登录注册
请使用微信扫一扫
关注公众号完成登录
的结算成分。合同覆盖度越高,则按照合同价格结算的电量成分越多。可以看出,分解算法将决定电量在合同市场和现货市场的分配比例,不同的分解算法将产生不同的合同电量分解结果,对于现货市场的影响也是不同的。为分析不同算法所带来的影响,首先简要介绍两类代表性分解算法,统一化和区别化分解算法。
2 合同分解算法
2.1 基于负荷曲线的统一化分解算法
统一化分解算法目前应用于广东电力市场中差价合同的分解,能够为现货市场提供相对公平的结算依据,且分解过程相对简单。该算法对市场中所有机组采用统一的分解因子进行分解。在合同时间范围内,各时段负荷需求占总负荷需求的比例构成分解因子,合同总电量与分解因子的乘积便是最终的分解结果。该过程可由下式表示:
Qmc⋅Γ=Qmc⋅[d1,d2,...,dT]T/∑t=1TdtQmc⋅Γ=Qmc⋅[d1,d2,...,dT]T/∑t=1Tdt(1)
式中:Qmc表示发电企业m(假定为单机组发电企业)在T个时段内总的合同电量;dt表示第t个时段的预测负荷;Γ为统一分解因子。
2.2 购电成本最小的区别化分解算法
在统一调度模式下,考虑发电成本最小化的分解算法常被调度机构用来制定发电计划,以最大化系统效率。这一方法中对不同机组进行了区别对待,使得成本低的机组获得优先发电权。如果机组类型为水电机组,则还需考虑水耦合约束。以火电机组为例,在电力市场阶段发电成本为不公开信息,但是可通过历史数据以及燃料市场价格进行估算,将其近似看作发电成本,进行以购电成本最小化为目标的合同分解。同时,该算法也可作为分解差价合同的选择,其过程可由下式表示:
Qmc⋅Γm=Qmc⋅[qm1,qm2,...,qmT]T/∑t=1TdtQmc⋅Γm=Qmc⋅[qm1,qm2,...,qmT]T/∑t=1Tdt(2)
式中:qmt为发电企业m在第t时段的现货交易电量;Γm为发电企业m的分解因子。
第t时段市场出清模型可简单表示为
式中:Smt表示发电企业m在第t时段的供应函数;N为市场中发电企业的数目;Θm表示机组运行约束集合;Pjt表示第j条线路在t时段的有功潮流;NL表示输电线路总数。
出清模型的目标函数表示总购电费用最小,约束条件为系统功率平衡、机组运行约束和网络安全约束等,为简洁起见并未全部列出。其中网络安全约束用直流潮流方程来表示,进而转化为线性约束,模型求解效率得到提高。
2.3 两种分解算法的差异
从算法设计上,两种分解算法差异主要体现在对发电机组的区别性对待上。统一化分解算法采用无差别对待方式,所有参与市场的机组均按统一分解因子处理;区别化分解算法考虑进各台机组可能的报价参数,通过模拟市场出清结果确定差异化的分解因子。
从分解结果上,两种算法的差异体现在低谷时段的合同覆盖度上。在低谷时段时,基于统一化算法分解得到的合同电量大小取决于低谷时段负荷与高峰时段负荷比例大小,而实际现货市场中该时段所能获得的现货交易电量取决于发电机组的报价参数或者边际成本。边际成本低的发电机组将获得较多电量,而边际成本高的发电机组将获得较少电量,此时按照统一化分解算法所得的合同覆盖度在不同机组上会出现明显的差异。而在高峰时段,由于紧张的供需关系,各台发电机组现货交易电量都很大,此时无论通过哪种分解算法得到的合同覆盖度理论上都是较高的,差异不大。
3 最优价格响应模型
3.1 剩余需求函数
剩余需求函数[23]用来表示市场出清价格和市场参与者的成交量之间的关系,是辅助发电企业制定最优供应策略的重要工具[24]。假定市场中共有N家发电企业,以第m家为研究对象,那么其在现货市场的第t时段的出清电量qmt如下式所示:
qmt=Dt(pt)−S−mt(pt)=Rmt(pt)=−kmtpt+lmtqmt=Dt(pt)−S−mt(pt)=Rmt(pt)=−kmtpt+lmt(4)
式中:Dt(pt)是现货价格为pt时的总负荷需求;S-mt(pt)为其余发电企业的供应函数集合;Rmt(pt)为发电企业m在t时段所面临的剩余需求;kmt、lmt分别为t时段剩余需求曲线的弹性系数和截距,均为正值。
