登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
本文围绕制氢关键技术的研究进展进行综述,分析了氢能发展的背景,整理并解读了当前我国与氢能相关的政策,并调研了几项国内典型制氢项目。对氢能产业链中制氢环节应用现状及关键技术原理进行了梳理和对比,包括煤制氢、醇类制氢及电解水制氢技术的原理、电解槽结构及数学模型,并分析了由“灰氢”到“绿氢”转化的重要意义,为我国“绿氢” 制取关键技术的发展提供借鉴和参考。
1 我国氢能产业发展现状
做好碳达峰、碳中和工作,即力争在2030年前使国内二氧化碳排放达到峰值,2060年前实现碳中和,是我国今后一段时期的重点任务之一。积极探索新型清洁能源有助于促进我国碳达峰、碳中和工作的加速进行,加快产业结构的优化。氢能作为一种储量丰富、热值高、能量密度大、来源多样的绿色能源,被誉为21世纪的“终极能源”。氢能的开发利用也受到了世界各国的高度重视,美国、日本、澳大利亚等国已制定相关政策,将氢能列为国家能源结构的重要组成部分,我国也在积极布局氢能发展战略,逐步完善氢能政策体系。
2016年,国家发展改革委、国家能源局印发《能源技术革命创新行动计划(2016—2030 年)》,将氢能列为15项能源技术革命重点任务之一,把可再生能源制氢、氢能与燃料电池技术创新作为重点任务。使用可再生能源电解水制氢是氢能产业新的发展趋势,使用弃风、弃光、弃水打通制氢环节路线,可最大程度避免能源浪费,提高电解水制氢的经济性,符合绿色能源可持续发展需求。
2020年5月,中共中央颁布《2020 年政府工作报告》,提出引导加大氢燃料电池基础科研投入, 鼓励能源企业建立稳定、便利、低成本的氢能供应体系,制定国家顶层氢能规划。
2020年9月8日,国家发展改革委、科技部、工业和信息化部、财政部4部委联合印发《关于扩大战略性新兴产业投资 培育壮大新增长点增长极的指导意见》,意见指出,加快新能源发展,加快制氢加氢设施建设。随着氢能相关政策的颁布和完善,国家还鼓励支持了一大批氢能项目的建设发展,如表1所示。
随着我国政策的引导以及大批氢能项目落地实施,氢能技术不断突破,产业体系逐步完善,我国氢能领域的发展已加速进入产业化阶段。经过多年的工业积累,中国已经是世界最大的制氢国,氢能市场潜力巨大。中国每年仅风力、光伏、水电等可再生能源弃电约1000亿 kW·h,可用于电解制氢约200万t,如果能将这些富余的被弃掉的能源用于电解制氢,将会大大减少能源浪费。近年来,我国氢能产业发展速度快、覆盖广,截至2020年1月,我国已建成加氢站61座(图1),规划和在建的加氢站有84座,内蒙古、辽宁、山东、河南、湖北、广东、四川、安徽等地均有分布。
但是,我国氢能产业还存在诸多问题,如关键技术亟待突破,缺乏自主知识产权,基础设施仍有待加强等。对此,本文从氢能产业链制氢环节关键技术切入,分析总结国内外制氢技术现状,并结合我国制氢领域亟待解决的问题,对 3 种主流制氢工艺进行分析,总结现有技术的优缺点,最后对氢能未来技术发展方向进行展望,对我国氢能产业发展提出建议,以期对我国氢能产业的发展提供指导。
2 制氢关键技术
氢气制备主要技术工艺有热化学制氢和水电解制氢,其中热化学制氢技术主要有化石能源制氢及化工原料制氢。化石能源制氢包括水煤气制氢、天然气重整制氢等,目前已经进行工业生产,技术相对成熟,但能量的产出大于投入,若用此法制氢发电,能量转换效率低,经济性差,因此传统能源制氢并非理想的制氢技术。化工原料制氢主要有醇类裂解制氢、醇类重整制氢,如甲醇水蒸气重整制氢。水电解制氢法即利用光伏、风电等新能源电力电解水制氢,这种制氢方式近零碳排放,可充分利用“三弃”(弃风、弃光、弃水)能源水解制氢,还可以大大降低制氢成本,是实现“绿氢”生产的重要技术环节, 也是氢能领域投资的重点领域。
表2列出了当前阶段不同制氢技术的对比,可以看出:化石能源制氢技术虽然成熟度较高且经济性较好,但碳排放量较大,违背了氢能作为清洁能源的本质,不适合长期发展;可再生能源电力电解水制氢技术成熟,且环保性好、碳排放少,但是其制氢成本较高,可以考虑采取“三弃”能源制氢, 以大幅降低制氢成本。不同制氢技术所使用的制氢原料及制氢工艺大有不同。
2.1 制氢原料
