登录注册
请使用微信扫一扫
关注公众号完成登录
(1) 气态储氢设备。
主要用于储存高压氢气, 包括固定式储氢压力容器和高压氢气瓶,其优点是充氢放氢速度快、设备结构相对简单、技术相对成熟,是市场需求的主流储氢方式; 缺点是体积储氢密度较低,且需要高压力储存,以增大储氢密度。
固定式储氢压力容器是加氢站、制氢站、氢储能系统、高压氢循环测试系统、发电站、加氢工艺装置等的主要核心设备。目前,我国加氢站在用的固定式储氢压力容器将近 1000 台,大多数为境内制造,境外进口的仅占少数,主要结构形式有单层储氢压力容器( 包括大容积无缝瓶式储氢容器、单层整体锻造式储氢压力容器等) 和多层储氢压力容器( 包括全多层储氢压力容器、层板包扎储氢压力容器等) ,临氢材料牌号主要有S31603,4130X,35CrNi3MoVR,20MnMoV,SA372J等,设计压力为41,50,70,98,140MPa等,容积为 0.053,0.3,0.9,1.0,2.0,5.0,7.3,10.0m3等。
复合材料储氢压力容器尚处于试制样机阶段。已经实施的相关 国家标准和团体标准有GB/T 26466—2011《固定式高压储氢用钢带错绕式容器》、T/ZJASE 001—2019《固定式高压储氢用钢带 错绕式容器定期检验与评定》和T/CATSI 05003—2020《加氢站储氢压力容器专项技术要求》。
目前,有的加氢站储氢设备采用了按气瓶规 范和标准设计制造的储氢气瓶,其优点是制造比较容易、成本较低,但这种应用未得到相关法规、安全技术规范和标准的支持,也不符合团体标准T/CATSI 05003—2020《加氢站储氢压力容器专项技术要求》的规定。将来是否可以成为市场需求的一个发展方向,还要看国际、国内技术发展成熟 度,以及相应安全技术规范和标准制修订进展情况而定。
高压氢气瓶包括钢制高压氢气瓶和复合材料高压氢气瓶。钢制高压氢气瓶主要用于氢燃料电池叉车; 复合材料高压氢气瓶主要用于氢燃料电池汽车、氢燃料轨道交通、氢燃料无人机等领域。中国在用的复合材料高压氢气瓶已超过2.5万只,绝大多数是境内生产的铝内胆碳纤维全缠绕高压氢气瓶( Ⅲ型氢气瓶) ,少量是境外进口的,公称工作压力为 35 MPa 和 70 MPa,使用环境温度-40~85℃ ,容积28~320L; 塑料内胆碳纤维全缠绕高压氢气瓶(Ⅳ型氢气瓶)目前境内尚处于立项研究试制阶段。已经颁布实施的相应国家标准有GB/T 35544—2017《车用压缩氢气铝内胆碳纤维全缠绕气瓶》。
(2)液态储氢设备。
主要用于储存液氢,分为固定式液氢压力容器(储罐)和液氢瓶,其优点是体积储氢密度高,液氢的密度为 70kg/m3 ; 缺点是氢气液化能耗高(约为氢气能量的1/3) 、长时间存放液氢的静态蒸发损失较大。一般液态储氢承压设备的设计压力为0.1~1.3MPa 左右,设计温度为-253 ℃ 。目前,我国液氢行业装置产能大约5吨/天,主要用于航空航天领域,研制的300m3 固定式液氢压力容器成功应用于火箭发射场,相应的国家标准《氢能汽车用燃料液氢》、《液氢生产系统技术规范》、《液氢储存和运输安全技术要求》即将颁布实施。随着军用技术的逐步解密和民品化,以及氢气液化、液氢储存技术的进步,民用液氢压力容器、液氢瓶和车载液氢系统的研发正在提速,目前已经研制出样机,而且大型液氢球罐也处于研制开发阶段。
(3)固态储氢容器。
固态储氢是通过氢与材料发生化学反应或者物理吸附将氢储存于固体材料中,优点是储氢压力较低、体积储氢密度高、可纯化氢气; 缺点是质量储氢密度低、充放氢需要热交换。常用固态储氢方式有金属氢化物固态储氢、配位氢化物固态储氢、碳质材料固态储氢、金属有机骨架化合物储氢等。固态储氢容器的设计压力一般为0.5~4.0MPa,设计温度-40~60℃ 。固态储氢容器的容积范围比较宽,只有容积大于等于30L的容器才属于安全监察范畴内的压力容器。我国固态储氢容器已在通讯基站、加氢站等场所获得应用,已经实施的相应国家标准有GB/T 33292—2016《燃料电池备用电源用金属氢化物储氢系统》、GB/T 34544—2017《小型燃料电池车用低压储氢装置安全试验方法》。
