产供储销体系的重要环节,储能产业发展已迈入“快车道”。截至2024年底,我国抽水蓄能在运装机规模达5869万千瓦,新型储能装机规模达7376万千瓦/1.68亿千瓦时,同比分别增
4月22日,云南省武定县禄金200MW/400MWh电化学储能电站示范项目在禄金新型工业片区开工建设。据悉,该项目占地约54.79亩,总投资达10.3亿元,建设总装机容量为200MW/400MWh的储能电站1座及其它配套设施建设。该项目建设周期为4个月,计划8月30日投产,采用先进的“磷酸铁锂”电化学储能技术,年放电量
北极星储能网获悉,4月21日,山东省能源局印发《山东省2025年新能源高水平消纳行动方案》,明确提出要开展新型储能提振行动,其中完善储能市场交易机制方面,适当放开现货市场限价,拉大充放电价差。支持储能自主参与实时电能量市场和调频、爬坡、备用等辅助服务市场,建立“一体多用、分时复用”交易
北极星储能网获悉,4月21日,乐山电力在投资者互动平台上表示,截至目前,公司已建成用户侧和台区侧储能示范项目7个,涵盖酒店、纸业、纺织行业;公司在建的龙泉驿区100MW/200MWh电化学储能电站项目正按计划有序推进。
4月21日,华东能源监管局关于征求《关于实施电力本质安全提升工程的工作方案》《关于实施电化学储能电站本质安全提升工程的工作方案》意见的通知。其中指出,实施老旧配电设备升级改造。适应分布式光伏、储能、电动汽车发展,加快配电网发展规划研究,打造“安全高效、清洁低碳、柔性灵活、智慧融合”
4月21日,山东省能源局印发山东省2025年新能源高水平消纳行动方案。文件明确,2025年,完成煤电灵活性改造2000万千瓦左右,建成新型储能300万千瓦,全省新能源利用率保持较高水平。重点任务方面,新能源结构优化行动:1.加快发展风电。快速提升风电装机规模,减少电力系统调节压力。海上风电建成华能半
5月6日,中国电建中南院内蒙古能源集团达拉特旗防沙治沙50万千瓦光伏一体化一期项目光伏支架(Ⅰ、Ⅱ、Ⅲ标)采购项目成交结果公布,I标中标企业为江苏国强兴晟能源科技股份有限公司,II标中标企业为鄂尔多斯市中伏绿能科技发展有限公司,III标中标企业为江西省交工金属构件有限公司。本项目位于在内蒙古
5月6日,重庆市能源局关于市政协六届三次会议第1177号提案的复函中表示为促进农村户用光伏市场健康可持续发展,下一步我局将加快出台《重庆市分布式光伏发电开发建设管理实施细则》,督促指导各区县尽快制定并公开分布式光伏发电项目备案服务指南,优化项目审批流程,加强在建项目监管;持续优化农村地
4月30日,宁夏电投永利(中卫)新能源有限公司300万千瓦光伏基地项目300MW/600MWh储能电站EPC工程招标公告发布,项目位于宁夏回族自治区中卫市沙坡头区常乐镇,光伏基地储能工程拟建形式为电源侧储能,储能项目包含3座储能电站,分别设置于三座新建330kV升压站内。每座升压站的储能设施容量均为100MW/2
北极星储能网获悉,4月30日,星云股份发布投资者活动关系记录表。针对未来行业发展前景,公司表示,随着全球对减少温室气体排放和应对气候变化的共识加深,新能源的需求持续增长,电动化应用场景不断丰富,电动飞机、电动船舶、机器人等诸多新型应用场景层出不穷,固态及半固态电池技术也陆续取得突破
4月30日,《浙江省虚拟电厂运营管理细则(试行)》(以下简称《细则》)正式印发,首次系统明确虚拟电厂从“注册接入-能力认证-运行管理-交易管理-保供管理-退出管理”的全流程闭环管理要求,并依托新型电力负荷管理系统实现资源“可观、可测、可调、可控”,推动虚拟电厂健康运营,助力新型电力系统高
近日,西班牙部分地区出现大规模停电,引发国内媒体广泛关注。有不少报道将矛头指向可再生能源,认为西班牙“过度依赖”风电和太阳能,又“过快退出”煤电和核电,才导致电网不堪重负。这种观点听上去直观易懂,但实则是一种误解。(来源:能源新媒作者:秦旗柳力)系统稳定的关键打个比方:水管爆裂了
5月6日,中国电建水利水电第十二工程局有限公司发布中国电建水电十二局凉山盐源牦牛坪光伏发电项目升压站EPC工程项目68MW/136MWh构网型储能采购项目招标公告,项目位于四川凉山,本次采购的范围为额定容量68MW/136MWh储能系统所需设备的供货及指导安装,包括电池系统(集装箱形式)、储能变流、箱变、
5月6日,深圳市工业和信息化局发布《市工业和信息化局关于征集2025年度国家工业和信息化领域节能降碳技术装备的通知》,征集范围包括重点行业领域节能降碳技术、用能低碳转型技术、工业减碳技术、数字化绿色化协同转型技术、高效节能装备等。全文如下:市工业和信息化局关于征集2025年度国家工业和信息
4月30日,江苏分时电价新政颁布。靴子落地,一时让整个工商业储能圈躁动。最大争论在于,工商业用户分时电价计价基础从下游“到户电价”调整为上游“用户购电价”,尽管浮动比例提高,但峰谷/平谷价差缩小,进而削弱了工商业储能的套利空间。虽然有征求意见稿“打预防针”,但正式落地让“收回成命”的
北极星太阳能光伏网获悉,5月6日,国家电投旗下电投能源发布《关于筹划发行股份及支付现金购买资产并募集配套资金暨关联交易事项的停牌公告》,公告称,国家电投拟以国家电投集团内蒙古白音华煤电有限公司股权与电投能源进行资产重组。电投能源拟通过发行股份及支付现金方式购买国家电投集团内蒙古白音
随着光伏行业的发展,TOPCon技术凭借低成本、高效率、高产业链配合度等多种优势,已明确成为未来5年的主流技术。得益于其高达90%的双面率,TOPCon在沙戈荒大基地等典型双面场景下比BC提高单瓦发电能力1.5%以上,具备更高的综合发电效率。TOPCon高双面率和优异的低辐照性能使得其在全球所有双面场景中,
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!