图2给出了目前全球制氢原料占比和主流制氢方法的经济性对比。由图2a)可以看出,在所有制氢原料中,天然气使用最为广泛,占比达到48%, 其次是醇类(占比为30%),电解水使用较少,占比仅为4%。
目前,全球制氢技术的主流选择是化石能源制氢和化工原料制氢,这主要是由于化石能源制氢和化工原料制氢的成本较低(图2b))。此外,由于清洁性好、效率高、成本低,采用天然气重整制氢具有较大利润空间。采用电解水制氢是当前制氢环节的研究热点,技术也较为成熟,其他新型制氢法尚未应用于大规模制氢。
从制氢原料占比来看,近期我国仍将主要采用化石能源制氢和工业副产氢+碳捕集、利用与封存(carbon capture, utilization and storage,CCUS)技术(即“蓝氢”),助力化石能源制氢降低碳排放。而随着我国可再生能源装机容量不断增大,在西北地区出现大量弃风弃光现象,如果能够将弃风弃光所发电力用于电解水制氢(“绿氢”,即采用风电、光伏等可再生能源电解水制氢),“绿氢”制取经济性也非常可观。因此,长远来看,随着碳达峰、碳中和工作的推进,“绿氢”将成为氢能应用的主流选择。
2.2 制氢工艺
现有主要制氢方式如图3所示,其中:较为成熟的技术路线有3种,即使用煤炭、天然气等化石能源重整制氢,以醇类裂解制氢技术为代表的化工原料高温分解重整制氢,以及电解水制氢;光解水和生物质气化制氢等技术路线仍处于实验和开发阶段,相关技术难以突破,尚未达到规模化制氢的需求。
表3给出了典型制氢工艺中各类能源的能量转换效率与碳排放量。
由表3可以看出:虽然化石能源制氢工艺成熟且原料价格低廉,但是会排放大量的温室气体,对环境造成污染,因此环境成本极高;而电解水制氢工艺几乎无碳排放,符合绿色发展及可持续发展的环保理念。
2.2.1 化石能源重整制氢
天然气制氢技术中,蒸汽重整制氢较为成熟, 是国外主流制氢方式。其原理是:先对天然气进行预处理,甲烷和水蒸汽在转化炉中反应生成一氧化碳和氢气等;经余热回收后,在变换塔中,一氧化碳和水蒸气反应生成二氧化碳和氢气。该技术是在天然气蒸汽转化技术的基础上实现的。在变换塔中,在催化剂存在的条件下,控制反应温度, 转化气中的一氧化碳和水反应,生成氢气和二氧化碳。主要反应式为
目前,国内天然气重整制氢、高温裂解制氢主要应用于大型制氢工业。天然气制氢过程的原料气也是燃料气,无需运输,但天然气制氢投资比较高,适合大规模工业化生产。一般制氢规模在5000m3/h以上时选择天然气制氢工艺更经济。此外,天然气原料占制氢成本的70%以上,天然气价格是决定氢价格的重要因素,而我国富煤、缺油、少气的能源特点,制约着天然气制氢在我国的实施。
煤气化制氢是工业大规模制氢的首选,也是我国主流的化石能源制氢方法。该制氢工艺通过气化技术将煤炭转化为合成气(CO、CH4、H2、CO2、N2 等),再经水煤气变换分离处理以提取高纯度的氢气,是制备合成氨、甲醇、液体燃料、天然气等多种产品的原料,广泛应用于石化、钢铁等领域。煤制氢技术路线成熟高效,可大规模稳定制备,是当前成本最低的制氢方式。
2.2.1 甲醇水蒸气重整制氢
甲醇水蒸气重整制氢,即甲醇和水在一定温度、压力和催化剂作用下转化生成氢气、二氧化碳以及少量一氧化碳和甲烷的混合气体,该方法产物中氢气体积分数是甲醇制氢法中最高的。甲醇水蒸气重整制氢具有反应温度低、产物氢气体积分数高、一氧化碳体积分数(<2%)较甲醇分解制氢法低等优点。因此,目前开发的甲醇制氢技术主要采用甲醇水蒸气重整制氢工艺,其反应机理见式(3),工艺流程如图4所示。甲醇水蒸汽重整制氢装置已经广泛用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等行业。
2.2.3 电解水制氢
化石能源重整制氢、甲醇水蒸气重整制氢过程均有含碳化合物的排出,不符合可持续发展和绿色发展的环保理念,而电解水制氢过程为水电解生成氢气和氧气,无含碳化合物的排出,绿色环保。目前,我国正处于能源转型的关键阶段,将可再生能源(太阳能、风能等)转化为氢气或者含氢燃料的能源载体,有助于推进我国能源转型进程,促进我国能源多元化发展。
可再生能源电解水制氢技术路线如图5所示。
