登录注册
请使用微信扫一扫
关注公众号完成登录
图1 火电机组一体化节能技术体系
2.1.2 机组延寿综合提效技术
煤电机组提升参数延寿技术是提高煤电机组整体能耗水平、节能减碳的重要手段。
我国“十四五”期间达设计期限的20万kW及以上煤电机组有87台,合计容量约0.26亿kW。未来10年(2021—2030)我国有252台容量20万kW及以上煤电机组陆续达到设计期限,总容量约 为0.82亿kW,约占目前煤电总容量(按2020年底10.8亿kW计)的7.6%。其中亚临界300 MW及以上机组205台,占10年内设计期满机组容量的88%。
根据国外煤电机组的运行经验,全球范围内煤电机组平均服役30年以上的超过24%。日本近50%的煤电机组服役年限为30~39年,25%的煤电机组服役年限超过40年。美国煤电机组的平均使用年限为42年,有11%的机组运行年限超过60年。我国煤电机组构成中,300 MW等级亚临界机组服役年限在20年以内的占比达到82.8%。
对于达到设计使用寿命的机组,通过机组延寿改造并同步实施提升参数改造可大幅提升机组的经济性。
针对亚临界机组,仅提升蒸汽温度,而主蒸汽压力基本保持不变,既可以降低机组煤耗水平、又可以有效减少改造工程量。蒸汽参数提升的幅度与方案的难易程度和投资规模成比例。
2.2 高效燃煤发电技术
2.2.1 超高参数超超临界燃煤发电技术
超高参数超超临界燃煤发电是指将燃煤发电机组参数从现在的600 ℃等级进一步提升至650 ℃等级乃至700 ℃等级,从而达到提升发电效率的目的。
过去的几十年里,煤电机组一直都在向大容量、高参数发展。目前,全世界煤电机组的蒸汽参数稳定在600 ℃等级,部分机组提高到620 ℃。机组容量基本上以600 MW和1 000 MW为主。目前,中国已投产600 MW等级超临界和超超临界机组已超过600台,已投产超超临界1 000 MW机组达到137台。2016年,成功投运了最先进的1 000 MW等级600 ℃/620 ℃/620 ℃超超临界二次再热机组,净效率已达47%。在国家持续投入和支持下,煤炭的先进清洁高效发电技术取得了显著进步,机组参数、数量、能效指标均跃居世界首位。
在700 ℃发电技术领域,尤其是高温镍基合金材料方面,国外已经开发出了几种适用于700 ℃机组的镍基合金材料,完成了700 ℃电厂的概念设计,基本为700 ℃机组的建设做好了技术储备。我国700 ℃发电技术的研究也紧跟世界步伐。相关科研单位筛选和开发了一批高温合金材料,在华能南京电厂建成了700 ℃部件验证平台,完成了25 000 h关键高温部件的验证,运行情况良好。同时也正在瑞金电厂二期开展试验性应用。另外,已开发了主蒸汽大管道、高中压转子合金,目前正在进行产业化试制和部件性能验证。
初步预计:2025年,实现650 ℃等级超超临界燃煤发电机组的工程示范,净效率不低于47%;2035年实现650 ℃等级超超临界燃煤发电机组的大规模商用;2035年实现700 ℃等级超超临界燃煤发电机组的工程示范,净效率不低于50%; 2045年实现700 ℃等级超超临界燃煤发电机组的大规模商用。
在700 ℃超超临界蒸汽发电技术的基础上进一步提升温度参数,发电系统效率提升有限,即便温度到达800 ℃,净效率也很难突破55%,且随着温度的提升,高温合金材料的开发成本和制造成本均成倍增加,材料瓶颈问题突显。因此在实现700 ℃等级超超临界燃煤发电机组商用后,不建议向更高参数发展。
2.2.2 超临界CO2循环高效燃煤发电
超临界CO2循环高效燃煤发电技术是通过采用超临界CO2代替水作为循环工质,采用布雷顿循环代替朗肯循环作为动力循环的一种新型燃煤发电技术。在600 ℃等级,超临界CO2循环燃煤发电机组供电效率可比传统水循环发电机组提高3百分点~5百分点;700 ℃等级,超临界CO2循环燃煤发电机组供电效率可比传统水循环发电机组提高5百分点~8百分点。
