登录注册
请使用微信扫一扫
关注公众号完成登录
图 1 嵌入化合物电极中 Li+脱出和嵌入过程的典型电化学 阻抗谱
2.2 表观化学扩散系数的测量
式中,ω 为角频率,B 为 Warburg 系数,DLi 为 Li 在电极中的扩散系数,Vm 为活性物质的摩尔体积,F 为法拉第常数,(F=96487 C/mol),A 为浸入溶液中参与电化学反应的真实电极面积,dE/dx 为相应电极库仑滴定曲线的斜率,即开路电位对电极中 Li 浓度曲线上某浓度处的斜率。
2.3 电池材料的导电性测试
除了 2.1 和 2.2 中介绍的电极过程动力学和表观化学扩散系数的测量之外,电池研究中,非常重要的一类研究工作集中在测试电池材料的导电性;包括电极材料(粉末、单颗粒、多孔电极、薄膜电极)、电解质材料(液体电解质、固体陶瓷电解质、薄膜电解 质)、隔膜材料等。由于不同电池材料的物理形态及 物化性质各不相同,因此,在具体测试材料的导电特 性时使用的电极体系及电极构型也略有差异。总的来说,主要包括阻塞和非阻塞两种测试体系.
3 EIS 测试设备及数据拟合
用于电化学阻抗谱测试的设备及用于数据拟合的软件门类较多,如 IM6、Solartron、Autolab、Novo control、辰华等;常见的用于 EIS 数据处理的软件有 Zview、ZSimpWin、EIS300、LEVMW、Impedance spectroscopy、Autolab Nova 等。典型的用于 EIS 测 试的电化学工作站其规格参数如表 1 所示。
由表 1 可知,不同的设备,在测试精度,量程、 电压范围、测试通道的数量、频率范围等方面存在较大的差别。由于锂离子电池电极过程动力学测试涉及的频率范围较为宽广(μHz-MHz),从高频到低频,可能涉及电感、电容和电阻多元串并联组合 特性;实际测量对测试环境如湿度、温度、电磁屏 蔽等要求较高,因此,具体测试过程在设备选用时需要结合实践及理论知识进行。
3.1材料的 EIS 测试
以 Autolab 电化学工作站为例,介绍无机玻璃 陶瓷电解质样品的测试工步,如图 3 所示。
No.8 启动测试
No.9 数据保存
工步 1:按图 2(步骤 1)所示连接测试线,红 -红-红,黑-黑-蓝,绿-绿;将试样按正负极夹好, 陶瓷片不区分正负极;关闭屏蔽箱(步骤 2),依次 打开工作站和放大器电源,打开 Nova 2.1 软件。单击 Open library 选项后,选择 FRA impedance potentiostatic 选项卡。
工步2:单击Autolab control选项,将Bandwidth 选项设置为 High stability,单击 FRA measurement 选项,将 First appli 选项设置为 1E+06,将 Last appli 选项设置为 1,Nunber 设置为 20per decade(取点 密度视具体需要设定),单击三角形按钮,选择 ok,开始测量。
工步 3:测试完毕后,单击 File 选项卡,单击 Save FRA impedance potentiostatic as 选项,选择保 存位置,单击保存(save);重复测试,如测试完毕, 先关闭测试软件,再关闭放大器电源,最后关闭工 作站电源。
注意事项:① 测试过程保持屏蔽箱关闭状态;② 安装测试样品过程需佩戴塑胶手套;③ 测试过 程中尽可能保持移动电话等设备远离屏蔽箱。
3.2 EIS 数据拟合流程
以 Autolab 软件为例,介绍 EIS 数据拟合工步, 如图 3 所示。
工步 1:打开 Nova 2.1 软件,单击 Import data 选项,选择需要打开的文件,单击打开按钮。
工步 2:单击 FRA measurement 选项,然后单击显微镜按钮,单击第一项 Electrochemical circle fit,再单击第二项 Fit and simulation,双击 Electrochemical circle fit,用鼠标滚轮放大或缩小图,单击选取第一个弧线上的 8 个点,使生成的 曲线和弧线基本吻合,单击 Copy 后,单击返回箭头。
工步 3:单击 Fit and simulation,将窗口最大化,将 Properties 选项卡拉大,选择 Edit,按 Ctrl+V, 点击连接处断开 Rp连接,在空白处单击右键,选择 Add element,选择 Constant Phase Element(Q),拖动到连接处使电路连接,选择 Tools,选择 Run Fit and Simulation,记录 Rs,Rp和误差(χ2)数值。如圆片试样,需要记录试样厚度、重量、直径。
