登录注册
请使用微信扫一扫
关注公众号完成登录
2.1 氢气增压分析
准确的热力学模型是流程计算的前提, Soave-Redlich-Kwong(SRK)方程[7]对氢气、空气、氮气等低沸点气体具有较好的表述能力, 故本文采用该模型计算氢气的密度、比热、焓值等物性。
图2是SRK方程计算的标准氢密度与REFPROP 9.1数据对比, 该数据库收录了大量的氢气实验数据, 可以作为参照数据, 可见在本文计算工况内, 与REFPROP符合良好, 计算精度满足要求。
图3为氢气多级压缩过程(氢气流量5 kg/h)压缩机及风机功耗, 总功耗随着压缩级数增加而显著降低, 五级压缩与六级压缩总功耗已相差3%以内, 且五级压缩总功耗为单级压缩总功耗的47%, 考虑到系统复杂度,及总功耗, 优选五级压缩. 计算过程中, 各级压比相等。
2.2 氢气冷却制冷效率分析
氢气冷却过程中, 在临界温度以上, 热负荷与温度近线性分布, 为典型的分布式负荷, 在临界温度以下,液化负荷水平分布(忽略压降), 如图4所示.
另外, 氢气自室温300 K降至20 K过程中, 显热占比0.88, 潜热占比0.12。
氢气降温过程中, 为降低能耗, 显然需要制冷机蒸发温度与氢气温度匹配, 理想情况下, 蒸发温度与氢气温度保持一恒定温差, 为了提高效率, 需要温差尽可能的小, 但考虑到换热等因素, 温差又不能过小。
实际情况中, 单一制冷机很难在大温跨下实现较为一致的换热温差, 因此为了达到此目的, 可采用多段温区制冷,类似于天然气液化中的阶式级联制冷循环, 当然混合工质制冷循环或气体膨胀制冷循环也能在一定程度上实现此目的. 因此, 考虑到换热器性能, 理想情况下, 蒸发温度与氢气温度始终保持一定温差。
此时, 若不考虑采用何种制冷方法, 对每一微元负荷dq积分, 所能实现的最小制冷功率为
式中, ηq为制冷效率, dq为温度T下热负荷, Q为总热负荷, Tevap为制冷机冷源温度, Troom为室温, ξ为相对卡诺效率, 本文统一取为30%. 氢气热负荷与温度近线性分布, 温度与热负荷的关系可表达为
将式(2)带入式(1)可推导氢气冷却功率为
2.3 低温高压储氢密度及能耗分析
采用SRK方程, 计算了压力区间5~70 MPa, 温度区间35~300 K内压缩氢气密度, 以及0.4 MPa下液氢密度(液氢储存及生产常在此压力下), 如图5所示. 即使在70 MPa下, 氢气密度也仅为39.1 kg/m3, 显然, 在室温下, 仅采用提高压力方式, 已很难提高体积储氢密度.液氢(20 K@0.4 MPa)具有较大的密度71.0 kg/m3, 如果以此为参照, 压力在15 MPa以上的低温高压储氢方式均可以实现比液氢更大的密度。
当然, 考虑到相同储氢容器材料下, 低温高压储氢方式耐受的压力要低于室温高压储氢方式, 将低温高压储氢压力限制在50 MPa以内较为合适, 在此情况下, 已有规模应用的储氢容器材料。即使是采用较低的储存压力, 如25 MPa, 氢气在120 K以下均可实现比室温高压储氢更高的储氢密度。
当然, 单一地追求氢气密度可能是得不偿失的, 尤其是大规模储氢或长时间储氢情况下, 还必须考虑实现高密度储氢的耗能情况. 如图6所示, 列出了不同条件下, 单位功耗下可实现的氢气密度, 定义此值为ψ=氢气密度/总功耗。
由图可见, 在室温下, 在5~70 MPa区间内, ψ值是随压力增大而增大的, 因此, 不考虑安全性和材料, 室温下采用高压力储氢在耗能上也是更优的选择。而液氢储存方式, 由于在低温下制冷效率的急剧下降, 尽管液氢具有较高的密度, 但所消耗的能量也更为巨大, 导致ψ值低于25 MPa下室温高压储氢方式. 值得注意的是, 这还是未考虑正仲氢转换的热量。
尽管氢气液化过程中, 潜热占12%左右, 但由于温度保持20 K低温, 这12%潜热所需要的制冷功率与88%显热所需制冷功率相当(本文条件下, 显热耗能54%, 潜热耗能46%)。
因此, 低温高压储氢由于不需要潜热耗能, 在单位耗能方面具有明显优势. 除在某些特例(极高压力、极低温度), 所有压力下的ψ值均高于室温高压储氢方式, 尽管后者能量消耗最低。
同时还可以发现, 除在较低压力下(10 MPa以下), 高压下低温高压储氢方式均存在一个ψ极大值, 极值出现在120 K以下, 且压力越高, 对应极值对应温度越高. 同样, 对比70 MPa下室温高压储氢, 在25 MPa以上, 均存在ψ值更高的区域, 如果将压力限制到35 MPa以内, 只需将氢气储存于150 K以下。
2.4理想储氢区域及燃料电池储氢应用
本文着重分析下80~160 K温区内低温高压储氢情况, 在此温区涵盖空分及液化天然气温区, 具有成熟、可靠且高效率的大型制冷装置, 如混合工质制冷、阶式级联制冷及气体膨胀制冷等, 液氮制冷也具有较好的经济性, 未来还可能突破大型热声制冷等方式.