图5中,根据电解质种类,电解槽可分为碱性电解槽、质子交换膜(proton exchange membrane,PEM)电解槽、固体氧化电解槽(solid oxide electrolyzecells,SOEC)3种。不同电解水制氢技术参数及特点对比见表4。
由表4可以看出:碱性电解水制氢技术是目前市场化最成熟、制氢成本最低的技术;质子交换膜电解水制氢技术较为成熟,具有宽范围的运行电流密度,可以更好地适应可再生能源的波动性,是国外发展的重要方向,我国应加大质子交换膜电解水制氢技术的研发力度,加强与国外领先单位的合作研发;固体氧化物电解水制氢技术是能耗最低、能量转换效率最高的电解水制氢技术,国外学者在Science上发表的文章指出,固体氧化物电解槽可在动态电力输出下工作,并不会有明显衰减。因此,固体氧化物电解水制氢技术有望实现大规模、低成本的氢气供应,应重点关注并提前进行技术和专利布局。
以PEM电解槽为例,其工作原理如图6所示。
PEM电解槽由膜电极组件(MEA)、气体扩散层(GDL)及带有流道的隔板(双极板)组成。电解槽中,水经过电解在阳极产生氧气,在阴极产生氢气,因此在产生的气体出口设置了流量计。典型的碱性电解槽考虑温度影响的U-I特性曲线模型及电解槽制氢量相关模型可以用式(4)表示。
通过利用可再生能源发电的弃水、弃光、弃风电力,电解水制氢可平抑风力、光伏等发电输出的波动性,并减少能源浪费,解决弃电问题。另一方面,可以通过远距离输运氢燃料,将可再生能源从资源丰富的地区高效转移到用能负荷中心,利用氢气发电增强电网的协调性和可靠性,有效解决可再生能源供需存在的区域错配问题。上述整个过程清洁环保,几乎不产生二氧化碳。但是,可再生能源电解制氢成本较高,因此,“绿氢”的制取亟需可再生能源电解水制氢技术的进一步攻关,降低制氢成本,助力碳达峰、碳中和任务的推进。
综合对比以上3种制氢技术:煤、天然气制氢技术最为成熟,尤其煤制氢在我国具有较大成本优势,但此法制得的“灰氢”不符合能源向低碳转型的绿色发展需求;电解水制氢技术可以制得“绿氢”,能源效率高,但是成本较高,经济性较差。3种制氢工艺的技术水平及经济性对比见表5。
煤或天然气制得的“灰氢”通过CCUS技术可转化为“蓝氢”,该技术也是我国实现碳中和目标技术组合的重要一环。随着碳达峰、碳中和工作的深入进行,制氢领域面临的挑战将是实现无碳或碳中性(“绿氢”或“蓝氢”)的技术(目前通过电解水制取“绿氢”来替代),并将这些技术以更大规模推广应用,进而降低生产成本,产生经济效益。
3 结语
氢能是一种理想的新型能源,通过风光等新能源电力制氢,并将氢与燃料电池结合发电,以此形成氢能产业生态圈有助于保障我国能源安全,加快构建清洁化、低碳化的氢能供应体系,对我国可持续发展战略具有重大意义。氢储能可以作为储能系统新思路,解决可再生能源消纳能力不足及新能源并网问题。氢结合燃料电池发电是氢能全生命周期应用的关键技术环节,氢气发电可以产出多种有直接经济效益的产品(如纯氧),达到大量减少二氧化碳排放的目的,具有很好的经济效益和环保效益。
氢能应用前景广阔,但有部分难题亟待解决。氢气扩散能力强,易燃易爆,与金属接触容易导致氢脆,不好储存,因此妥善解决氢能的储运问题是氢能安全高效使用的关键。此外,电解水制氢成本较高。基于上述问题,提出以下建议:
1)今后应紧紧围绕氢能的制、储、运、用4个环节,着力建设完善氢能体系,加大氢能源与电网的互动性,促进我国能源转型;
2)明确氢能发展定位,给予氢能产业完善的政策支持;
3)大力发展电解水制氢技术,利用弃风、弃光、弃水资源制取“绿氢”,解决电解水制氢经济性难题及能源浪费问题;
4)大力发展可再生能源(如风电与太阳能)与氢气储能结合,促进氢能在储能领域的发展,加速推进我国碳达峰、碳中和工作。
[参考文献]
[1] 曹蕃, 陈坤洋, 郭婷婷, 等. 氢能产业发展技术路径研 究[J]. 分布式能源, 2020, 5(1): 1-8. CAO Fan, CHEN Kunyang, GUO Tingting, et al. Research on technological path of hydrogen energy industry development[J]. Distributed Energy, 2020, 5(1): 1-8.