注意事项:若处理误差(χ2)数值大于 0.1,需 要单独记录,并重新拟合分析。
4 数据及案例分析
通过电化学阻抗谱测试,可以获得锂离子电池 电极过程动力学参数,如 SEI 的生长规律,包括不同 SOC、温度及循环周次、SEI 阻抗的变化;同时 可以测试 Rct 的变化及传质过程;除此之外,还可 以测试电极、电解质、隔膜等材料的电导率、离子 迁移数、表观化学扩散系数等。合理的使用 EIS 可以帮助研究人员更好的理解电池,提升电池研发的水平。以下结合具体的案例介绍 EIS 在锂离子电池中的应用。测试及分析对象包括单颗粒、半电池、全电池、 电极材料、电解质材料、隔膜材料、着重讨论电池 中 SEI 的生长规律, Rct阻抗的变化特性、不同温度、 循环周次、阻抗的变化和 SOC 之间的关系等。
4.1 电子导电性测试
构成锂离子电池的电极材料通常为混合导体,即同时具备电子和离子导电特性;电子和离子导电 特性的良莠对于电池的电化学性能影响非常显著, 因此,测量电子和离子电导率尤为重要。以电子电导率测试为例,为了准确测量电极材 料的电子导电特性,需要选用规整的样品进行测试, 如薄膜电极或致密陶瓷结构。通常,测量电极材料 的电子电导率使用粉末电阻仪进行测试,如日本三菱化学粉末电阻仪。这类测试方法获得的结果与粉末的压实密度正相关,因此,很难测定材料的本征导电特性。
除了粉末电阻仪,电化学阻抗谱在测试电极材 料的电子电导率方面也有重要的应用。YANG 等基于 SPS 技术制备了致密度高达 97%的陶瓷电极材料(LiCoO2,NMC-333,532,622,811);并在陶瓷材料的两端溅射 Au 作为工作电极,进行线 性V-I 和电化学阻抗谱测试研究,测试原理如图5(a) 所示。
图 4 块状样品电子电导率和离子电导率的测试方法, (a) 测试样品示意图,样品两侧为离子阻塞电极;(b)典型的 EIS 测试数据 Nyquist 图,由电子和离子的并联电路构成;(c)直流极化曲线和伏安特性曲线,斜率为电子电阻
图6展示了不同组成的正极材料变温V-I 曲线,直线的斜率代表电子电导率。对比图 6 中的 5 组测试结果可知,随着 Ni 含量的提高,正极材料的电子导电性在提升。为了进一步研究不同组成正极材料离子电导率的差别,YANG 等测试了不同温度下, 各组分陶瓷正极材料的电化学阻抗谱。如图 7 所示, 通过数据拟合分析可知,随着 Ni 含量的提升,正极材料的离子电导率也在显著的提升,而从 EIS 图谱 中剥离出来的电子电导率,其测试结果同使用线性伏安方法测试结果基本一致。这表明,通过交流阻抗技术结合直流极化测试可以提取、区分电极材料的电子电导率和离子电导率。
图 5 直流极化或伏安特性曲线,用来测试钴酸锂和三元 NMC 的电子电导率。(a)钴酸锂;(b)NMC333;(c)NMC532;(d)NMC622;(e)NMC11;(f)与温度关联的电子电导率
图 6 钴酸锂和三元 NMC 的 EIS 测试结果20~100 ℃。(a)钴酸锂;(b)NMC333;(c)NMC532;(d)NMC622;(e) NMC811;(f)与温度关联的离子电导率
4.2 离子导电性测试
4.2.1 无机固体电解质
无机固体电解质是一类非常重要的快离子导电材料,在固态电池及固体传感器等器件中有着重要的应用。准确测量这类电解质材料的离子导电特性具有非常重要的意义。以 NASICON 结构快离子导体 LAGP 为例,介绍无机快离子导体电导率的测试 方法及可靠性。LING 等通过高温固相法制备了不同致密度 的 LAGP 玻璃陶瓷片,通过离子溅射仪在陶瓷片的两侧制备了 Au 薄层作为工作电极,使用 Novo control-Beta工作站,测试了陶瓷片的变温EIS曲线,测试结果如图 8 和图 9 所示。由图 8 可知,LAGP 陶瓷片的电导率,无论是总电导率,还是体相电导率,或者是表观晶界电导率,与温度之间的关系均很好的符合阿仑尼乌斯关系式。图 9 展示了不同致密度的陶瓷片在 233 K 时的阻抗谱,由图 9(d)可知,陶瓷片的体相电导率是本征量,与陶瓷片的表观几何参数及致密度等没有 切的关系,即使致密度从 65%变化到 91%,陶瓷片的体相电导率变化仍然非常小关系式.