2004年,美国能源部(DOE)开始超临界CO2循环发电技术的研发,目标是为核电站、太阳能光热发电、余热利用等研发下一代动力设备。2011年美国能源部开始实施“Sunshot”计划,旨在将超临界CO2布雷顿循环系统付诸商业化。该研发项目主要进行10 MW超临界CO2发电机组研发和测试,实验测试在美国Sandia国家实验室下属的核能系统实验室(NESL)进行。2014年起美国能源部实施了化石燃料超临界CO2循环发电研究计划,其目标是使超临界CO2闭式循环比高参数水工质朗肯循环效率高5百分点以上。
2005—2011年,美国Sandia国家实验室在美国能源部的资助下,首先搭建了热功率1.0 MW的超临界CO2布雷顿循环实验回路装置,设计压力为 15.2 MPa,温度为538 ℃,电功率为125 kW。
欧洲和日本也在加紧研究超临界CO2循环。法国电力公司(EDF)开展了燃煤闭式超临界CO2循环研究,东京工业大学、俄罗斯科学院、比利时列日大学开展了半闭式超临界CO2循环研究等。总体上看,对于煤基超临界CO2循环的研究,国外仍处于起步阶段。
我国在该领域的研究与国外的研究基本同步。西安热工研究院有限公司(西安热工院)、中国科学院、中国核动力研究院、清华大学、西安交通大学等单位相继开展了超临界CO2循环的相关研究。国家科技部相继支持了“超临界CO2太阳能热发电关键基础问题研究”“超高参数高效CO2燃煤发电基础理论研究与关键技术研究”“兆瓦级高效紧凑新型海洋核动力装置基础理论及关键技术研究”等重点研发计划项目。经过不懈的努力,国内在超临界CO2循环构建、超临界CO2流动传热机理等方向上的部分成果达到了国际先进水平。
西安热工院的5 MW超临界CO2循环发电验证平台(图2),已于2020年12月建设完成。该平台最高压力为21.5 MPa,最高温度为600 ℃,最大流量为306 t/h,是目前世界上容量最大、参数最高的超临界CO2循环验证平台。该平台的建成投运将极大地推动新型高效发电技术的发展和工程应用。
图2 5 MW超临界CO2循环发电验证平台
目前,随着5 MW超临界CO2发电平台的投运,关键技术和关键设备逐步得到验证和完善,该技术工程应用研究已经全面展开。西安热工院和相关单位正在进行50 MW超临界CO2光热发电可行性研究和初步设计,预计在2030年左右实现300 MW超临界CO2煤电机组工程示范,净效率不低于50%;2040年实现700 ℃等级大型超临界CO2燃煤发电机组的工程示范,净效率不低于55%。
2.3 煤电机组灵活性技术
为了解决新能源消纳的问题,煤电运行需要更加灵活,调峰能力更加突出可靠。煤电机组调峰技术需要重点研究或突破的地方主要包括2方面:一是调峰的深度,二是调峰的速度。火电正由传统的提供电力、电量的主体电源,逐步转变为提供电力、电量的同时,向电力系统提供可靠容量、调峰调频等辅助服务的基础性、调节性电源。
随着新能源比例的增加,电网对于瞬间大幅甩负荷的响应能力要大幅提升,迫切需要从技术上提高煤电负荷快速升降的能力。
2.3.1 锅炉深度调峰技术
根据炉型、煤质、燃烧设备的不同,目前国内大部分燃煤锅炉低负荷稳燃能力在40%~50%额定负荷,通过改造下探至20%~30%额定负荷。
锅炉深度调峰主要面临低负荷稳燃和环保达标2个问题。
提高锅炉低负荷稳燃能力的主要技术措施有:锅炉精细化运行调整,基于强化燃烧的锅炉燃烧器改造,锅炉制粉系统改造,掺烧高挥发分煤质改造,以及等离子体、微油、富氧等助燃改造等。