(4) 复合储氢气瓶(容器) 。
为提高储氢密度,近些年出现了高压固态复合储氢气瓶( 容器) 和高压深冷复合储氢气瓶(容器)。我国高压固态复合储氢压力容器的充氢压力一般为35,45,90 MPa,使用温度不超过80℃ ,最大容积已经达到1.0m3 ,并且在某加氢站投入示范试运行。高压深冷储氢气瓶的公称工作压力一般为30~50MPa,工作温度-40 ~-240 ℃ 。
1.2输氢承压设备
输氢承压设备主要用于将气态氢或者液态氢从产地输送或者运输到终端用户,输氢承压设备体系见图2,主要分为气态输氢设备和液态输氢设备。
图2 输氢承压设备体系
(1)气态输氢设备。
主要用于输送、分配氢气,包括运氢设备和氢气管道。
运氢设备主要有氢气长管拖车和氢气管束式 集装箱。其适用于运输距离较短、输送量较少、氢气日用量为吨级以内的用户。目前,我国氢气长管拖车和氢气管束式集装箱采用的是钢制大容积 无缝高压气瓶和钢质内胆碳纤维环向缠绕气瓶, 一般气瓶公称工作压力为 20,25,30 MPa等,科技部正在立项研制公称工作压力为50MPa、容积不小于300L的氢气瓶。
也有境内物流和气体公司正在尝试采用其他运输模式,如采用公称工作压力为30~ 52MPa的氢气瓶集装格结构形式的运输方式等。另外,还有气瓶公称工作压力为35MPa( 70 MPa) 的移动式撬装加氢系统、气瓶公称工作压力为35MPa( 70 MPa) 的集装箱式氢气增压装置等。这些系统或装置中的储氢气瓶组和 氢气缓冲罐的合规性,以及采用非充装站内的直 接加注或者卸载方式的安全性,都需要给予关注。
氢气输送管道主要有输氢管道和配氢管道。
输氢管道分为两类,一类是用于场( 厂) 区内装置间或者系统内输送氢气,如企业场( 厂) 区内输氢管道、工业氢能园区内输氢管道、加氢站内输氢管道、车载供氢系统管道等,其特点是管道压力高、直径小,一般采用压力管路用管或者仪表管,压力等级为44.8MPa(6500psi) ,46.2MPa(6700psi) ,103.5MPa(15000 psi) ,137.9MPa(20000 psi)等,管道直径为6.35 mm(1/4″) ,9.5mm(3 /8″) ,12.7mm( 1/2″) ,14.28mm(9/16″) ,25.4mm(1″) 等;另一类用于大规模、长距离输送氢气(掺氢天然气) 的长输管道,管道设计压力2.0 ~20.0MPa,直径300 ~ 1000 mm。
目前,我国长距离输送氢气压力管道大约 400 km,最高输氢压力4.0MPa,最大管径508mm。配氢管道一般用于小规模、短距离输送氢气,输氢对象为小规模用户( 如民用氢能园区内连接供氢站和用户间的管道) ,其特点是管道压力较低、直径较小。
(2) 液态输氢设备。
主要用于输送液氢,包括液氢铁路加注运输车、液氢汽车罐车、液氢罐式集装箱和液氢管道等。液氢承压设备设计压力为0.3~0.6MPa,设计温度-253℃ 。目前,中国已经成功研制出0,85m3 自带汽化器液氢铁路加注运输车(高真空多层绝热结构罐体,设计压力0.6MPa,设计温度-253℃ ) ,并在引进膨胀珍珠岩结构、100 m3 低温真空绝热罐体的基础上,完成了液氢铁路加注运输车的设计制造。上述液氢铁路加注运输车主要应用于液氢火箭燃料的铁路运输、发射场火箭燃料加注、航天研究院等科研单位的试验研究。科技部正在立项研制40m3 民用液氢汽车罐车。
2氢能承压设备风险分析
以下从法规、技术、管理三个方面分析氢能承压设备面临的风险。
2.1法规风险
法规或者标准覆盖面缺失方面的风险,主要 是指相应的特种设备安全技术规范或者标准缺少 针对 35 MPa 以上氢能承压设备的基本安全要求。TSG 21—2016《固定式压力容器安全技术监察规程》中对于非焊接储氢瓶式容器材料的化学成分和力学性能作了规定,TSG R0006—2014《气瓶安全技术监察规程》规范中对充装氢气长管拖车、管式集装箱的气瓶提出了材料力学性能方面的要求,行业标准 NB/T 10354—2020《长管拖车》和NB / T 10355—2020《管束式集装箱》中对充装氢气的气瓶以及管路等材料、设计、制造规定了基本安全要求。