图 7 无机固体电解质 LAGP 的阿仑尼乌斯曲线
图 8 不同温度烧结的 LAGP 陶瓷片阻抗谱(233 K)及电导率和 Cgb/Cbulk的比值关系
图 8 展示了不同质量比复合电解质膜的变温电导率曲线,由图 10 可知,高离子导电性的无机硫化物电解质的引入提升了复合电解质的总电导率,和纯 PEO 聚合物电解质相比,Li+迁移数也获得进一步的提升。
图 9复合电解质膜的变温电导率
4.2.3 薄膜电解质
图 10展示了采用上、下电极方式测试薄膜电导率的示意图及 N 掺杂 Li3PO4薄膜电解质 LiPON 的 SEM 表面及断面形貌图。图 11 展示了 LiPON 薄膜电解质的室温阻抗谱。从图 11中可以看出,阻抗谱由有一个规整的体相半圆响应和具有阻塞效应的容抗弧组成。
图 11 三明治结构薄膜电极用于 LPON 电导率的测量及 LPON 薄膜电解质的 XRD 和 SEM 表面及断面形貌
图11 LiPON 薄膜电解质在22 ℃时的阻抗谱Nyquist 图
图 12 和图 13 分别展示了使用叉指电极和面内 电极测试薄膜电解质 LLZO 和 LLTO 电导率的示意。
图及变温电导率曲线,其中图 14 展示了使用面内工作电极测试 LLTO 电导率的阿仑尼乌斯曲线。图 14 的测试结果显示 LLTO 的电导率和温度的关系很好的符合了阿仑尼乌斯关系式,由此可知,面内电极 EIS 测试可以很好的表征材料离子输运和温度之间的线性关系。
图 12 叉指电极用于 LLZO 薄膜电解质电导率测量
4.3 单颗粒 SELMAN 等运用不锈钢微电极和电化学阻
抗谱研究了高温(2800 ℃)热处理的介孔碳单颗粒中 Li+在嵌入和脱出过程中电极过程动力学信息,如电荷转移、锂离子表观化学扩散系数、SEI 的生长演变和电极电位之间的关系等,测试原理及表观化学扩散系数如图 14、15 所示,研究结论如下。
(1)石墨表面 SEI 阻抗不依赖于电极电位,由此可以推断出,表面 SEI 应该是离子导电行为;
(2)电荷转移电阻随电极电位的变化而变化,但不受阶转变过程的影响,这表明电荷转移过程发生在表面,而电位关联的阻抗变化可能是由于活化过程的影响;
(3)单颗粒 Li+的表观化学扩散系数的变化范 围在 10-6~10-10cm2/s。
图 14 不锈钢微电极用于介孔碳微颗粒电极的集流体
图 15 人造中间相碳微球在不同电位 vs. Li+/Li 下表观化学 扩散系数
4.4 三电极
三电极阻抗谱原理示意图如图 16 所示。WAN 等通过对比两电极和三电极的 Li/C 电池体系的 EIS 测试结果,研究了两电极阻抗和三电极阻抗的差别。研究结果表明,全电池(full cell)及两电极电池的阻抗谱为三电极阻抗谱之和,如图 17 所示, 通过系统的两电极与三电极的测试研究,WAN 等 得出了如下结论。
(1)在两电极研究中,两电极对称电池阻抗是必要的参考数据,如图 19 和图 20 所示,从对称电池阻抗谱上可以提取单个电极的信息;
(2)感应涡流在碳电极阻抗谱的低频区域出 现,随后在首次的锂潜入过程中,又消失了,如图 18 所示,这可能表明在电极电解液界面可能存在吸 附和脱附过程;
(3)对于内阻比较小的体系,容易在高频区出 现诱导电感现象,这些背景信号需要剔除,才可以 正确的分析阻抗谱数据;
(4)两电极阻抗等于三电极阻抗谱中正极部分 和负极部分的阻抗之和;(5)电池中的阻抗可能主要来源于正极。
图 16 三电极电池结构示意图
图 17 三电极电池用于测试锂离子首次潜入碳材料中的 阻抗
图 18 三电极开路电压状态下的阻抗谱
4.5 SEI的生长演化特性
JOW 等运用常规两电极 EIS 研究了石墨负极表面 SEI 的生长规律,测试体系为 Li/石墨半电池,非原位阻抗测试结果及拟合电路如图 21、22 所示,研究结果如下。