目前,绝大部分煤电机组脱硝装置的工作温度为300~420 ℃。当机组深度调峰时,随着锅炉负荷的降低,脱硝装置入口烟温将降至300 ℃以下。为避免脱硝催化剂失去活性,脱硝装置需要退出运行,导致氮氧化物排放超标,机组调峰中止。因此,针对深度调峰期间,脱硝装置无法投入的机组,需要进行提高脱硝装置入口烟温改造。主要的低负荷选择性催化还原(SCR)脱硝入口烟温提升技术有省煤器烟气旁路、省煤器水侧旁路、省煤器分级布置、回热抽汽补充给水、热水再循环等技术。
上述技术措施都是常规手段,需要针对不同的机组采用不同的组合。
2.3.2 控制系统调峰适应性技术
我国火电机组在50%额定负荷以下普遍以启停机过程控制为主,分散控制系统(DCS)控制逻辑未能在50%额定负荷以下进行连续运行甚至响应调峰调频的调试。
火电机组深度调峰运行负荷范围一般目标为30%~100%额定负荷。这不仅是简单的运行负荷范围变宽,从自动调节和控制角度,汽动给水泵、变频泵、调节阀等大量对象的非线性特性随工况范围的变宽而变得不可忽视。很多控制回路匹配30%~100%额定负荷范围工况变得异常困难,导致机组常常表现在某些工况下自动控制运行的异常,给进一步提高变负荷速率指标给机组的安全稳定运行带来极大的挑战。
机组深度调峰运行时,大量设备接近极限工况运行,辅机跳闸、主燃料跳闸等保护和切除自动等功能回路如有误动或切手动都极易威胁整个系统的安全稳定运行。若要实现更进一步深度调峰,需要针对锅炉燃烧进行控制优化,修改逻辑(图3)。
图3 燃煤锅炉智能协调优化控制
2.3.3 热电解耦技术
1)汽轮机高低旁路热电解耦技术 汽轮机旁路的设计目的在于协调锅炉产汽量与汽轮机耗汽量之间的不平衡,实现一定程度的热电解耦,提高机组对负荷、供热的适应性以及运行灵活性。利用机组已有的旁路或者新建的旁路可以实现对外供热。汽轮机旁路供热系统如图4所示。
图4 汽轮机旁路供热系统
汽轮机高低旁路供热按其供热形式可以分为:
1)低压旁路单独对外供热;
2)高压旁路部分主蒸汽对外供热;
3)汽轮机高低旁路联合供热。
目前应用较多的是低压旁路单独对外供热和汽轮机高低旁路联合供热2种方式。
2)低压缸零出力热电解耦技术 供热机组一般受低压缸冷却蒸汽流量限值和以热定电运行方式的影响,电调峰能力有限,很难适应电网深度调峰需求,供热能力也受限制。低压缸零出力技术是突破这一难题有效手段。图5为低压缸零出力供热技术系统示意。该技术是在低压缸高真空运行条件下,关闭低压缸入口阀门,将原进入低压缸的蒸汽用于供热,实现汽轮机低压缸零出力运行。以某机组为例,经低压缸零出力改造后其低压缸进汽量减少,大量蒸汽用于供热,相应冷源损失减少,供热季平均发电煤耗下降约40 g/(kW•h)。低压缸零出力改造技术突破传统供热机组运行理论,实现了机组低压缸零出力运行,从而大幅降低低压缸的冷却蒸汽消耗量,提高汽轮机电调峰能力和供热抽汽能力,并能够实现抽汽凝汽式运行方式与零出力运行方式的在线灵活切换,使机组同时具备高背压机组供热能力大、抽汽凝汽式供热机组运行方式灵活的特点,显著提升运行灵活性。
图5 低压缸零出力供热技术系统
2.3.4 储热耦合调峰技术
目前的火电机组灵活性较差,主要是因为机组的锅炉和汽轮机间具有很强的耦合关系,当需要宽负荷运行时,汽轮机具有较好的负荷调节能力,但锅炉受最低稳燃负荷的限制,不能进一步降低负荷率,限制了机组的调峰能力。为提高火电机组的灵活性,适用于深度调峰,需要采取措施将机组的锅炉和汽轮机进行解耦。
采用储能可以在用电负荷低谷时充电,在用电尖峰时放电,以降低负荷尖峰。利用储能系统的替代效应可以将煤电的容量释放出来,从而提高火电机组的利用率,增加其经济性。
目前,已经可以实现工程应用的是高温熔盐储热耦合火电机组调峰技术,其系统结构如图6所示。