可以看出,Dt(pt)、S-mt(pt)和Rmt(pt)均为市场出清价格pt的函数,Rmt(pt)称为发电企业m在t时段的剩余需求函数。如式(4)所示,剩余需求函数是单调递减的,其含义是随着价格增加,负荷需求减小同时供应增加,见图2。在市场出清价格为p0时,发电企业m对应的出清量为qmt,其余发电企业的出清电量之和为q-mt,总负荷需求Dt(p0)=qmt+q-mt。
图2 剩余需求曲线Fig. 2 Residual demand curve
3.2 最优价格响应原理
市场出清价格pt也可以表示为发电企业m现货交易电量的函数,即式(4)的反函数表达式:
pt=R−1mt(qmt)=(lmt−qmt)/kmtpt=Rmt−1(qmt)=(lmt−qmt)/kmt(5)
那么不考虑差价合同情况下,发电企业时段的收益函数VncmtVmtnc和边际收益函数可表达为
Vncmt=pt⋅qncmt=R−1mt(qncmt)⋅qncmt=qncmt⋅(qncmt−lmt)/kmtVmtnc=pt⋅qmtnc=Rmt−1(qmtnc)⋅qmtnc=qmtnc⋅(qmtnc−lmt)/kmt(6)
式中qncmt为不考虑差价合同电量时的现货交易电量。
发电企业的边际成本函数Cmt表达式为
Cmt=2⋅am⋅qncmt+bmCmt=2⋅am⋅qmtnc+bm(8)
式中:am为发电企业m变动成本的一次项系数;bm为二次项系数。
函数(4)(7)和(8)的曲线形状如图3所示。依据
图3 基于剩余需求曲线的市场均衡点Fig. 3 Market equilibrium point based on residual demand curves
标准微观经济学理论,边际收益曲线与边际成本曲线交点对应的现货交易电量qncmt即为最优响应值,也就是最优现货交易电量(不考虑合同电量),如式(9)所示。该最优响应电量qncmt与市场出清价格pt共同构成了市场均衡点[23]。
qncmt=(lmt−b⋅kmt)/2(am⋅kmt+1)qmtnc=(lmt−b⋅kmt)/2(am⋅kmt+1)(9)
3.3 含差价合同的最优价格响应模型及其分段线性化
为清晰起见,本文在理论介绍部分均采用了线
性函数表示发电企业的剩余需求、收益以及边际收益。但在实际市场中,由于发电企业报价曲线是分段线性函数,导致剩余需求函数、收益以及边际收益函数均是分段线性的。为此,本节建立了分段线性函数形式的发电企业最优价格响应模型。
考虑差价合约后,发电企业m的全时段利润最大化模型的目标函数为
πm=max∑t=1T[(qcmt−Qct)⋅R−1mt(qcmt)+Pc⋅Qct−Cvar]πm=max∑t=1T[(qmtc−Qct)⋅Rmt−1(qmtc)+Pc⋅Qct−Cvar]
(10)
式中:qcmt表示考虑差价合同电量时的现货交易电量;Qct为发电企业m在t时段的合同分解电量;Pc为合同价格;Cvar为发电企业变动成本函数,计算公式为Cvar=aq2mt+bqmt该模型忽略不计固定成本。
约束条件包括系统约束和机组运行约束。将模型进行分段线性化处理可得到如下的混合整数线性规划模型:
式中:S为剩余需求曲线总分段数;umt,s为0-1整数变量,即剩余需求曲线的第s段是否为边际分段。
3.4 Lerner指标的计算
LI根据市场出清价格偏离边际成本的程度来界定发电企业的市场力行使情况,是最直接的市场力评估指标。但这一计算方法需要已知发电企业真实的边际成本,在电力市场环境下并不现实。在微观经济学中[25],LI也可用发电企业m在t时段所面临的剩余需求弹性emt来表示,计算公式如下[22]:
ILI=−1/emtILI=−1/emt(13)
emt=kmt/(pt/Rmt(pt))emt=kmt/(pt/Rmt(pt))(14)
式中:ILI表示Lerner指标LI的值。
本文中发电企业m在t时段的剩余需求函数不变,即式(14)中kmt不变,故可通过各时段市场均衡点来判断市场力的使用情况。
4 合同覆盖度对现货市场力的影响