(1)石墨半电池的 EIS 阻抗严重依赖于电极电位,即锂化状态,根据 RSEI和 E 之间的关系可知,石墨负极表面的 SEI 形成过程主要分两个电位区间,第一个电位区间在 0.15 V 以上,在这个电位区间内,SEI 的导电性比较差;第二个电位区间在 0.15 V 以下,这个区间 SEI 呈现出高导电特性;
(2)对于一个完整的电池,RSEI 随着充电和放电过程,其大小在可逆的发生变化,这主要归因于石墨的体积膨胀和收缩;
(3)在第二个电位区间,RSEI 的大小和电压之间的关系主要有两个影响因素。第一,形成高导电相的 SEI,这直接显著的降低 RSEI 阻抗;第二,石墨体积的膨胀导致了 SEI 阻抗的增加;
(4)首次锂化及 SEI 的形成对电解液的组分及配方非常的敏感。总的来说,溶剂和盐的反应活性越高,SEI 的阻抗越大,另外,SEI 的阻抗在首次锂化过程对微量的添加剂如 VC 非常的敏感。
图 19首次脱锂过程,锂/石墨半电池在不同电压的 阻抗谱
图20锂/石墨半电池在0.05 V电位下的阻抗谱及等效拟合电路
4.6 弛豫时间分布技术DRT在解析SEI生长规律中的应用
FRIEDRICH等结合了两电极和三电极阻抗测试,研究了石墨负极在不同荷电态 SOC、不同温度下SEI成膜特性,测试结果如图 21~图 23所示。并对电池中可能存在的电化学过程做了假设,建立了电极过程动力学模型,如图 22 所示,研究结果如下。
(1)通过对比两电极和三电极测试结果,发现石墨首次锂化过程中,在电压范围在 0.8~0.3 V 的 区间内,出现了 SEI 膜的峰值,这一最大值在第 2 圈的锂化过程中并没有出现,这可能是由于首圈形 成的 SEI 在第 2 圈的时候,促进了 Li+的去溶剂化, 而 SEI 阻抗的逐渐减小过程标志着 SEI 在逐步形成 完整膜的过程;
(2)温度相关的阻抗测试结果表明,在 -20~45 ℃之间,总阻抗随着温度的升高在逐渐减 小;这主要归因于温度的升高使电解液的电导率得 到提升,SEI 的电导率也获得了提升;同时,Rct过 程也变得更加迅速。但在 55 ℃以上,总电阻和 45 ℃时的总电阻相比,阻抗有所增加。这表明,温度过高诱导了副反应,导致阻抗增加;
(3)在 0~45 ℃之间,从第 1 周到第 2 周,SEI 的阻抗随着温度的升高在减小,但在 0 ℃以下,从 第 1 周到第 2 周,SEI 的阻抗有所增加。这表明,在低温下,首周不能形成致密的 SEI 膜。
图 21 石墨负极首次和第二次嵌锂过程阻抗谱如图(a)和(b)所示;(c)和(d)分别展示了首次和第二次锂化过程的 弛豫时间谱
图 22(a)展示了阻抗谱特征频率点,不同电化学过程和关联的阻抗谱元件及相应区域显示在(b)中;(b)展示了半电 池的阻抗分析和响应区域;蓝色的并联电路表示电流导电行为,这种电流存在于电极和集流体之间,红色的并联电路表示的是 SEI 的影响,绿色的并联电路表示的是负极电荷转移过程,橘黄色阻抗谱元件表示的是扩散及离子潜入过程,此外,欧姆阻抗和导体导电行为,(a)中欧姆阻抗来源于 Celgard 的三层隔膜电阻
图 23 石墨负极对金属锂电位在 0.5V 附近时,不同温度下的阻抗谱, (a)显示的第一周锂化过程;(b)展示了第二周锂 化过程;(c)和(d)展示列了周和第二周锂化过程的弛豫时间分布图
5 结语
电化学阻抗谱是一种重要的电化学测试方法,在电化学领域尤其是锂离子电池领域具有广泛的应 用,如电导率、表观化学扩散系数、SEI 的生长演 变、电荷转移及物质传递过程的动态测量等。合理的使用 EIS 可以帮助研究人员更好的理解电池,提 升电池研发的水平。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,天津容百斯科兰德科技有限公司成功获评“天津市专精特新中小企业”,成为区域内磷酸锰铁锂电池正极新材料领域的领军企业。作为国内磷酸锰铁锂(LMFP)正极材料行业的佼佼者,天津容百斯科兰德科技有限公司凭借数十项发明专利和实用新型专利构筑起坚实的技术壁垒,填补了新能源电池材料领域的多项