除 GB / T 35544—2017《车用压缩氢气铝内胆碳纤维全缠绕气瓶》外,这些规范和标准的基本安全要求主要针对的是公称工作压力( 设计压力) 在 35 MPa 以下的氢气瓶或储氢压力容器。
对于压力更高的氢能承压设备,其服役性能 不仅仅取决于材料( 化学成分、力学性能、微观组织等) ,而且与应力( 应力比、加载频率等) 、环境( 氢气压力、温度、纯度等) 和制造( 焊接、旋压、冲压、热处理、无损检测等) 等密切相关,急需在现有安全技术规范和相应标准的基础上,增加和补 充专项基本安全要求。此外,氢能承压设备安全 附件和仪表的相关法规、标准也有待进一步的补 充和完善。
近期,针对加氢站储氢压力容器,团体标准T / CATSI 05003—2020《加氢站储氢压力容器专项技术要求》已经正式发布实施。该标准对加氢站储氢压力容器有关材料、设计、制造等环节的基本安全要求作出了专项规定。
2.2 技术风险
2.2.1基础数据缺失风险
基础数据缺失风险主要反映在两个方面,即基础数据匮乏和材料氢脆测试方法不当带来的风险。
(1)基础数据匮乏。
在中国,已发明了140 MPa快开式金属材料高压氢脆原位检测装置[5],对牌号为S31603,S30408 的材料在5 ~140 MPa 高压氢气环境中的性能进行了系统深入研究,获得了一批宝贵的试验数据,但仍不能满足氢能承压设备快速发展的需要,亟待开展氢环境下材料、零部件和产品( 系统) 三个方面的试验研究。
在材料方面,需要获得液氢(深冷) 环境、35 MPa以上高压氢气环境中的材料性能,如材料本构方程、疲劳设计曲线、疲劳裂纹扩展速率等; 在零部件方面, 需要研究氢阀门、氢接头、氢软管等在氢环境下的失效模式及其预测方法; 在产品方面,需要模拟使用工况条件,研究高压氢气瓶等产品的性能。
中国在零部件和系统层面的试验数据极少,这是影响中国氢能承压设备产品性能一致性的重要因素。
(2)氢脆测试方法不当。
目前,金属材料氢脆试验大致可以分为预充氢试验和原位氢试验。预充氢试验首先采用电化学充氢、高压气相热充 氢等方法对试样预充氢,然后在空气中对试样进 行力学性能试验; 原位氢试验是指在高压氢气环境中直接对试样进行力学性能试验。
预充氢方法是先充氢、后加载,不同于氢能承压设备氢侵入和加载同步的情况,且无法模拟裂尖高应力梯度区氢的动态侵入和偏聚[6- 8]。
国外常用的储氢压力容器产品标准( 如美国 ASME BPVC Ⅷ-3 KD-10《 Special Requirements for Vessels in Hydrogen Service 》、日本 JPEC-TD 0003《加氢站用低合金钢制储氢容器专项技术要求》等) 和临氢材料试验标准( 如加拿大 ANSI / CSA CHMC 1 《 Test Methods for Evaluating Material Compatibility in Compressed Hydrogen Applications - Metals 》等) 均采用原位氢试验法。GB / T 34542.2—2018《氢气储存输送系统 第 2 部分: 金属材料与氢环境相容性试验方法》规定了金属材料在高压氢气环境中慢应变速率拉伸性能、疲劳性能以及断裂力学性能的测试方法; GB / T 34542. 3—2018《氢气储存输送系统 第 3 部分: 金属材料氢脆敏感度试验方法》规定了金属材料的氢脆敏感度测试方法。
2.2.2设计制造风险
设计制造风险主要反映在以下几个方面: 按JB/T 4732—1995《钢制压力容器———分析设计标准》( 2005 年确认) ,进行疲劳分析和对比经验设计风险、氢气瓶设计制造质量及其稳定性风险、氢安全附件可靠性差引起的风险、氢气瓶或者撬装系统安装不当风险。