[2] 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展 望[J]. 储能科学与技术, 2018, 7(4): 586-594. LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594.
[3] 于蓬, 王健, 郑金凤, 等. 氢能利用与发展综述[J]. 汽 车实用技术, 2019(24): 22-25. YU Peng, WANG Jian, ZHENG Jinfeng, et al. Review on hydrogen energy utilization and development[J]. Automobile Applied Technology, 2019(24): 22-25.
[4] 程婉静, 李俊杰, 刘欢, 等. 两种技术路线的煤制氢产 业链生命周期成本分析[J]. 煤炭经济研究, 2020, 40(3): 4-11. CHENG Wanjing, LI Junjie, LIU Huan, et al. Analysis of life cycle cost of coal hydrogen production chain based on two technical routes[J]. Coal Economic Research, 2020, 40(3): 4-11.
[5] 任大伟, 侯金鸣, 肖晋宇, 等. 能源电力清洁化转型中 的 储 能 关 键 技 术 探 讨 [J/OL]. 高电压技术 : 1-10[2020-12-28]. REN Dawei, HOU Jinming, XIAO Jinyu, et al. The exploration of key technologies for energy storage in the clean energy[J]. High Voltage Engineering: 1-10[2020-12-28].
[6] ALAM M, KUMAR K, SAKET V, et al. Renewable sources based DC microgrid using hydrogen energy storage: modelling and experimental analysis[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100840.
[7] 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 469-477.
[8] 国家发展改革委, 国家能源局. 能源技术革命创新行 动计划(2016—2030 年)[A]. 2016-06-07.
[9] 陈建明, 肖佳璇. 基于弃风弃光问题的氢储能可行性 研究[J]. 技术与市场, 2019, 26(11): 23-25. CHEN Jianming, XIAO Jiaxuan. Feasibility study of hydrogen storage based on the problem of abandoned wind and light[J]. Technology and Market, 2019, 26(11): 23-25.
[10]国家发展改革委, 科技部, 工业和信息化部, 等. 关于 扩大战略性新兴产业投资 培育壮大新增长点增长极 的 指 导意 见 : 发 改 高技 〔 2020 〕 1409 号[A/OL]. (2020-09-08)[2021-01-07]. .cn/xxgk/zcfb/tz/202009/t20200925 _1239582.html.
[11]中国氢能联盟. 中国氢能源及燃料电池产业白皮书 [R/OL]. (2019-06-29)[2020-05-23]. /publicati/215.html.
[12]张旭. 氢燃料电池汽车加氢站相关标准分析与建议[J]. 现代化工, 2020, 40(2): 1-6. ZHANG Xu. Analysis on corresponding standards of hydrogen refueling station for fuel cell vehicles and suggestions[J]. Modern Chemical Industry, 2020, 40(2): 1-6.
[13]王涵, 李世安, 杨发财, 等. 氢气制取技术应用现状及 发展趋势分析[J/OL]. 现代化工: 1-6[2021-01-02]. WANG Han, LI Shian, YANG Facai, et al. Application status and development trend analysis of hydrogen production[J]. Modern Chemical Industry: 1-6[2021-01-02].
[14]衣宝廉. 解决氢能长距离输送难题[N]. 人民政协报, 2020-08-04(7). YI Baolian. Solving the problem of long distance transportation of hydrogen energy[N]. Journal of the Chinese People’s Political Consultative Conference, 2020-08-04(7).
[15]李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储- 运 氢 关 键 技 术 综 述 [J/OL]. 电 工 技 术 学 报 : 1-17[2020-12-28]. LI Zheng, ZHANG Rui, SUN Hexu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society: 1-17[2020-12-28].
[16]MATUTE G, YUSTA J M, BEYZA J, et al. Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions[J]. International Journal of Hydrogen Energy, 2020, 46(2): 1449-1460.
[17]孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展 趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
[18]何文辉. 制氢原料的优化[J]. 广石化科技, 2007(2): 6-11. HE Wenhui. Optimizing feed stock of hydrogen production[J]. Guangzhou Petrochemical Technology, 2007(2): 6-11.
[19]杨丽, 宣国会, 刘方. 二氧化碳促进碳基化学链甲烷 裂解制氢效率的实验和机理研究[J/OL]. 中国电机工 程学报: 1-11[2021-01-06]. YANG Li, XUAN Guohui, LIU Fang. Experiment and mechanism of carbon dioxide on promoting chemical looping methane decomposition based on activated carbon catalysts[J/OL]. Proceedings of the CSEE: 1-11[2021-01-06].