在机组参与电网调峰需要降低出力时,保持锅炉负荷不变,通过抽取部分主蒸汽和再热蒸汽进入储热模块,换热后根据参数匹配返回机组的相应热力系统接口,实现机组出力降低的同时将部分热量存储于储热模块;在机组参与电网调峰需要增加出力时,仍然保持锅炉负荷不变,根据参数匹配从机组的相应热力系统接口抽出部分蒸汽或给水进入储热模块,换热后根据参数与相应的热力系统接口蒸汽或给水混合,返回机组,实现机组出力的升高。
在机组要求低负荷运行时,锅炉燃烧量不变,汽轮机负荷降低,利用储热介质将高品位能量储存,负荷变化不受锅炉最低稳燃负荷影响,增加机组调峰负荷范围和灵活性,可以实现深度调峰的需求,调峰深度降低至18%额定负荷。
图6 高温熔盐储热耦合火电机组调峰技术
在机组要求高负荷运行时,锅炉燃烧量不变,利用储热介质放热提升汽轮机负荷,提高能量利用效率。汽轮机组不做其他改造情况下可实现机组峰值时间段内持续扩容5%。
2.4 煤电机组调峰政策建议
2020年煤电发电量约4.8万亿kW•h,占全社会总发电量的65%,年利用小时为4 400 h,负荷率约为50%。若负荷率降至30%,年利用小时将为 2 600 h,年发电量将减少至2.8万亿kW•h,可为新能源上网腾出空间,且保持煤电的调峰备用功能。
煤电调峰备用后,整个行业的燃煤量减少约为53 400万t/a,合计减排CO215.3亿t/a。建议用减排量弥补费用缺口,对腾出上网空间的调峰备用煤电机组,进行碳交易补偿。对于在极端情况下,能及时满足电力系统特殊要求的机组,给予特殊的资金奖励,以保证煤电机组调峰备用功能不被荒废,确保整个电力系统的稳定。
3 碳捕集及应用技术
碳捕集、利用与封存(CCUS)是指将CO2从工业或其他排放源中分离出来,并运输到特定地点加以利用或封存,以实现被捕集CO2与大气的长期隔离(图7)。CCUS技术是我国实现2030碳达峰和2060碳中和目标的重要技术组成部分。
图7 CCUS系统
CO2地质封存是指通过工程技术手段将捕集的CO2储存于地质构造中,实现与大气长期隔绝的过程。按照不同的封存地质体划分,主要包括陆上咸水层封存、海底咸水层封存、枯竭油气田封存等技术。陆上咸水层封存所需技术要素几乎都存在于油气开采行业,油气行业已有技术要素能够部分满足示范工程的需求。对中国而言,陆上咸水层封存各技术要素的发展程度很不一致,其中监测与预警、补救技术等还仅处于研发水平。海底咸水层封存与陆上咸水层封存有一定相似性,但工程难度更大。国外已有多年工程实践经验,但在中国尚无示范先例。
3.1 碳捕集技术政策建议
火电加装CCUS可以推动电力系统近零碳排放,提供稳定清洁电力,平衡可再生能源发电的波动性,在避免季节性或长期性的电力短缺方面发挥惯性支撑和频率控制等重要作用。因此,在充分考虑电力系统灵活性、可靠性和碳排放的情况下,CCUS技术在电力系统中的竞争力将持续增强。
火电加装CCUS可以避免已经投产的机组提前退役,降低实现“碳达峰、碳中和”目标的经济成本。碳捕集改造对于一些附近可封存CO2或利用CO2的火电厂最具吸引力,利用捕集的CO2进行驱油可以大幅提高CCUS技术的经济效益。同时,考虑碳市场和碳税等激励政策,CCUS在未来有望实现商业化推广。
3.2 碳捕集技术经济性分析
电力行业CO2排放属于低浓度排放源,捕集成本相对较高。安装碳捕集装置将产生额外的资本投入和运行维护成本等。以火电厂安装为例,第一代燃烧后捕集技术的成本(以CO2计,下同)约为300~450元/t,能耗(以CO2计,下同)约为3.0 GJ/t,发电效率损失10百分点~13百分点;第二代燃烧后捕集技术的能耗约为2.0~2.5 GJ/t,发电效率损失 5百分点~8百分点。此外,在大部分项目仍以罐车为主要运输方式的现实条件下,引入CO2运输也将额外增加约1元/(t•km)的运行成本,在运输距离达100 km时,每吨也将增加上百元的运行成本。