4.1 有无电量合同的最优响应价格对比
为简化理论分析过程,采用线性剩余需求来代替分段线性剩余需求。基于线性剩余需求函数所得的理论分析结论同样适用于采用形式更加复杂的剩余需求函数时的情况。因为在现货市场中,竞争对手的供应曲线集合是递增的,与此同时,发电企业m的剩余需求曲线是递减的,无论采用线性形式还是分段线性形式,这一规律始终成立[26]。为叙述方便,在本文中定义Qct/qmt为合同覆盖度。基于3.2节讨论的不考虑差价合约的市场均衡点,本节将差价合约对市场均衡点的影响考虑进来。结合式(6)(7)(10),考虑差价合约分解电量Qct后边际收益函数和最优现货交易量qcmt表达式为
qcmt=(lmt+Qct−bm⋅kmt)/2(am⋅kmt+1)qmtc=(lmt+Qct−bm⋅kmt)/2(am⋅kmt+1)(16)
结合前述经济学理论与(15)(16)可以看出,Qct将会通过影响边际收益函数曲线的位置,进而影响市场均衡点位置。考虑差价合同后,边际收益曲线向上平移Qct/kmt个单位,如图4所示。从结算角度来说,未被合同覆盖的部分将按照现货价格结算,其电量数量可用式(17)来计算。可以看出,该部分电量是将向下平移Qct/(1/kmt+ 2am)个单位后,与边际成本Cmt交点对应的现货交易量。
qcmt−Qct=[lmt−Qct(1+2am⋅kmt)−bm⋅kmt]/2(am⋅kmt+1)qmtc−Qct=[lmt−Qct(1+2am⋅kmt)−bm⋅kmt]/2(am⋅kmt+1)(17)
图4中,Rmt(pt)表示不考虑合同电量时发电企业m剩余需求,表示不考虑合同电量的边际收
图4 有无电量合同对最优响应价格的影响Fig. 4 Best-response price with the existence and the absence of energy contracts
益,其与边际成本Cmt的交点(qncmt,pnct)对应于不考虑合同电量的最优现货交易电量以及市场出清价格;与Cmt的交点(qcmt,pct)表示考虑合同电量的市场均衡点,此时最优现货交易电量为qcmt,市场出清价格为pct,按pct结算的电量为qcmt-Qct。通过图4可以看出,pc t 4.2 不同合同覆盖度下的最优响应价格对比 首先给出同一时段内合同覆盖度大小与分解到该时段的合同电量的关系。对于发电企业m,在第t时段内,覆盖度小于1(qmt>Qct)的情况下,只要存在Q′ct>Qct,则在该时段的合同覆盖度Q′ct/q′ mt>Qct/qmt,下面给出证明。基于式(16),合同覆盖度可表示为 Qct/qmt=Qct/((lmt+Qct)−bm⋅kmt2(am⋅kmt+1))Qct/qmt=Qct/((lmt+Qct)−bm⋅kmt2(am⋅kmt+1))(18) 从式(18)中可见,当Qct增大为Q′ct=Qct+ΔQ时,分子增加量ΔQ大于分母增加量ΔQ/2(1+kmtam),即: Q′ct/q′mt>Qct/qmtQ′ct/q′mt>Qct/qmt(19) 因此在同一个时段内,分解电量增加但不超过实际现货交易电量时,合同覆盖度提高。 在图4基础上引入合同电量Q′ct>Qct。最优响应价格如图5所示。 图5 合同覆盖度对最优响应价格的影响Fig. 5 Impact of contract coverage on best-response price 在图5中,和分别表示合同电量为Qct和Q′ct时的边际收益。两种情况下的市场均衡点分别为(qcmt,pct)和。观察图中均衡点位置可得出,合同覆盖度高的情况下,现货交易电量更大即,同时市场价格更低即,结合式(13)(14),得ILI|Q′ct 当合同覆盖度大于1时,从盈利的角度来讲,发电企业将倾向于尽量压低现货市场价格,甚至是期盼市场价格能够低于合同价格。因此这种情况下,发电企业在现货市场中不存在发挥市场力的动机。而在成熟的电力市场中,合同覆盖度一般在0.8到0.9之间[27],极少有超过1的情况,因此,本文主要针对合同覆盖度在0~1之间的情况进行研究,认为该范围内的合同覆盖度为有效覆盖度。 