2025年1月动力电池月度信息产量方面:1月,我国动力和其他电池合计产量为107.8GWh,环比下降13.4%,同比增长63.2%。销量方面:1月,我国动力和其他电池销量为80.4GWh,环比下降36.5%,同比增长40.8%。其中,动力电池销量为62.9GWh,占总销量78.3%,环比下降34.7%,同比增长24.6%;其他电池销量为17.5GW
北极星储能网讯:2月14日,国家能源集团发布龙源电力祥云龙源新能源有限公司祥云县工业园区200MW/400MWh储能项目EPC总承包招标。该项目拟在云南省大理州祥云县工业园区1号地1座容量为200MW/400MWh的配套共享储能电站,配套新建1座220kV升压站及2回220kV送出线路。储能系统采用磷酸铁锂电池,储能单元采
北极星储能网获悉,近日,位于麻涌新沙南的赣锋锂电年产10GWh新型锂电池及储能总部项目正式吹响新春开工建设集结号,参建各方人员陆续集结到岗、有序复工,快马加鞭推进项目建设。据了解,赣锋锂电(东莞)科技有限公司总投资50亿元,占地面积约325.5亩,总建筑面积约39.5万平方米,建设内容主要有生产
文丨北极星储能网作者丨方秦清稚2月13日,“打一针”就能让锂电池“起死回生”、寿命大增的消息不断刷屏。储能业内也在讨论,这一技术突破,是否将打败抽水蓄能、全钒液流电池,彻底颠覆储能技术市场格局?“打一针”寿命提升1-2个数量级,什么原理?北京时间2月13日凌晨,《自然》(Nature)杂志发表
从手机、电车到储能电站,锂电池在人们生活中无处不在。但由于在使用过程中不断损失锂离子最长寿命都只有6-8年,复旦大学高分子科学系彭慧胜/高悦团队打破锂电池传统设计原则,通过AI和有机电化学的结合,成功设计了一种锂载体分子。让废旧电池“打一针”就可无损修复将锂电池寿命提升1-2个数量级为电
北极星储能网获悉。2月11日。交通运输行业标准《船舶载运锂电池安全技术要求》(2025年第2批)发布,标准编号为JT/T1543—2025,为推荐性标准,自2025年5月1日起实施。其中规定了船舶载运锂电池的分类和编号,锂电池的要求,以及锂电池的包装和货物运输组件、托运、装卸、承运和应急等安全技术要求。适
北极星储能网获悉,投资者互动平台上有用户询问孚能科技美国加关税对公司影响如何,2月10日,孚能科技进行了回答。孚能科技表示,目前公司产品出口地区以欧洲为主,同时在海外产能建设方面,公司为锂电池行业最早布局海外产能的企业之一。公司已与土耳其电动汽车品牌客户TOGG成立合资子公司Siro,其中S
北极星储能网从天眼查获悉,2月9日,杉杉控股有限公司发生工商变更。周婷不再担任董事长、法人代表,职务变更为董事,周顺和为新任董事长、法人代表,孙伟卸任董事职务。据悉,周顺和实际上为周婷的直系亲属。此次杉杉控股董事长及法人代表的调整并不意味着周婷要逃避责任,主要是为了一旦重组,若涉及
北极星储能网获悉,据港交所1月27日披露,江苏正力新能电池技术股份有限公司(简称:正力新能)递表港交所主板,中金公司和招银国际为联席保荐人。招股书披露,正力新能是锂离子电池制造商,开发多元电池产品组合,主要专注于用于电动汽车(EV)的电池产品的销售。公司提供电芯、模块、电池包、电池簇、
北极星储能网获悉,1月22日,广东省人民政府办公厅印发广东省有效降低全社会物流成本实施方案,其中指出,加强省内港口适应“新三样”出口的堆场建设,加快推动滚装码头建设。支持跨境电商含锂电池产品、化妆品出口常态化。推动新能源汽车、光伏等新兴出口产品货物经港珠澳大桥运输。开展新能源汽车物