碳市场交易可以一定程度上弥补CCUS技术的部署成本。中国正在推进全国碳交易市场的建立,发电行业是首先被纳入交易的主体。总体来看,目前碳配额成交量和成交额呈上升趋势,截至2020年8月,试点省市碳市场累计成交量超过4亿t,累计成交额超过90亿元。据预测,到2030年,中国的平均碳价(以CO2计,下同)将上升到93元/t,到2050年将超过167元/t。未来碳交易市场的发展和逐步完善以及碳价的提升将抵消一部分CCUS成本。总体来说,短期内还需依靠补贴政策,才能局部获得应用。
3.3 碳捕集技术应用前景
由于技术成熟度和成本原因,我国CCUS技术在2030年前应该还是以研发示范为主,尚不会得到大规模发展。因此,2030年前,我国碳减排主要依靠大力发展节能增效和可再生能源技术,CCUS技术是我国未来减少温室气体排放的重要战略储备技术。2030年后随着技术的进步、碳价的提高以及CO2驱油与利用技术的发展,CCUS应用价值的潜力将会大幅度释放,成为我国化石能源为主的能源结构向低碳多元供能体系转变的重要技术保障。
4 结 论
1)煤电是我国电力安全的战略力量,我国建设社会主义现代化国家和满足人民对美好生活的向往都需要保留一定比例的煤电份额。而煤燃烧是CO2排放的主要来源。因此,煤电将在满足电力供应安全的前提下不断降低发电量,以实现更少的碳排放。据预测:到2030年,我国需要保留燃煤发电装机12.13亿kW;到2060年仍需维持7亿kW左右,以保障我国能源电力供应安全和调峰、供暖需求。
2)煤电的低碳化发展对我国“双碳”目标的实现至关重要。对于存量的煤电机组,需要大力进行节能提效改造,把煤耗降到300 g/(kW•h)以下。对于达到设计使用寿命的机组,通过机组延寿改造并同步实施提升参数改造以大幅提升机组的经济性。另外,需要推进科技创新,大力发展高参数超超临界技术和超临界CO2循环等新型高效动力系统,把新建煤电机组的煤耗降到250 g/(kW•h)以下。
3)同时,全面提升煤电机组的自身灵活性,大力发展锅炉深度调峰、热电解耦以及储能耦合调峰等技术和提高控制系统调峰适应性,制定调峰鼓励政策,为可再生电力大规模接入提供支撑。
4)另外,需要储备碳捕集与封存技术,开发低成本CCUS技术,加强政策引导,为2060年碳中和目标的实现提供保障。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
经济学家萨缪尔森在其所著《经济学》一书中提到“当市场无法有效配置资源,即市场失灵时,政府需介入价格形成”。除了人为价格操纵、市场供需失衡等现象,价格无法全部通过市场形成也是市场失灵的表现,同样需要政府参与价格形成过程。对于政府在价格形成中的经济职能,当前存在许多不全面的观点。有的
发挥省间市场作用筑牢电力保供基石——访北京电力交易中心党总支书记、副总经理常青当前,我国多地电力负荷持续攀升,能源资源逆向分布的国情与新能源波动性、负荷尖峰化带来的供需挑战交织,省区电力资源调配作用的重要性凸显。作为推动全国电力资源优化配置的关键平台,北京电力交易中心如何利用省间
为进一步加强煤电节能减排监管,根据《节约能源法》《大气污染防治法》以及能源监管统计报表制度等相关规定和要求,福建能源监管办汇总统计了2025年上半年福建省统调燃煤电厂节能减排信息,现予公布。一、总体情况2025年上半年,福建省统调燃煤电厂加权(下同)平均供电标准煤耗294.15g/kWh,同比降低1
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