特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。 凡来源注明北极星*网的内容为北极星原创,转载需获授权。 北极星电力网获悉,南网储能5月23日发布投资者关系活动记录表,回答“公司认为未来抽水蓄能是什么样的商业模式?”这一问题时指出:根据633号文,目前公司所属抽水蓄能电站执行两部制电价,包括容量电价和电量电价,容量电价按40年经营期、资本金内部收益率6.5%核定;在电力现货市场尚未运行的地方,电 车网互动是指电动汽车通过充电桩与电网进行能量双向互动,本质是用户使用电动汽车参与电力系统需求侧响应从而创造系统调节价值并获得一定经济补偿。按照功率流向划分,车网互动可以细分为单向功率互动和双向功率互动。单向功率互动也称作有序充电或智能充电,是指通过分时电价机制引导电动汽车调整充电 在地方碳市场10年试点探索之后,全国碳市场于2021年7月正式启动,运行至今将近4年,市场见证了成交量、价格的一路走高,从开市时的48元/吨上涨至2024年年底最高时的105元/吨。2024年全国碳市场成交总量1.89亿吨,成交总金额181.14亿元,已经跻身世界主要碳市场前列。3月,生态环境部发文将钢铁、铝冶炼 2025年5月中旬,蒙西电网送北京、天津绿电交易开始正式组织实施,这是华北区域内跨内蒙古电力公司和国家电网两个经营区的发、用主体首次绿电直接交易,内蒙古风力和光伏发电实现了跨越1000公里直接送至京、津电力用户,标志着华北区域的不同电网运营区之间绿电交易体系全面打通,在全国统一电力市场建 2025年初,136号文件横空出世,我国的新能源行业随之进入了旨在加快构建新型电力系统、推动新能源市场化进程的政策密集且深入的调整期。从政策过山车到市场马拉松,储能行业也正经历从"政策依赖"到"价值创造"的涅槃重生。这一过程不仅重构了储能行业底层逻辑,更催生了技术迭代、模式创新与生态重构的 北极星售电网获悉,5月23日,山东省能源局发布关于《2025年度山东省能源领域新技术、新产品、新设备推荐目录》的公示。目录包括:虚拟电厂资源聚合互动调控平台:虚拟电厂资源聚合互动调控平台通过信息通信技术(ICT)、智能控制算法与市场机制创新,将分散的分布式能源资源(如光伏、储能、柔性负荷等 1—4月南方电网经营区域全社会用电量5191.8亿千瓦时,同比增长3.8%,高于全国0.7个百分点。分产业看,第一、二、三产业和居民生活用电量同比分别增长7.2%、3.2%、5.8%和3.1%。4月份,受气温偏低和关税冲击等因素影响,南方电网经营区域全社会用电需求增长放缓,用电量同比增长3.2%。在经济承压背景下, 北极星售电网获悉,吉林电力交易中心公示2025年第十批电力市场注册售电公司相关信息,2025年5月,吉林电力交易中心受理3家售电公司新增业务范围申请。吉林电力交易中心对上述售电公司提交的市场注册申请材料进行完整性核验,现将企业名单及基本情况予以公示,公示期为2025年5月21日至2025年6月20日,时 5月22日,内蒙古自治区能源局就《内蒙古自治区上网消纳新能源发电项目竞争性配置管理办法(征求意见稿)》公开征求意见。文件指出,本办法适用于国家明确规定通过竞争性配置确定投资主体的上网消纳风电、光伏项目,不包括市场化并网项目和分布式新能源项目。此类项目上网电量全部进入电力市场,上网价 5月22日,由北极星电力网举办的2025第三届虚拟电厂运营与发展研讨会在安徽合肥隆重举办。会议以“破界聚能#xB7;智领未来”为主题,旨在推动虚拟电厂技术的创新发展,助力能效提升和碳减排,引领虚拟电厂产业迈向更加繁荣的未来。天合富家受邀参会,并荣获“2025北极星杯虚拟电厂创新示范企业”、“2025 北极星售电网获悉,5月23日,国家能源局江苏监管办发布关于进一步做好电力市场信息披露工作的通知。文件明确,市场运营机构在现有信息披露基础上,应当增加以下信息内容:1.深度调峰、启停调峰、可调负荷辅助服务市场需求计算方法;辅助服务市场短期可调负荷出清价格及平均中标价格。