显然在此温区, 实现低温高压大容量储氢具有更高的可行性。图7覆盖区域为综合密度及能耗优化的储氢区域,并在表1中给出室温70 MPa氢气、液氢及50 MPa压力以下低温高压储氢最优参数。
定义ω=储氢耗能/氢气热值, 室温70 MPa高压储氢较液化储氢具有更优的ω值和ψ值, 但是储氢密度较低.推荐的低温高压储氢方案图 7在储氢压力、储氢密度及ψ值都明显优于室温70 MPa高压储氢, 而ω值也明显优于液化储氢。更为重要的是, ω极值处温度在70~110 K, 制冷机具有较高效率. 值得注意的是, 如果能提高低温下储氢压力, 储氢温度可以进一步提高。
在燃料电池储氢应用场合, 主要关心加氢站储氢及车载储氢. 在这两类应用中, 相对于液氢储存和室温高压储氢, 低温高压储氢在保温方面面临潜在的更大挑战. 温度升高, 室温高压储氢储存压力影响较小, 液氢可以通过部分气化吸收漏热而压力不至于升高, 而低温高压储氢对漏热较为敏感,如在Case7中, 温度上升可能到10K, 压力会上升到36 MPa. 所幸的是, 在此类应用场合, 氢气会频繁消耗, 从而抵消因温升带来的压力上升. 另外, 还可以在储氢模块中增加蓄冷模块,用以抵消漏热损失. 甚至, 在某些场合, 低温高压氢气可储存于特制的液氮容器中, 液氮温度77 K, 可满足绝大多数低温高压储氢需求.
3.结论
低温高压储氢方式有望在大容量、低成本、长时间、高密度储氢需求中应用。通过本文分析可以得出以下结论:
(1) 综合储氢密度及储氢能耗, 低温高压储氢优于室温70 MPa储氢及液化储氢;
(2) 10 MPa以上低温高压储氢存在单位储氢能耗下的储氢密度极大值, 极值出现在120 K以下, 且压力越高, 极值对应温度越高;
(3) 推荐储氢参数为50 MPa, 100 K; 45 MPa,100 K; 40 MPa, 90 K; 35 MPa, 80 K; 30 MPa, 70 K, 其储氢密度在62.3~65.3 kg/m3之间。
参考文献:
1.Liu Y F, Li C, Gao M X, et al. Progress in high-capacity hydrogen storagematerials (in Chinese). Chin J Nat, 2011, 33: 19−26 [刘永锋, 李超, 高明霞, 等. 高容量储氢材料的研究进展. 自然杂志, 2011, 33: 19−26]
2.Ding F C, Yi Y F. Hydrogen Storage and Manufactuing Technology (in Chinese). Beijing: Chemical Industry Press, 2006 [丁福臣, 易玉峰. 制氢储氢技术. 北京: 化学工业出版社, 2006]
3.Jena P. Materials for hydrogen storage: Past, present, and future. J Phys Chem Lett, 2011, 2: 206–211
4.Sørensen B S G. Hydrogen and Fuel Cells: Emerging Technologies and Applications. Pittsburgh: Academic Press, 2018
5.Gao J L, Yuan Z M, Shang H W, et al. Research progress on storage technology and stored energy application of hydrogen (in Chinese). Met Funct Mater, 2016, 23: 1−11 [高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展. 金属功能材料, 2016, 23: 1−11]