(1)疲劳分析和对比经验设计风险。按JB/T 4732—1995 进行氢能承压设备疲劳分析设计,设计中存在两个方面的问题,一是 JB/T 4732—1995 中的疲劳设计曲线没有考虑高压氢气、高压深冷氢气和液氢对疲劳寿命的影响; 二是有些氢能承压设备主要受压元件材料,如 4130X 等材料,尚未纳入JB/T 4732—1995 标准中。
我国目前在线运营的加氢站基本上为示范站或者投用不久的商用站,加氢量不大,储氢压力容器的氢气充放次数或者频率较少,最多也就几千次,尚不足以作为储氢压力容器对比经验设计的依据; 也不应当据此证明该类压力容器不会发生疲劳失效。
(2) 氢气瓶设计制造质量及其稳定性风险。有的氢气瓶制造单位对产品研发投入不足,试验 数据过少,无法对产品质量提供有效支撑; 追求产品生产进度,质量稳定性难以保证; 车企和气瓶制造企业对氢气瓶安全性关注有待加强、过度追求 轻量化导致氢气瓶安全裕度降低,特别在公称工作压力为 70 MPa 高压氢气瓶领域,Ⅲ型氢气瓶的疲劳寿命有待进一步提高,Ⅳ型氢气瓶的研发与国外相比仍有较大差距,需要深入研究并解决设 计、制造等方面所面临的问题。跟风冒进就会出 问题,给使用安全带来极大的风险。
( 3) 氢安全附件可靠性差引起的风险。由于标准缺失,对氢材料、氢泄漏、氢冲击等缺乏系统 和深入地研究,造成国产50 MPa(98 MPa) 级氢压力表、氢传感器、阀门的可靠性较差、使用寿命较 短、容易泄漏等问题,给使用安全带来极大的风险 和存在较大安全隐患。例如,由于氢压力表弹簧 管采用常规材料与焊接工艺,泄漏破损时有发生, 这有可能酿成火灾爆炸事故。
(4) 氢气瓶或者撬装系统安装不当风险。氢气瓶或者撬装系统安装是车载供氢系统的重要环节。但现有相关标准并没有对供氢系统管路、接头、密封形式等提出基本安全要求。如果设计单位的选型不满足使用要求,也会造成管路连接接头、密封性能等失效,甚至因密封失效造成氢气泄漏而酿成事故。
2.2.3检验检测风险
氢能承压设备检验检测的风险主要反映在以下几个方面: 检验方法的适用性风险、有效检测评价方法的缺失和检验检测能力的不足等风险。
(1) 检测方法的适用性风险。GB/T 24162— 2009《汽车用压缩天然气金属内胆纤维环缠绕气瓶定期检验与评定》、TSG 21—2016《固定式压力容器安全技术监察规程》等现行规范标准规定, 车用气瓶定期检验时需要进行气瓶拆卸后的瓶体内外部检测和水压试验,储氢固定式压力容器定期检验有时也需要进行水压试验。由于储氢压力容器和高压氢气瓶介质的特殊性,盛装的氢气必须满足氢燃料电池对氢气品质的要求,纯度和密封要求较高,拆装高压氢气瓶有可能破坏其密封 性能,有安全隐患。
有的氢燃料电池轿车,高压氢气瓶装在汽车底盘上,装拆非常困难。为满足氢气纯度要求,储氢压力容器和氢气瓶内表面出厂 时已经经过洁净化的特殊处理,定期检验时的水 压试验会造成其内表面污染或者锈蚀,而需要重新进行内表面洁净化处理,因此,需要在修订相应 安全技术规范和标准时,研究和解决其规定的定 期检验项目和要求带来的新问题,以避免上述安全隐患和不必要的后续处理等情况。
(2) 有效检测评价方法缺失风险。对于一些特殊结构氢能承压设备的失效模式和机制,目前还没有完全掌握,缺少有效的检测方法和安全评价规则。例如,对复合材料高压氢气瓶检测局限于外观检查和泄漏检测,没有有效的方法检测瓶体内部存在的缺陷; 气瓶瓶阀座与内胆连接接头是Ⅳ型高压氢气瓶的最薄弱环节,但缺少有效的无损检测方法和评价规则,所以应当加强相关技术的研究。
(3) 检验检测能力不足的风险。氢能承压设备检测装置研制难度大、成本高。目前,我国这方 面的检验检测能力无法满足氢能行业快速发展的 需要。例如,材料与氢相容性试验装置数量不足, 缺少气瓶渗透试验装置,没有民用液氢工况的试 验检测平台和使用条件,更没有深冷高压氢的专用试验条件等,所以应当加大有关检验检测设备 的研发投入,以满足行业快速发展的需要,降低和 避免由于检验检测缺失而带来的氢能承压设备安 全风险。另外,相关的适用于氢介质的安全附件、仪表和装卸附件( 如安全阀、紧急切断阀、爆破片装置、压力表、温度计、压力传感器、温度传感器、装卸阀门、管路阀门等) 的检测装置也应加大研发投入和力度。