[20]王阳峰, 张英, 陈春凤, 等. 天然气蒸汽重整制氢装置 原料优化研究[J]. 石油与天然气化工, 2020, 49(3): 48-52. WANG Yangfeng, ZHANG Ying, CHEN Chunfeng, et al. Study on the optimization of raw material for hydrogen production unit in refinery[J]. Chemical Engineering of Oil & Gas, 2020, 49(3): 48-52.
[21]洪皓. 煤炭制氢经济适用性分析[J]. 能源与节能, 2020(12): 82-85. HONG Hao. Analysis on economic applicability of hydrogen production from coal[J]. Energy and Energy Conservation, 2020(12): 82-85.
[22]XIANG X, GONG G, WANG C, et al. Thermodynamic analysis of hydrogen production from coal gasification in triple-bed circulating fluidized bed[J]. Journal of Thermal Science and Engineering Applications, 2020, 13(1):1-17.
[23]苏海兰, 史立杰, 高珠, 等. 甲醇水蒸气重整制氢研究 进展[J]. 工业催化, 2019, 27(4): 28-31. SU Hailan, SHI Lijie, GAO Zhu, et al. Research progress of hydrogen production from methanol steam reforming[J]. Industrial Catalysis, 2019, 27(4): 28-31.
[24]王小美, 李志扬, 朱昱, 等. 甲醇重整制氢方法的研究 [J]. 化工新型材料, 2014, 42(3): 42-44. WANG Xiaomei, LI Zhiyang, ZHU Yu, et al. Study on methanol reforming methods of hydrogen production[J]. New Chemical Materials, 2014, 42(3): 42-44.
[25]乔韦军, 张楷文, 张娜, 等. 甲醇水蒸气重整制氢 CuAl2O4 催化材料的研究[J]. 燃料化学学报, 2020, 48(8): 980-985. QIAO Weijun, ZHANG Kaiwen, ZHANG Na, et al. Study on CuAl2O4 catalytic material for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 980-985.
[26]王业勤, 杜雯雯, 叶根银, 等. 制氢加氢“子母站”建 设规划浅析[J]. 化工进展, 2020, 39(增刊 2): 121-127.WANG Yeqin, DU Wenwen, YE Gengen, et al. A brief analysis on “distributed-centralized hydrogen producing and filling station” planning[J]. Chemical Industry and Engineering Progress, 2020, 39(Suppl.2): 121-127.
[27]刘科, 张婷, 任志霞, 等. 氢能与甲醇经济山西能源革 命的重要组成部分[N]. 山西日报, 2020-10-23(6). LIU Ke, ZHANG Ting, REN Zhixia, et al. Hydrogen energy and methanol economy: an important part of Shanxi energy revolution[N]. Shanxi Daily, 2020-10-23(6).
[28]彭元亭, 王傲, 韦童, 等. 液态生物质燃料重整及其在 固体氧化物燃料电池中的应用[J/OL]. 化工进展: 1-10[2020-12-28]. PENG Yuanting, WANG Ao, WEI Tong, et al. The reforming of liquid bio-fuels for solid oxide fuel cell application[J/OL]. Chemical Industry and Engineering Progress: 1-10[2020-12-28].
[29]KOLEVA M, GUERRA O J, EICHMAN J, et al. Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets[J]. Journal of Power Sources, 2021, 483: 229183.
[30]骈松, 孙邦兴, 杨华. 基于可再生能源纯水电解制氢 技术展望[J]. 山东化工, 2020, 49(15): 72-73. PIAN Song, SUN Bangxing, YANG Hua. Prospect of hydrogen production by electrolysis of pure water based on renewable energy[J]. Shandong Chemical Industry, 2020, 49(15): 72-73.
[31]蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综 述[J]. 电力系统自动化, 2014, 38(21): 127-135. CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135.
[32]霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用 综述[J]. 储能科学与技术, 2016, 5(2): 197-203. HUO Xianxu, WANG Jing, JIANG Ling, et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5(2): 197-203.
[33]王艳艳, 徐丽, 李兴国. 氢气储能与发电开发[M]. 北京: 化学工业出版社, 2017: 23-25. WANG Yanyan, XU Li, LI Xingguo. Hydrogen energy storage and power generation development[M]. Beijing: Chemical Industry Press, 2017: 23-25.
[34]张运洲, 代红才, 张宁. 电力系统低碳转型要“多线出 击”[N]. 中国能源报, 2020-12-07(4). ZHANG Yunzhou, DAI Hongcai ,ZHANG Ning. Low carbon transformation of power system needs "multi line attack"[N]. China Energy News, 2020-12-07(4).
[35]HAUCH A, KüNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): 6118.