6.Viswanathan B. Energy Sources: Fundamentals of Chemical Conversion Processes and Applications. Oxford: Newnes, 2016
7.Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci, 1972, 27: 1197–1203
8.Lemmon E W, Huber M L, McLinden M O. REFPROP 9.1. NIST Standard Reference Database, 2013
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
氢燃料电池是目前氢能产业中技术最成熟、应用最广泛的核心产品之一,在全球积极应对气候变化并大力推动能源转型的背景下,氢燃料电池作为一种高效且清洁的能源转化设备,成为各国政府、科研机构和企业开展能源技术攻关的重点方向,并推动其在多个领域的应用和商业化进程。根据电解质的不同,氢燃料电池
国家主席习近平在第75届联合国大会上宣布“中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”。“双碳”目标为氢能产业高质量发展提供了根本遵循。2022年3月,国家发改委、国家能源局印发《氢能产业发展中长期规划(2021~2035年)》,要求逐步推动构建清洁化、低碳化、低成本的
6月27日,内蒙古华电达茂旗风光制氢一体化项目获得核准,项目单位为内蒙古华电华阳氢能科技有限公司。据悉,项目新能源发电总装机容量1000MW,其中,风电700MW,光伏300MW,安装70台单机容量为10MW风力发电机组、614770块610Wp半片双玻N型组件,配套建设1座100MW/200MWh磷酸铁锂电池储能电站、2座220kV
6月29日,由中国能建氢能公司投资葛洲坝机电公司EPC总承包的中能建兰州新区绿电制氢示范项目满负荷联合调试成功顺利产出99.9999%高纯度氢气。该项目是西北地区首个规模化电解制氢示范项目,填补了区域内绿氢制备的空白。项目成功出氢,将进一步夯实公司在氢能全产业链的布局优势,有力推动兰州新区及周
北极星氢能网获悉,6月27日,内蒙古华电达茂旗风光制氢一体化项目获得核准。项目单位:内蒙古华电华阳氢能科技有限公司项目制氢工程主要建设:126台1000Nm³/h电解水制氢装置及配套设备,装置年产氢气5.47亿Nm³;配置25台2000方氢气球罐,储氢能力65万Nm³;配套建设1座220kV制氢总降站等设施设备。
北极星氢能网获悉,2025年6月27日,“氢电智联创新力电控蓄能领未来”——国电南瑞“一氢二储”新技术·新产品·新范式发布会在南京召开。会上,南瑞发布4S储能系统整体解决方案及产品、绿电制氢整体解决方案及产品、变速抽蓄交流励磁系统,并发布《绿电制氢技术白皮书》。国电南瑞董事长、党委书记郑
在氢能重卡产业蓬勃发展的背景下,天海工业所属天海氢能实现重大技术突破,成功签订国内首个8-450LⅣ型储氢瓶供氢系统百台级批量订单。这一里程碑式的合作,不仅填补了我国大容积车载Ⅳ型瓶储氢技术商业化的空白,更将助力合作方上海兀流汽车科技有限公司的氢燃料重卡在长途干线物流领域树立新的标杆。
北极星氢能网获悉,6月25日,陕西采购与招标网发布《陕西氢能双翼科技有限公司多元耦合氢能“制储输加用”一体化示范项目规划咨询服务采购项目中止公告》。公告显示,接采购人通知,本项目中止采购,未披露中止原因。据此前消息,该项目于6月9日发布公告,后又于6月16日发布项目延期公告,项目投标文件
北极星储能网讯:当SNEC2025的聚光灯聚焦于能源变革前沿,储能产业正以“协同”为笔,在全球能源转型中勾勒新发展图景。展会期间,海博思创、宁德时代、中车株洲所等近百家企业就储能业务密集签署战略合作协议,总规模预计超26.2GWh,从技术研发到系统集成,从产业链协同到全球化市场布局,一场产业聚