近日,江苏省生态环境厅印发《江苏省2025年大气污染防治工作计划》的通知,其中提出,加快推进煤电机组深度脱硝改造,年底前全面完成煤电机组深度脱硝改造任务。推进能源结构调整优化。在保障能源安全供应的前提下,严格合理控制煤炭消费总量,2025年煤炭消费量较2020下降5%左右。大力发展新能源和清洁
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
7月14日下午,陕煤电力集团召开2025年上半年经济运行分析会、2024年经营业绩考核通报会,深入贯彻落实陕煤集团半年工作会要求,全面总结分析电力集团上半年经济运行情况,安排部署下半年工作,为完成全年目标任务奠定坚实基础。陕煤集团总经理助理、电力集团党委书记、董事长冯平安出席并讲话。会议指
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
7月15日,山西同煤电力环保科技有限公司原平分公司500m蜂窝式脱硝催化剂招标公告发布。山西同煤电力环保科技有限公司原平分公司500m蜂窝式脱硝催化剂招标公告(招标编号:JNB144-ZB-250713630)招标项目所在地区:山西省忻州市一、招标条件本招标项目山西同煤电力环保科技有限公司原平分公司500m蜂窝式
上海大屯能源股份有限公司江苏分公司热电厂1号机组汽轮机低压缸零出力改造EPC总承包项目项目公告项目编号:CCTC20251611招标方式:公开招标开标时间:2025年08月05日10:001.招标条件本招标项目上海大屯能源股份有限公司江苏分公司热电厂1号机组汽轮机低压缸零出力改造EPC总承包项目,招标人为上海大屯
7月16日,华能国际发布2025年上半年上网电量完成情况公告。根据公告,2025年第二季度,华能国际中国境内各运行电厂按合并报表口径完成上网电量990.49亿千瓦时,同比上升1.44%;2025年上半年,华能国际中国境内各运行电厂按合并报表口径完成上网电量2,056.83亿千瓦时,同比下降2.37%;2025年上半年,华
经济学家萨缪尔森在其所著《经济学》一书中提到“当市场无法有效配置资源,即市场失灵时,政府需介入价格形成”。除了人为价格操纵、市场供需失衡等现象,价格无法全部通过市场形成也是市场失灵的表现,同样需要政府参与价格形成过程。对于政府在价格形成中的经济职能,当前存在许多不全面的观点。有的
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
近日,江苏省生态环境厅印发《江苏省2025年大气污染防治工作计划》的通知,其中提出,加快推进煤电机组深度脱硝改造,年底前全面完成煤电机组深度脱硝改造任务。推进能源结构调整优化。在保障能源安全供应的前提下,严格合理控制煤炭消费总量,2025年煤炭消费量较2020下降5%左右。大力发展新能源和清洁
7月16日,华能国际发布2025年上半年上网电量完成情况公告。根据公告,2025年第二季度,华能国际中国境内各运行电厂按合并报表口径完成上网电量990.49亿千瓦时,同比上升1.44%;2025年上半年,华能国际中国境内各运行电厂按合并报表口径完成上网电量2,056.83亿千瓦时,同比下降2.37%;2025年上半年,华
新一代火电厂,“新”在哪里?——探访国家能源集团江苏常州电厂二期扩建工程七月的常州暑气灼人,“苏超”赛事带火了商圈消费,也让全市文旅商业用电量激增5%,电网最高负荷更是冲破1199.1万千瓦,四创新高。恰逢“苏超”赛事与迎峰度夏关键期,中能传媒记者来到国家能源集团江苏常州电厂(以下简称“