2.节点分配因子及 2024年新能源结算均价为205.27元/兆瓦时,其中风电为187.43元/兆瓦时,光伏为241.14元/兆瓦时。2025年1-3月新能源结算均价为168.34元/兆瓦时,相比2024年全年平均水平下降36.93元/兆瓦时;其中风电为162.84元/兆瓦时,相比2024年全年平均水平下降24.59元/兆瓦时;光伏为177.59元/兆瓦时,相比2024年全 北极星电力网获悉,南网储能5月23日发布投资者关系活动记录表,回答“公司认为未来抽水蓄能是什么样的商业模式?”这一问题时指出:根据633号文,目前公司所属抽水蓄能电站执行两部制电价,包括容量电价和电量电价,容量电价按40年经营期、资本金内部收益率6.5%核定;在电力现货市场尚未运行的地方,电 北极星售电网获悉,5月22日,河北电力交易中心发布关于5月23日河北南部电网日前电力现货市场执行市场力管控的通知。文件显示,按照《河北南部电网电力现货市场系列规则(结算试运行V3.0版)》、《河北省发展和改革委员会关于开展河北南部电网电力现货市场连续结算试运行的通知》(冀发改运行〔2025〕20 车网互动是指电动汽车通过充电桩与电网进行能量双向互动,本质是用户使用电动汽车参与电力系统需求侧响应从而创造系统调节价值并获得一定经济补偿。按照功率流向划分,车网互动可以细分为单向功率互动和双向功率互动。单向功率互动也称作有序充电或智能充电,是指通过分时电价机制引导电动汽车调整充电 在地方碳市场10年试点探索之后,全国碳市场于2021年7月正式启动,运行至今将近4年,市场见证了成交量、价格的一路走高,从开市时的48元/吨上涨至2024年年底最高时的105元/吨。2024年全国碳市场成交总量1.89亿吨,成交总金额181.14亿元,已经跻身世界主要碳市场前列。3月,生态环境部发文将钢铁、铝冶炼 2025年初,136号文件横空出世,我国的新能源行业随之进入了旨在加快构建新型电力系统、推动新能源市场化进程的政策密集且深入的调整期。从政策过山车到市场马拉松,储能行业也正经历从"政策依赖"到"价值创造"的涅槃重生。这一过程不仅重构了储能行业底层逻辑,更催生了技术迭代、模式创新与生态重构的 北极星售电网获悉,5月23日,国家能源局江苏监管办发布关于进一步做好电力市场信息披露工作的通知。文件明确,市场运营机构在现有信息披露基础上,应当增加以下信息内容:1.深度调峰、启停调峰、可调负荷辅助服务市场需求计算方法;辅助服务市场短期可调负荷出清价格及平均中标价格。2.节点分配因子及 北极星售电网获悉,近日,四川省发改委、四川省能源局、四川省能监办联合下发《四川电力现货市场建设方案(征求意见稿)》的函。文件明确,建立“多电源参与、全电量优化、全水期运行”新模式下的电力现货市场体系,建立适应四川保供应、促消纳、水电耦合、水库优化利用等需求的市场机制和运行机制。加强 随着2024年报及2025一季报全面披露,已释放出明显的前瞻信号,能源领域基础稳、优势多、韧性强、潜能大。Wind数据显示,2024年电力板块整体表现稳健,总营收为1.8256万亿元,各细分行业均有不同程度的增长。这也意味着在用电需求增长、新能源快速发展、火电成本改善和一系列政策支持下,电力板块的收入 5月16日,四川能源监管办组织召开四川电网2025年厂网联席会暨电力市场秩序突出问题专项监管工作启动会。国网西南分部、国网四川省电力公司、四川能源发展集团有限责任公司、四川电力交易中心、25家发售电企业等单位负责人参加会议。四川能源监管办负责同志出席会议并讲话。会议安排部署了2025年电力市 5月20日,科大智能正式接入上海市虚拟电厂系统,成为上海市第40家虚拟电厂运营商。这不仅标志着科大智能在能源数字化领域的战略布局再开新篇,也致力于为我国能源结构优化和“双碳”目标实现注入新动能。上海作为用电规模大、负荷密度高、源侧资源少的超大城市,面临外来电依存度高、峰谷差显著的双重 北极星售电网获悉,5月23日,国家能源局江苏监管办发布关于进一步做好电力市场信息披露工作的通知。