为进一步贯彻落实《氢能产业发展中长期规划》要求,引导行业健康有序发展,国家能源局组织行业相关机构和专家编制了《中国氢能发展报告(2025)》(以下简称《报告》)。4月28日,国家能源局能源节约和科技装备司副司长徐继林在解读《报告》时称,发展氢能产业对加快规划建设新型能源体系,实现碳达峰
北极星氢能网获悉,6月18日,龙海区人民政府与厦门大学嘉庚创新实验室就“海上未来能源科学中心——厦漳海岛绿氢科研示范工程”进行签约,双方将打造可再生能源与氢能全方位综合利用解决方案和示范场景,共同开展关键技术攻关、高层次复合型人才培养和产业应用示范推广工作。据悉,该项目选址落地龙海
6月10日,由张宣科技-北京科技大学共建的氢能装备材料前沿技术研究中心正式投入运行。这是双方深入贯彻落实国家“双碳”战略和京津冀协同发展战略,强化协同创新和产业协作,塑造发展新动能新优势的具体体现和生动实践。双方将发挥各自优势,积极推进研发转化平台建设,攻克氢冶金及氢能装备材料关键技
北极星氢能网获悉,5月26日,山西省科技厅对《关于“切实加大新能源的政策支持力度尽快出台全省支持氢能源应用市场的政策”的建议》进行答复,其中指出下一步工作将着力提升企业创新主体地位;持续提升基础研究、应用基础研究能力;加速氢能科技成果转化。关于省十四届人大三次会议第1827号建议的答复
4月23日,我国首款搭载低压常温固态储氢装置的燃料电池乘用车在2025上海车展首次亮相,中国科学技术协会主席万钢作现场指导。在上海市科委支持下,该款车型由上汽集团、捷氢科技等单位共同打造,有望在燃料电池汽车规模化示范应用领域实现重大突破。该款车型搭载了捷氢科技专为乘用车(尤其EREV车型)
北极星氢能网获悉,近日,东方电气集团所属东方氢能入选工业和信息化部2024年未来产业创新发展优秀典型案例未来能源“领军企业”。东方氢能是四川省氢能产业链主企业,作为东方电气集团氢能产业发展的核心平台,深耕氢能领域15年,现已形成涵盖制氢、储运氢、加氢、氢燃料电池及氢能综合应用的氢能全产
北极星氢能网获悉,近日,中集安瑞科与HexagonPurus合资成立的中集合斯康氢能发展(河北)有限公司(以下简称:中集合斯康)生产的IV型高压储氢瓶(以下简称:IV型瓶)通过欧盟TPED认证,并于近期正式向欧洲客户交付首批产品。作为中集安瑞科与HexagonPurus于2021年合资成立的企业,中集合斯康掌握全球
罗宇龙委员:您提出的《关于发展氢能产业助力全省工业高质量发展的建议》(第0390号提案)收悉。感谢您对四川省氢能产业发展的关心,您提出的建议很有指导意义。我厅高度重视,经商科技厅等相关部门,现答复如下。一、关于“依托丰富的可再生能源,打造绿氢制备供应基地”的建议近年来,我省正大力发挥
内蒙古包头市依托丰富的风光资源及工业基础,正加速构建氢能全产业链生态。作为自治区氢能产业重要承载区,园区聚焦“精准招商”,以链式思维推动氢能产业集群发展,为区域绿色转型注入新动能。招商引资“敲门行动”开展以来,园区投资促进部锚定关键环节,靶向招引行业内重点企业。围绕“风光制氢—储
北极星氢能网获悉,近日全球首款可换氢燃料电池10吨叉车在舟山片区六横区块成功完成组装调试,即将交付使用。据悉,这款叉车由国氢(舟山六横)新能源科技有限公司自主研发,填补了全球大吨位氢燃料电池叉车领域的空白。与传统燃油和锂电池叉车相比,可换氢燃料电池叉车的燃料成本较柴油降低1/4,能量
近日,由国机集团中联西北院承揽的秦龙电力秦元热力基于氢能的多能互补综合能源供能系统示范项目建设完成,实现了光伏发电、电化学储能、电解水制氢、高压气态储氢、氢燃料电池发电的综合能源功能系统示范项目投运一次成功。该项目作为陕西省乃至国内领先的氢能综合应用示范工程,满足建设单位生产办公
北极星氢能网获悉,近日,中国船舶712所自主研制的200千瓦级船用氢燃料电池系统正式装车发货,该系统从核心材料到组件均为独立研发,拥有完整的自主知识产权,并获得中国船级社认证。该系统配备两台100千瓦氢燃料电池,采用高压储氢罐,总储氢量120千克,将为氢电拖轮提供高效电能,发电效率达55%。与