[36]ITO H, MAEDA T, NAKANO A, et al. Effect of flow regime of circulating water on a proton exchange membrane electrolyzer[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9550-9560.
[37]尹文良, 刘琳, 张存山, 等. 含制氢储能的混合传动风 电系统建模与运行特性分析[J]. 电力自动化设备, 2020, 40(10): 64-70. YIN Wenliang, LIU Lin, ZHANG Cunshan, et al. Modeling and operation performance analysis of hybrid drive wind power generation system with hydrogen energy storage[J]. Electric Power Automation Equipment, 2020, 40(10): 64-70.
[38]蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容 器并网系统建模与控制[J]. 电网技术, 2016, 40(10): 2982-2990. CAI Guowei, CHEN Chong, KONG Lingguo, et al. Modeling and control of grid-connected system of wind/PV/electrolyzer and SC[J]. Power System Technology, 2016, 40(10): 2982-2990.
[39]张贤. 碳中和目标下中国碳捕集利用与封存技术应用 前景[J]. 可持续发展经济导刊, 2020(12): 22-24. ZHANG Xian. The application prospect of CCUS in China under the target of carbon neutrality[J]. China Sustainability Tribune, 2020(12): 22-24.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,近期,位于安徽高新区石莲南路的“阳光氢能智能制造中心”完成竣工验收已投产运营。项目由阳光氢能科技有限公司(以下简称“阳光氢能”)投资2亿元建设,建筑面积约13869平方米,预计达产后年产值达30亿元。项目正式投产后,阳光氢能生产制造智能化水平再升级,园区电解槽产能增至3G
北极星氢能网获悉,11月11日,鹏飞氢美(宁城)新能源科技有限公司提交的鹏飞氢美(宁城)新能源公司262.5MW风力发电制0.8万吨/年绿氢及15万吨/年绿色甲醇一体化项目,符合产业政策和市场准入标准,准予备案。建设地点:赤峰市--宁城县--宁城县汐子工业园区总投资:182000万元,其中自有资金:36400万
北极星氢能网获悉,2024年11月11日,清能公司旗下控股子公司内蒙古清能通胜新能源有限公司(以下简称“清能通胜”)隆重举行大功率燃料电池及加氢制氢核心装备产业基地投产仪式。清能通胜位于伊金霍洛旗空港物流园区,凭借清能股份二十余年在燃料电池及新型电解制氢技术领域的技术积累和丰富的批量化生
北极星氢能网获悉,11月10日上午,宁氢新能源装备(宁夏)有限公司在苏银产业园举行下线仪式暨签约仪式,首台套1000标方电解槽成功下线。据悉,宁氢新能源成立于去年12月,专注于氢能技术的研发与应用,以先进催化剂和电极技术为引领,围绕氢能和环保两个领域,建立了绿氢核心材料、成套绿氢装备的生产
北极星氢能网获悉,11月11日,新疆俊瑞轮台县新能源规模化制绿氢项目设计采购施工一体化总承包中标结果公示,中标人为中建七局新能(上海)建设有限公司。据招标信息显示,项目位于新疆巴音郭勒州轮台县,新建年产3万吨绿电制氢工厂,配套安装额定电解槽总量106000Nm#xB3;/h,电解水制氢单套2000Nm#xB3
北极星氢能网获悉,11月9日,集装箱式水电解制氢装置中标候选人公示,信息显示中标候选人分别为中石化石油机械股份有限公司、苏州希倍优氢能源科技有限公司、中船(邯郸)派瑞氢能科技有限公司,投标报价分别为225万、229.643万、235.82万。据了解,10月28日,该项目发布中标候选人,分别为中石化石油