2.2.4 技术引进风险
氢能承压设备技术含量高,研发难度大、周期长,技术引进也存在风险。以高压氢气瓶为例,近年来国内有不少单位开始研制或者投资Ⅳ型氢气瓶,有的高薪聘请国外专家,有的花巨资购买国外企业。目前,国外Ⅳ型氢气瓶设计制造技术比较成熟的只有日本 Toyota、美 国/ 挪威 Hexagon Composite、韩国 ILJIN Composite 等少数公司。Ⅳ 型氢气瓶产品研制需要具有复合材料、机械、力学、无损检测、控制等多学科知识的团队支撑。为使进口或国内研发的Ⅳ型氢气瓶产品达到国际规范或者标准的要求,中国正在加快制定Ⅳ型氢气瓶产品及其配套的标准。
2.3 管理风险
(1) 气瓶直接用于加氢站储氢风险。将按照气瓶标准设计制造的钢质气瓶直接用作加氢站储 氢压力容器,存在疲劳失效的风险。
气瓶设计循环次数一般不超过 15 000 次( 试验介质为液体) , 在 2017 年颁布的ISO 11114 - 4《气瓶瓶体和阀门材料与盛装气体的相容性 第 4 部分: 抗氢脆钢选用的试验方法》中取消了气瓶公称工作压力上限 30 MPa 的限制,规定经淬火 + 回火处理的 Cr - Mo 钢,只要热处理后实测抗拉强度不超过 950 MPa, 就可用于制造移动式气瓶,而不需要进行氢脆试验。
但若据此认为,满足该要求的 Cr - Mo 钢可以直接用于制造加氢站储氢压力容器,则会引起 较大的潜在风险。加氢站储氢压力容器的压力波 动次数取决于加氢站规模、加注工艺、设计使用年 限等因素。对于商用加氢站,设计寿命长,氢气加注频繁,储氢压力容器压力波动次数有可能超过 10 万次,而大量试验研究表明,对于上述 Cr - Mo 钢,高压氢气会显著加速疲劳裂纹扩展速率,明显降低氢致开裂应力强度因子门槛值[9-10],一般气瓶设计时没有考虑这种疲劳工况的影 响。ISO 19880 - 1 《 Gaseous Hydrogen Fuelling Station, General Requirements》中明确规定: 气瓶、长管拖车用于加氢站储氢时,应充分考虑气瓶和容器的差异,特别是压力波动的影响。
(2) 氢能承压设备进口风险。有的用户从国外购买储氢压力容器和氢气瓶,由于我国缺少氢能承压设备安全技术规范,加上有些用户不知道或者提不出合理的订货要求,致使不满足安全使用要求的产品进入市场。例如,有的从美国进口的钢制储氢压力容器产品,建造时依据的标准是ASME BPVC Ⅷ - 1《Rules for Construction of Pressure Vessels》,没有考虑疲劳寿命,在用作加氢站储氢压力容器时,具有疲劳失效的风险。还需要指出的是,国外储氢压力容器用钢的抗拉强度上限是950 MPa,不满足 TSG 21—2016《固定式压力容器安全技术监察规程》对材料的规定。
(3) 氢能承压设备“三新”评审风险。在新材料、新技术、新工艺评审时,申请单位提供的评审资料往往未经第三方审查,对其合理性也缺少充足的数据支撑,加上氢能承压设备发展快,要评审专家在短时间内给出评审结果,不但难度大,而且存在风险。
3氢能承压设备风险防控的几点思考
3.1加强氢能承压设备战略研究
建议成立由国家市场监督管理总局特种设备安全监察局主管领导和压力容器、压力管道、气瓶、安全附件等行业内相关专家组成的氢能承压设备专项工作组,科学研判氢能承压设备发展趋势,结合氢能发展规划,制订中国氢能承压设备高质量、可持续发展的技术路线,明确重点任务,支撑氢燃料电池汽车、氢储能、氢能轨道交通、氢能船舶等相关领域的发展,实现产业高起点开局、高质量实施和可持续发展。
3.2 完善氢能承压设备法规、安全技术规范和标准体系
推动将有关氢能承压设备基本安全要求纳入相关法规、安全技术规范或者尽快制定专项的《氢能承压设备安全技术监察规程》;