12月27日,由东方电气集团所属东方氢能与重汽成商联合研发的氢燃料电池商用车辆在成都市率先实现批量交付,展现强劲“氢”实力,此次交付将为四川省打造氢能产业发展高地再次注入蓬勃“氢”动能。在成都市2024年“揭榜挂帅”项目中,东方氢能作为示范应用联合体牵头企业,成功摘得4.5吨物流车、18吨物
在氢能重卡产业蓬勃发展的背景下,天海工业所属天海氢能实现重大技术突破,成功签订国内首个8-450LⅣ型储氢瓶供氢系统百台级批量订单。这一里程碑式的合作,不仅填补了我国大容积车载Ⅳ型瓶储氢技术商业化的空白,更将助力合作方上海兀流汽车科技有限公司的氢燃料重卡在长途干线物流领域树立新的标杆。
氢燃料电池汽车产业迈入提质增速新阶段——2025国际氢能与燃料电池汽车大会主论坛观察近年来,在全球加速推进碳中和战略的大背景下,氢能以其来源丰富、绿色低碳等特征,在交通、工业等领域展现出了巨大的应用潜力,正加速以“未来能源”的身份融入社会大众的日常生活中。日前,中国汽车工程学会与国际
6月10日,厦门市发展和改革委员会发布《厦门市氢能产业高质量发展行动计划(2025—2027年)(征求意见稿)》。其中提出,建立多渠道氢源供应体系,逐步构建低成本、低碳化的多元制氢体系。在产业发展初期,加强同周边地区氢能资源的联动协调,与漳州古雷港经济开发区、泉州泉港石化工业园区、泉惠石化
6月10日,厦门市发展和改革委员会征求《厦门市氢能产业高质量发展行动计划(2025—2027年)(征求意见稿)》意见。其中提出,打造氢能产业技术创新策源地,加强关键核心技术攻关。布局建设氢能产业创新支撑平台。完善氢能标准体系建设。详情如下:厦门市氢能产业高质量发展行动计划(2025—2027年)(
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
北极星氢能网获悉,5月26日,山西省科技厅对《关于“切实加大新能源的政策支持力度尽快出台全省支持氢能源应用市场的政策”的建议》进行答复,其中指出下一步工作将着力提升企业创新主体地位;持续提升基础研究、应用基础研究能力;加速氢能科技成果转化。关于省十四届人大三次会议第1827号建议的答复
北极星储能网讯:5月21日,上海市科学技术委员会发布2025年度关键技术研发计划“新能源”项目申报指南,提到新型储能有储能电池本体技术、新型储能系统安全防护与智能测控技术2个方向可以申报。其中,高性能液流电池技术的考核指标为全钒液流电池额定功率≥70kW,体积功率密度≥160kW/m³,储能时长≥4
5月21日,上海市科学技术委员会发布2025年度关键技术研发计划“新能源”项目申报指南的通知,通知指出,涉及光伏技术方向有4项:1.新型光伏电池制备技术1.AI同步辐射的钙钛矿光伏材料与器件高通量协同研发与设计技术研究内容:开发60亿+参数的钙钛矿光伏电池专用大语言及材料生成式AI开源科学基础模型
北极星氢能网获悉,5月21日,上海市科学技术委员会发布《2025年度关键技术研发计划“新能源”项目申报指南》,征集范围包括:绿色燃料、可再生能源、新型储能、新型电力系统。其中绿色燃料领域包括电催化合成氨关键技术、质子交换膜电解水制氢高性能膜电极开发及批量化制造技术、阴离子交换膜电解水制
在新能源行业,从来没有一种电池能解决所有问题。大储追求低度电成本和长循环寿命;工商储注重模块化灵活配置,同时兼顾高安全性和经济性;动力电池聚焦快充、高能量密度和超长循环——不同的场景,对电池性能的要求不甚相同。如果试图用单一技术路线满足所有需求,就像用同一把钥匙开所有的锁,结果只
电氢协同的价值是通过电能与氢能的深度耦合,构建电为主体、氢为纽带的新型能源体系,促进新能源消纳,支撑电力系统灵活性日益增长的需求,以及对需要进一步深度脱碳的各用能体系的渗透。——国网上海综合能源服务有限公司副总经理张春雁4月23日,由北极星电力网联合北京碳中和学会共同主办的“2025第
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!