北极星氢能网获悉,近日,银川市发展和改革委员会发布银川市发展氢能产业路径研究,其中指出将出台相关政策支持非化工园区可再生能源制氢产业发展,为可再生能源规模化消纳和利用提供政策支撑。因地制宜开展光伏制氢或离网新能源制氢。原文如下:银川市发展氢能产业路径研究氢能源是指氢和氧进行化学反
北京未来氢能科技有限公司(简称:未来氢能)致力于绿氢事业,是最早深根AEM电解水制氢产业化发展的高新技术企业,经过多年攻坚,公司形成系统化研发体系及产品能力,首批核心产品包括AEM阴极催化剂、阴极电极、阳极电极将率先于2024年11月21日盛启上市。新品聚焦核心材料活性、稳定性、长效性、扩展性
北极星氢能网获悉,11月7日,日照市人民政府、中能建(上海)成套工程有限公司(以下简称上海成套公司)、山东蓝昆氢能源科技有限公司在上海签订三方战略合作协议。根据协议精神,上海成套公司将在日照围绕新能源产业,积极推进方形常压电解槽生产基地建设、二氧化碳捕集利用、氢电醇耦合发展、海洋风
11月5日,国家电力投资集团有限公司二〇二四年度第66批集中招标结果正式公示,三一氢能有限公司成功中标吉电股份盐城吉电绿氢制储运加用一体化(一期)示范项目电解水制氢设备。三一氢能将为该项目提供8台先进的碱性电解水制氢成套设备及其相关配套设施,包括8套IGBT整流电源、8套1000Nm/h碱性电解槽、
当前,全球掀起了绿色能源转型浪潮,氢能在其中扮演越来越重要的角色。在此背景下,绿氢的价值和重要性日益凸显,各国正在加速绿氢的战略布局,以抢占能源转型的先机。在CWP2024上,业内专家、各大厂商热议风储氢结合的相关技术。氢能驱动的新能源时代储能技术的突破是解决风光能源电力高效利用问题的
北极星氢能网获悉,近日,银川市发展和改革委员会发布银川市发展氢能产业路径研究,其中指出将出台相关政策支持非化工园区可再生能源制氢产业发展,为可再生能源规模化消纳和利用提供政策支撑。因地制宜开展光伏制氢或离网新能源制氢。原文如下:银川市发展氢能产业路径研究氢能源是指氢和氧进行化学反
北极星氢能网获悉,11月6日,工信部对新型储能制造业高质量发展行动方案(征求意见稿)公开征求意见,其中提到:面向中短时、长时电能存储等多时间尺度、多应用场景需求,加快新型储能本体技术多元化发展,提升新型储能产品及技术安全可靠性、经济可行性和能量转化效率。加快锂电池、超级电容器等成熟
北极星氢能网获悉,10月31日,国家能源集团国华投资赤城制氢厂取得河北省市场监督管理局颁发的《全国工业产品生产许可证》,该证是继《河北省氢能产业安全管理办法(试行)》发布以来,首张针对新能源制氢行业颁发的许可证。至此,赤城制氢厂全部商运手续齐全,与万全综合能源站打通供应链,标志着集团
北极星氢能网获悉,2024年7月氢能项目签约、开工消息继续传来,据北极星氢能网不完全统计,7月7个氢能项目签约,5个氢能项目开工,涉及中国石油、中国能建、东方电气等多家央国企。详情如下:签约7月,中国石油吐哈油田分公司与乌鲁木齐市米东区人民政府签订了合作协议,将在米东区建设点对点供电70万
9月15日,中煤平朔采煤沉陷区60万千瓦离网式可再生能源制氢一期项目(绿氢耦合煤化工部分)环境影响评价公众参与第二次公示:中煤平朔采煤沉陷区60万千瓦离网式可再生能源制氢一期项目(绿氢耦合煤化工部分)已于2024年3月4日备案。项目总投资为42795.69万元。拟定生产绿氢3119万Nm/年,制氢系统年工作
近日,根据国家能源局《关于下达2024年能源领域行业标准制修订计划及外文版翻译计划的通知》(国能综通科技〔2024〕115号),中国能建中电工程华北院牵头申报的两项行业标准制定计划项目《可再生能源电力制氢工程设计规程》《火力发电厂烟气提水系统设计规程》获批立项。相关阅读:20项氢能相关标准制
8月2日,国家能源局发布关于下达2024年能源领域行业标准制修订计划及外文版翻译计划的通知,据北极星氢能网梳理,氢能产业相关行业标准共计22项,包含20项制定计划和2项修订计划。政策原文:国家能源局下达2024年能源领域行业标准制修订计划2024年能源领域行业标准制定计划项目中的氢能标准汇总如下:1
北极星氢能网获悉,2024年7月30日,河钢集团张宣科技(以下简称“张宣科技”)与亿华通在张家口市宣化区成功签署战略合作框架协议。根据协议,双方将加速燃料电池汽车示范应用、完善绿氢供应体系、加快氢能规模化应用,助力宣钢顺利达成碳达峰碳中和目标,推动张家口市可再生能源示范区和国家碳达峰试
北极星氢能网获悉,7月29日,山西运城市人民政府印发《运城市氢能产业发展中长期规划(2024-2035年)》的通知,其中指出:到2025年,工业副产氢利用水平不断提高,积极开展可再生能源制氢示范,引进和培育优势龙头企业,推动氢能在交通领域的示范应用。到2030年,形成可再生能源制氢与工业副产氢相结合