探索推动氢燃料电池汽车 4S 店及使用氢燃料电池汽车的公交站场、物流公司、重卡车队等,实施氢瓶日常维护保养检查,通过提高设计制造要求豁免特定车载氢气瓶定期检验,大力推广和鼓励物联网智能监控终端系统的应用,实现车载氢气瓶实时安全状态监控及数据传输和安全报警提示,加强日常氢安全管理;
加快健全中国氢能承压设备标准体系(见图 3,图中虚线框内的标准已经颁布、点划线框内的标准正在起草) ,进一步完善氢能承压设备材料、产品、定期检验等相关标准;
图 3
加快建立第三方检测机构; 建立健全新技术、新方法、新材料准入机制,使风险可防可控;
推动氢能承压设备质量安全追溯体系建设、企业质量安全评价体系、责任延伸制度; 探索建立基于大数据的氢能承压设备安全监管平台,实现氢能承压设备安全动态全过程监管; 加强氢能承压设备科普宣传,构建良好的产业发展氛围,吸引更多社会资源,构筑有效的安全防线。
3.3组织氢能承压设备核心技术攻关
依托行业骨干企业、科研院所、高等院校、检验机构,共同开展高性能轻量化设计、复合材料氢气瓶( 储氢容器) 、服役性能快速检测评价、定期检验新技术等氢能承压设备关键技术攻关,建立知识产权共享机制; 深度开展国际合作与交流,参加国际循环测试和国际规范标准制定,形成国际化的协作机制。
4参考文献
[1] 王赓,郑津洋,蒋利军,等. 中国氢能发展的思考[J]. 科技导报,2017,35( 22) : 105 - 110.
[2] 郑津洋,张俊峰,陈霖新,等. 氢安全研究现状[J].安全与环境学报,2016,16( 6) : 144 - 152.
[3] 郑津洋,马凯,周伟明,等. 加氢站用高压储氢容器[J]. 压力容器,2018,35( 9) : 35 - 42.
[4] 高圧ガス保安協会. 圧縮水素スタンド: セーフティテクニカルガィド[M]. 東京: 新日本印刷株式会社,2017.
[5] 郑津洋,周池楼,顾超华,等. 高压氢气环境材料耐久性试 验 装 置 的 研 究[J]. 太 阳 能 学 报,2015, 36( 5) : 1073 - 1080.
[6] Chen Xingyang,Zhou Chengshuang,Cai Xiao,et al. Effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel[J]. Journal of Materials Engineering and Performance,2017,26( 10) : 4990 - 4996.
[7] Saintier N,Awane T,Olive J M,et al. Analyses of hy- drogen distribution around fatigue crack on type 304 stainless steel using secondary ion mass spectrometry [J]. International Journal of Hydrogen Energy,2011, 36( 14) : 8630 - 8640.
[8] Someday B P,Campbell J A,Lee K L,et al. Enhancing safety of hydrogen containment components through materials testing under in-service conditions [J]. International Journal of Hydrogen Energy,2017,42( 11) : 7314 - 7321.
[9] Hua Z,Zhang X,Zheng J,et al. Hydrogen enhanced fatigue life analysis of Cr - Mo steel high pressure vessels[J]. International Journal of Hydrogen Energy, 2017,42( 16) : 12005 - 12014.