文件明确,市场运营机构在现有信息披露基础上,应当增加以下信息内容:1.深度调峰、启停调峰、可调负荷辅助服务市场需求计算方法;辅助服务市场短期可调负荷出清价格及平均中标价格。2.节点分配因子及 随着2024年报及2025一季报全面披露,已释放出明显的前瞻信号,能源领域基础稳、优势多、韧性强、潜能大。Wind数据显示,2024年电力板块整体表现稳健,总营收为1.8256万亿元,各细分行业均有不同程度的增长。这也意味着在用电需求增长、新能源快速发展、火电成本改善和一系列政策支持下,电力板块的收入 意大利国内能源资源有限,在发电领域,主要依赖进口天然气来满足其能源需求。紧跟欧盟的脚步,意大利已逐步实现电力市场的开放,在发电、输电、配电、售电及电力监管等环节形成了兼具欧盟共性与本国特色的电力体制架构。意大利电力改革历程中积累的经验与教训,可为我国新一轮电力改革提供有益借鉴。( 近日,华东新华、中节能宁夏、山西粤电、新疆粤电、中环低碳最新岗位招聘,北极星整理如下:华东新华能源投资有限公司成立于2019年5月,系新华水力发电有限公司在江苏省扬州市设立的全资子公司,注册资本金5.75亿元,总资产已超过145亿元。作为新华发电在华东六省一市的区域清洁能源开发投资中心、区域 改革是电力行业发展的核心驱动力之一。进入“十四五”以来,在我国“双碳”目标的提出,以及能源安全韧性的拷问下,新一轮电力体制改革全面提速,为构建新型电力系统探索适配的“软件系统”。(来源:电联新媒作者:翁爽)根据国家能源局公布的数据,2025年一季度,我国风电光伏发电合计新增装机7433万 为主动融入新一轮电力体制改革大局,研究统一电力市场建设及价格机制,主动回应时代需求,最近,国网江苏省电力有限公司召开统一电力市场建设及价格机制研究工作例会,无疑是一次顺应形势、谋划未来的关键举措,为江苏电力事业的持续进步锚定了方向。完善顶层设计,是构建统一电力市场体系的基石。江苏 自2024年12月31日起,陕西电力现货市场开展了连续结算试运行工作。本文将对一季度陕西市场的供需情况及试运行期间的各项边界条件以及市场出清情况进行总结分析,以供各市场主体探讨。(来源:兰木达电力现货作者:林兵伟)一、市场供需情况1、装机情况概要截至2025年3月底,陕西全省发电装机达到11855. 近日,国能日新自研「旷冥」大模型完成了自正式发布以来的首次迭代升级,迎来了「旷冥」2.0版本。本次升级,除了对模型稳定性和整体性能进行优化,更是在技术层面全效升级。首先在大模型技术方面,创新采用了多维度patching注意力机制架构,并显式嵌入了平流、对流方程,构建物理驱动的深度神经网络模 136号文(《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》和394号文(《关于全面加快电力现货市场建设工作的通知》)犹如两道耀眼的闪电划破夜空,照亮了新能源全面入市的道路,吹响了新能源市场化改革的号角,标志着新能源电价机制从“计划电”向“市场电”迈出了最关键的两步,预示 近日,重庆市经信委公开征求对《2025年重庆市电力需求响应实施方案(征求意见稿)》的意见,参与主体包括电网企业和电网企业经营区范围内的电力用户、虚拟电厂,按照本方案开展需求响应、削峰移峰。其中,电力用户自愿选择参与需求响应、削峰移峰,进行用户注册与响应能力申报,签订和履行协议;准确提 近日,国能日新自研「旷冥」大模型完成了自正式发布以来的首次迭代升级,迎来了「旷冥」2.0版本。本次升级,除了对模型稳定性和整体性能进行优化,更是在技术层面全效升级。首先在大模型技术方面,创新采用了多维度patching注意力机制架构,并显式嵌入了平流、对流方程,构建物理驱动的深度神经网络模 请使用微信扫一扫 关注公众号完成登录 我们将会第一时间为您推送相关内容!登录注册
绑定账号
想要获取更精准资讯推荐?建议您
完善以下信息~姓名: 性别: 出生日期: 邮箱: 所在地区: 行业类别: 工作经验: 学历: 公司名称: 任职岗位: 订阅成功
扫码下载APP
扫码关注公众号