北极星氢能网获悉,7月10日,吉林省投资项目在线审批监管平台显示,吉电股份可再生能源制氢及氢制绿色甲醇、绿氨项目备案通过。据悉,该项目建设地点位于吉林省白城市大安市,项目总投资3.5亿元。建设规模及内容包括:1、研发适应风光发电规律的电解槽集群化控制技术,包括PEM制氢、碱水制氢、固体氧化
北极星氢能网获悉,7月6日,南充市经信局发布关于公开征集《南充市氢能产业发展规划(2024-2035年)(征求意见稿)》意见建议的公告。其中指出:将分三个阶段落实奋斗目标:第一阶段,到2027年,南充市氢能发展初具规模,建成一座氢能产业园,以产业园为核心的氢能产业链集群初步形成。到2027年,年产
在全球气候变化日益严峻的背景下,绿色低碳转型已形成全球共识和一致行动。为了实现可持续、高质量发展,在统筹国内、国际两个大局的基础上,我国政府明确提出碳达峰、碳中和的宏伟战略目标。作为社会发展的核心要素性部门和二氧化碳排放的主要来源,能源部门的高质量发展成为我国实现碳达峰、碳中和目
北极星储能网获悉,10月27日,江苏苏州市政府印发全面推进美丽苏州建设工作方案的通知。文件提出,积极稳妥推进碳达峰碳中和。构建落实碳达峰碳中和“1+1+6+12”政策体系,实施“碳达峰十大行动”,推动能耗双控向碳排放双控全面转型,重点控制非电行业煤炭消费,新建机组煤耗标准达到国际先进水平。持
北极星储能网获悉,11月5日,云南保山市人民政府印发《保山市空气质量持续改善行动实施方案》(以下简称《方案》)的通知。《方案》指出,落实价格税费激励约束政策。落实国家峰谷分时电价、高耗能行业阶梯电价等政策。鼓励对新能源城市公共汽电车充电给予积极支持。按照国家要求落实铁路运价调整机制
北极星储能网获悉,11月5日,河南省获嘉县人民政府印发《获嘉县“十四五”现代能源体系和碳达峰碳中和规划》(以下简称《规划》)的通知。《规划》指出,加快壮大新型储能产业体系:1.积极布局发展新型储能产业。依托新乡市电池研究院等技术研发优势,着力推动我县新型储能多元化技术和装备研发,培育
近日,吉林省碳达峰碳中和标准化技术委员会成立,吉林省碳达峰碳中和标准化技术委员会编号为JL/TC55,主要负责开展省内碳达峰碳中和领域标准体系研究,承担省内碳达峰碳中和领域标准化技术支撑工作。与全国碳排放管理标准化技术委员会(SAC/TC548)工作领域相对应。第一届吉林省碳达峰碳中和标准化技术
11日,吉林省碳达峰碳中和标准化技术委员会成立大会暨第一届委员大会在长春举行。会议选举产生了标委会主任委员、副主任委员、秘书长、副秘书长,表决通过了吉林省“双碳”标委会章程、工作细则及年度工作计划。会议指出,吉林省“双碳”标委会的成立,既是吉林省践行绿色发展理念,加快生态强省建设的
10月31日,2024碳中和与绿色发展大会在京举办。此次大会以“‘碳’启未来‘新质’领航”为主题,由中国检验认证集团、中国消费品质量安全促进会指导,中国质量认证中心主办,北极星电力网、北极星环保网承办。来自国际组织、研究机构、企业的300余名代表参加大会。与会嘉宾从政策、科研、产业等角度综
10月31日,2024碳中和与绿色发展大会在京举办。此次大会以“‘碳’启未来‘新质’领航”为主题,由中国检验认证集团、中国消费品质量安全促进会指导,中国质量认证中心主办,北极星电力网、北极星环保网承办。来自国际组织、研究机构、企业的300余名代表参加大会。与会嘉宾从政策、科研、产业等角度综
国家机关事务管理局、国家发展和改革委员会近日发布《关于规范中央国家机关节能降碳项目管理工作的通知》,要求节能降碳项目项目在实施过程中,项目建设单位应严格执行招标投标、政府采购等有关规定,达到公开招标条件的,严格履行公开招标程序,涉密项目按照有关规定执行。全文如下:国家机关事务管理
锂电池的生产和迭代,离不开先进锂电设备的支持。为了不断提升锂电池的质量和性能,同时实现电池工厂的“零碳”制造,锂电设备解决方案必须“先行一步”。近年来,我国锂电设备领域持续创新升级,不仅为我国连续多年实现动力电池装机量全球第一,提供了有力的保障;同时,相关设备企业也为锂电企业研发
11月1日,横店东磁太阳能连云港基地获得TüV南德意志集团(以下简称“TüV南德”)颁发的ISO14068碳中和核查声明证书,为TüV南德在光伏行业颁发的首张该类证书。同日,横店东磁泗洪、连云港和宜宾3个基地还获得该组织碳核查声明和绿色能源消费核查声明。ISO14068是ISO14060系列首个碳中和标准。在此次
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!