[10] Matsunaga H,Yoshikawa M,Kondo R,et al. Slow strain rate tensile and fatigue properties of Cr - Mo and carbon steels in a 115 MPa hydrogen gas atmos-phere[J]. International Journal of Hydrogen Energy, 2015,40( 16) : 5739 - 5748.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
据北极星氢能网不完全统计,2025年2月,国家以及各地方共出台16条氢能政策。从国家层面来看,在国家能源局印发《2025年能源工作指导意见》中指出,加强氢能、绿色液体燃料等领域标准供给,稳步发展可再生能源制氢及可持续燃料产业,稳步推动燃料电池汽车试点应用,有序推进全国氢能信息平台建设,稳妥
北极星氢能网获悉,3月20日,中国能建国际集团党委副书记、副董事长薛丹峰在公司本部会见了来访的哈萨克斯坦能源部副部长巴赫特詹·伊利亚斯,共同见证中国能建海投公司与哈萨克斯坦能源部国家核能中心签署合作备忘录,并为中亚氢能科技创新中心揭牌。根据合作备忘录,双方将与上海交通大学推进氢能科
据北极星氢能网不完全统计,2025年1月,国家以及各地方共出台20条氢能政策。其中,国家级政策就有5条提及氢能,涉及氢能各个领域。此外,氢能免高速费的省份在添一军,河南连续发布两条政策明确了氢货车和电动货车减免高速费的一系列流程。值得注意的是,在北京发布的汽车以旧换新实施方案中也指出氢能
北极星氢能网获悉,日前《浙江氢能产业发展有限公司嘉兴氢能产业园输氢管线项目规划选址批前公告》发布。公告显示,浙江氢能产业发展有限公司申请嘉兴氢能产业园输氢管线项目的建设选址,该项目位于浙江省嘉兴市嘉兴港区,线路长度约9.4千米。起点位于中国化工新材料(嘉兴)园区内的浙江华泓新材料有
北极星氢能网获悉,3月19日,齐鲁氢能(山东)发展有限公司与山东大学在临淄区齐鲁氢能办公楼隆重举行“研究生联合培养基地授牌仪式暨氢进万家科技示范工程交流会”。齐鲁氢能与山东大学签署了校企合作框架协议,山东大学控制科学与工程学院国家杰青、常务副院长王光臣,副院长孙波,以及临淄区政协副
据外媒报道,当地时间3月20日下午1时20分许,韩国蔚山市南区乐天SK能源氢燃料电池发电厂建筑工地在施工过程中突发爆炸,两名工人因面部和腿部二度烧伤被送往医院,目前正在专科医院接受治疗。据当地相关部门透露,爆炸发生时,现场工人称听到“巨响。当时工人正在给一条直径15厘米、长40米的输氢管道进
北极星氢能网网获悉,氢能产业园加氢站建设项目(施工)招标计划发布。据悉,项目位于泊里镇氢能产业园,项目主要建设一座占地约8.7亩,储氢规模2吨,加注规模为5吨/天,加氢机9套的加氢站,项目招标人为华旺(青岛)能源科技有限公司。具体信息如下:一、招标计划编号:QDZBJH2025000229二、项目名称
北极星氢能网获悉,日前甘肃金昌发布2025年重点工作分解方案。方案中提到,大力培育未来产业,聚焦氢能与新型储能、商业航天、低空经济、人工智能、量子信息等前沿方向,谋划一批示范工程,打造未来产业集聚区;积极推广源网荷储一体化、微电网、绿电园区等模式,推进绿电制氢产业化发展,建设风光氢氨
北极星氢能网获悉,3月19日,国家电投集团氢能科技公司(简称“国氢科技”)总经理、党委副书记张银广,中国石化湖北石油分公司副总经理罗鉴莅临石化机械调研交流,公司董事长、党委书记王峻乔,财务总监魏钢陪同。国氢科技是国家电力投资集团旗下专注于氢能产业发展的核心企业。公司致力于氢能全产业
北极星氢能网获悉,3月19日,华电包头氢能公司领导赴华电伊金霍洛旗12万千瓦风光制氢一体化项目制氢站调研。公司领导先后到制氢车间、压缩机房、辅助用房、加氢站、配电楼、综合楼详细了解工艺流程和建设情况。公司党委书记、董事王新宇,在制氢车间,针对厂房内设备安装不方便、通风系统不足等问题提