北极星储能网讯:2月12日,深圳市光明区发展和改革局印发《深圳市光明区支持新型储能产业加快发展扶持计划操作规程》。文件支持的对象包括从事电化学储能、氢能、光储一体等新型储能产业研发、生产和服务的市场主体,以及其他事业单位、社会团体、民办非企业等机构。对于围绕电化学储能领域在光明区投资
北极星储能网获悉,1月24日,白银景泰发展新能源有限公司190MW/760MWh电化学储能电站项目95MW/380MWh电化学储能系统设备招标中标候选人公示。第一中标候选人为许昌许继电科储能技术有限公司,投标报价17105.4784万元,折合单价0.450元/Wh;第二中标候选人为北京海博思创科技股份有限公司,投标报价1773
北极星储能网获悉,1月8日,中国消防协会发布关于对团体标准《电化学储能电站消防安全系统技术细则》的征求意见稿,从电池管理系统和电池热失控预警、火灾报警与联动控制、通风系统等七大方面对电化学储能电站消防安全系统技术提出要求。文件起草单位包含消防公司、科研院所、认证检测机构,国网电力、
北极星储能网获悉,1月20日,泰安市宁阳县伏山镇400MW/800MWh电网侧电化学储能项目储能系统采购及安装的中标候选人公示。浙江兆合贵矿业科技有限公司、宁波富佳实业股份有限公司联合体以72000万元预中标该项目,折合单价0.9元/Wh。该招标人为华夏智慧(浙江)能源有限公司,项目建设地点位于泰安市宁阳县
近日,由中国电建参与设计的世界已完工项目中最大单体电化学储能项目沙特比沙500兆瓦/2000兆瓦时电化学储能项目投产送电将为沙特经济社会发展注入强大动力沙特比沙500兆瓦/2000兆瓦时电化学储能项目是世界目前已完工项目中最大的单体电化学储能项目,对中沙两国在共建“一带一路”倡议下的能源合作具有
北极星储能网获悉,1月8日,江苏消防发布江苏省锂电池生产、储存单位以及电化学储能单位纳入消防安全重点单位范围的界定标准。文件明确,根据新修订的《电化学储能电站设计标准》(GB51048)确定的分类标准,将额定功率为100MW以上的大型电化学储能电站纳入消防安全重点单位。原文及解读如下:江苏省锂
据外媒报道,日前印度太阳能公司(SECI)在喀拉拉邦启动了一项150MW/500MWh储能项目招标。此次招标由印度新能源和可再生能源部(MNRE)管理的国有企业——印度太阳能公司(SECI)发布,投标截止日期为2025年2月4日。此次招标针对的是单一站点电池储能系统,并将获得印度政府提供的可行性缺口资金(VGF
1月1日,巢湖市海螺新能源有限公司发布了巢湖海螺4MW/24MWh电化学储能电站项目PC总承包工程招标公告。该项目招标范围包括电站及其(护)栏、储能系统、接入系统、电力送出工程,以及消防、环保、防雷、防震等项目配套设施。本项目总装机量为4MW/24MWh,项目利用安徽省巢湖市巢湖海螺水泥有限责任公司厂
北极星储能网讯:12月27日,国家住建厅发布国家标准《电化学储能电站施工及验收规范(征求意见稿)》,标准适用于新建、扩建和改建500kW/500kWh及以上,以锂离子电池、铅酸/铅炭电池、液流电池、钠离子电池、水电解制氢/燃料电池为电能存储载体的固定式电化学储能电站施工及验收。参编单位包括国网浙江
2024年12月31日,南方电网调峰调频(广东)储能科技有限公司电网管理平台电化学储能计财域推广实施框架招标。在充分分析财务管理现状和需求的基础上,电网管理平台计财域新增单位库,满足新增单位的计财域系统功能应用及南方电网调峰调频(广东)储能科技有限公司财务业务发展的要求。并委托服务商针对
北极星储能网讯:12月25日,江苏消防公布《江苏省锂电池生产、储存单位以及电化学储能单位纳入消防安全重点单位范围的界定标准(征求意见稿)》,其中明确:拟将额定功率为100MW以上的大型电化学储能电站纳入消防安全重点单位。据悉,此前已有31省市消防安全重点单位界定标准,仅有部分省份将储能电站