北极星氢能网获悉,3月20日,中国氢能集团股份有限公司/上海信然压缩机有限公司(以下简称“信然”)通过线上平台成功举办“加氢站设备及氢气压缩机技术交流会”。会议聚焦氢能储运装备技术创新与产业化应用,吸引了来自政府机构、科研院所、氢能企业及行业专家的几十位代表参与,共同探讨氢能压缩机技
北极星氢能网获悉,3月11日由大连检验检测认证集团有限公司旗下大连锅炉压力容器检验检测研究院有限公司(国家市场监督管理总局气瓶安全技术重点实验室)与浙江大学、大连理工大学联合实施的国际首次基于UNGTR13-Ⅱ(联合国全球技术规则13号二阶段)《氢和燃料电池汽车》的70MPa(兆帕)车用储氢气瓶火灾爆炸
在业内人士看来,氢能储运技术水平的提质升级是调节我国氢能资源供需错配、实现长距离低成本运氢的关键一步,进一步完善氢能储运体系,才能带动氢能产业实现大规模高质量发展。氢能中游储运环节运输效率低、成本高是当前氢能发展的一大痛点。随着氢能产业链降本诉求与下游需求的不断提升,相关企业都在
北极星氢能网获悉,4月19日,由中国产业发展促进会主办,中国产业发展促进会氢能分会、北京国发智慧能源技术研究院承办的第九届中国能源发展与创新论坛在京召开。国家管网工程技术创新公司氢能业务负责人邵强在“氢能与绿色燃料分论坛”分论坛上表示,利用现有天然气管网掺氢输送方式是现阶段实现“西
北极星氢能网,3月19日,内蒙古自治区“风光氢储车”产业生态链启动暨氢能源车辆交车和氢能储运工程研究中心揭牌仪式在北奔重汽举行。北奔重汽、华电内蒙古能源有限公司、明阳集团携手产业链合作伙伴,依托包头风光氢储车开发建设项目,将共同打造风光制氢、氢能技术创新平台、氢能重卡制造、氢燃料电
北极星氢能网获悉,石化油服3月14日在回复投资者提问时表示,公司积极跟进国家、中石化碳达峰、碳中和行动,成立了新能源技术研发中心,入股中石化碳科公司,积极开展技术储备研发,通过制储运加用一体化产业链参与布局氢能产业,新能源业务取得积极进展。截至目前,公司在氢能方面主要承担了中国石化
日前,张家口氢能储运装备一期项目已建成金属内胆生产及测试线和复合气瓶生产及测试线,并顺利试生产,预计今年产值将达到1亿元。据了解,张家口氢能储运装备一期项目位于桥东区氢能产业创新园区,总建筑面积1万平方米,主要建设金属内胆生产及测试线1条、复合气瓶生产及测试线1条、系统装配生产及测试
北极星氢能网获悉,日前,国家能源局就全国人大代表关于天然气产业发展、油气与新能源协同融合发展的建议做了答复。国家能源局表示:支持在低压低钢级支线及城燃配气管道,在工程设计及建设阶段统筹考虑未来掺氢乃至纯氢输送需求;支持油气企业探索推进风光气储氢一体化示范项目建设。原文如下:对十四
近日,中集安瑞科旗下中集氢能高压气氢事业部成功下线国内首台30MPa碳纤维缠绕管束式氢气集装箱并实现批量生产。此次下线的30MPa碳纤维缠绕管束式氢气集装箱刷新了国内高压氢气运输装备运载量的新纪录,国内高压气氢的经济运输半径成倍提升,运氢成本将大幅降低。目前,氢能储运作为氢能产业发展中的重
10月10日,我国首个万吨级48K大丝束碳纤维工程第一套国产线在中国石化上海石化碳纤维产业基地投料开车,并生产出合格产品。产品性能媲美国外同级别产品质量达到国际先进水平。这标志中国石化大丝束碳纤维从关键技术突破、工业试生产、产业化成功走向规模化和关键装备国产化。一举破除我国碳纤维生产和
近日,嘉兴港区与中国特种设备检测研究院、同济大学签订《氢能储运装备部级安全重点实验室》《共建长三角氢安全研究中心》合作协议,标志着这两个项目正式落地。以此为依托,港区将高水平打造氢能创新平台。作为嘉兴市氢能产业的示范区,近年来,嘉兴港区以首位担当践行长三角一体化发展首位战略,抢抓
北极星氢能网获悉,8月1日,惠州市人民政府印发了《惠州市能源发展“十四五”规划》的通知,其中氢能方面指出:建设综合能源加注站。结合城市建设和油气电管网发展,因地制宜布局建设城市加油站、充电基础设施、液化石油气配送15站、油气氢电综合加能站,引导传统化石能源与新能源融合互补发展;推动生
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!