2025年伊始,中和储能自主研发的兆瓦级长时液流电池储能系统成功交付欧洲重点项目,标志着公司正式进入欧洲市场。此次交付不仅是中和储能全球化战略的重要里程碑,更标志着中国液流储能技术在国际高端市场实现“零的突破”,为全球能源转型注入“中国智慧”。目前,中和储能已与欧洲能源集团签订战略协
摘要在碳达峰、碳中和的大背景下,储能科学作为一门信息密集、多学科交叉的研究领域,迫切需要新研究方法以应对其日益复杂的难题与挑战。随着人工智能技术的快速发展,大语言模型在文本处理、信息收集与整合、图片与视频生成等领域取得了巨大的成功,其应用也在逐渐延伸至自然科学研究领域,并在提升科
北极星储能网获悉,近日,中国能建江苏院中标国信溧阳10万千瓦/20万千瓦时储能电站项目,包含建设方案、土建施工、设备安装、系统调试及手续办理等。项目位于江苏省常州市溧阳市别桥镇,是常州地区首个启动建设的电网侧储能电站项目。项目拟建设10万千瓦/20万千瓦时储能电站,储能电池舱采用非步入式液
为推动新型储能制造业高质量发展,工业和信息化部、国家发展改革委、教育部、商务部、市场监管总局、国家知识产权局、国家能源局、国家消防救援局等八部门于2025年2月10日联合印发实施《新型储能制造业高质量发展行动方案》(以下简称《行动方案》)。为更好地理解并执行《行动方案》政策文件,现就有
2月17日,工业和信息化部等八部门关于印发《新型储能制造业高质量发展行动方案》的通知,通知指出,推动“光伏+储能”系统在城市照明、交通信号、农业农村、公共广播、“智慧车棚”等公共基础设施融合应用,鼓励构建微型离网储能系统。原文如下:工业和信息化部等八部门关于印发《新型储能制造业高质量
2月15日,在绿色低碳发展加速推进的背景下,中城大有协合高邮周山镇储能电站项目正式开工。该项目是江苏省新型电力系统建设的重要一环,也是中城大有在长三角地区布局的又一标杆性储能工程,将为高邮及周边区域电网稳定性与清洁能源消纳提供重要支撑。中国提出“双碳”目标后,新型储能技术成为破解新
在储能技术的创新浪潮中,技术发展日新月异,行业再添重磅合作。2月13日,北京海博思创科技股份有限公司(简称“海博思创”)与许继电气股份有限公司(简称“许继电气”)签署合作意向书,双方将锚定储能产业前沿领域,重点围绕储能集装箱、液冷管路、线束等产品,以及直流侧、EPC等储能项目开展更广泛
工业和信息化部等八部门印发《新型储能制造业高质量发展行动方案》。到2027年,我国新型储能制造业全链条国际竞争优势凸显,优势企业梯队进一步壮大,产业创新力和综合竞争力显著提升,实现高端化、智能化、绿色化发展。同时文件还明确,新型储能制造业规模和下游需求基本匹配,培育生态主导型企业3—5
北极星储能网获悉,2月17日,三峡物资招标管理有限公司发布大连市庄河海上风电场址Ⅴ项目配套22.5MW/90MWh磷酸铁锂储能系统集中采购中标候选人公示。第一中标候选人为运达能源科技集团股份有限公司,投标报价4005万元,折合单价0.445元/Wh;第二中标候选人为山东电工时代能源科技有限公司,投标报价425
利元亨在投资者交流记录表中表示,公司已实现全固态电池量产全线工艺覆盖,形成包含整线解决方案及关键工段设备的综合能力。预计2026年或有批量固态电池进入装车测试阶段。此外,公司在硫化物固态电池生产线设计中实施了三级防护体系,确保设备在防爆、防毒及长期抗腐蚀方面的可靠性。公司管理层正在积
北极星储能网获悉,近日,随着河北保定满城区市头村储能电站PCS、EMS等调试工作完成,保定首座独立储能电站正式并网投运。据了解,该储能电站容量为10万千瓦,本期一次全容量投运,可为后续不低于65万千瓦的新能源投运提供重要辅助支撑。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!