7月的浙江热浪袭人,电网负荷曲线持续攀升。7月4日,浙江全省最高用电负荷达12173万千瓦,冲破1.2亿千瓦大关的时间较去年提前了整整15天,杭州、绍兴等地电网负荷更是刷新历史纪录。据浙江省能源局预测,今夏浙江午峰和晚峰最高负荷将分别达到1.33亿千瓦和1.17亿千瓦,同比增长7.8%,电力保供面临“用
7月10日,青岛市人民政府印发《青岛市加快经济社会发展全面绿色转型实施方案》。文件提出,积极稳妥发展非化石能源。积极布局海洋新能源,在青岛西海岸新区、即墨区海域集中开发海上风电,加快深远海海上风电项目和即墨区海上光伏项目建设,谋划储备远海漂浮式光伏项目,力争2030年建成千万千瓦级海上
7月15日,江苏省生态环境厅印发《江苏省2025年大气污染防治工作计划》。文件提出,2025年全省PM2.5浓度不高于33微克/立方米,优良天数比率达到82%左右,重污染天数比率控制在0.2%以内;完成国家下达的氮氧化物、挥发性有机物重点工程减排量目标。文件还提及,聚焦重点行业,推进大气污染综合治理。高质
7月14日,甘肃发改委员发布甘肃省关于建立发电侧容量电价机制的通知(征求意见稿)。通知指出,本机制适用于不同类型机组,考虑到风电、光伏在用电高峰时段提供可靠电力供应的能力有限,抽水蓄能电站尚处于建设初期,实施范围暂包括合规在运的公用煤电机组、电网侧新型储能,均不含直流配套电源。容量
北极星售电网获悉,7月14日,上海电力交易中心发布2025年6月上海电网煤电容量电费相关结果公示。根据《国家发展改革委国家能源局关于建立煤电容量电价机制的通知》(发改价格〔2023〕1501号)、《国家能源局综合司关于明确煤电容量电价适用范围有关事项的暂行通知》(国能综通电力〔2023〕141号)和《
7月14日,甘肃省发改委发布关于公开征求《甘肃省深化新能源上网电价市场化改革促进新能源高质量发展实施方案(征求意见稿)》意见的公告。文件规定了存量项目和增量项目的电量规模、机制电价和执行期限以及竞价实施细则。存量项目(2025年6月1日以前投产)(1)纳入机制的电量规模为154亿千瓦时。(2)
国家能源集团近日发布江苏公司淮安公司2×20MW机组主体工程建安施工工程公开招标项目中标候选人公示。项目名称:江苏公司淮安公司2×20MW机组主体工程建安施工工程公开招标招标编号及包号:CEZB250604051001第一中标候选人中国能源建设集团江苏省电力建设第三工程有限公司,投标报价18573.1004万元。第
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
对光伏人来说,2025年又是一个让人心惊肉跳的5·31。2018年的5·31,因为累计20年待支付光伏发电补贴费用超过1万亿元,中央政府对光伏新建项目急刹车。在政策的影响下,光伏装机容量装机大跌、产业链大量企业倒逼,投资商资金链断裂。这段光伏项目业主和光伏产业链上生产企业遭受灭顶之灾的历史,让广
华电潍坊发电有限公司4号机组切缸改造招标公告(招标编号:CHDTDZ128/17-QT-137)一、招标条件华电潍坊发电有限公司4号机组切缸改造项目已批准,招标人为华电潍坊发电有限公司,项目资金为项目资本金。本项目已具备招标条件,现进行公开招标。二、项目规模和招标范围2.1招标采购项目地址:山东省潍坊市
国电投滨海2×100万千瓦扩建项目八辅非集采设备采购招标公告
三峡集团(营口)燃气联合循环调峰发电项目主机(机岛设备)设备采购中标候选人公示中标候选人第1名:东方电气集团东方汽轮机有限公司、东方电气集团东方电机有限公司联合体,投标报价:681,800,000.00元,质量:符合要求,工期/交货期/服务期:符合要求;中标候选人第2名:上海电气集团股份有限公司,
北极星电力网获悉,7月11日,广东能源集团所属广东粤电大埔电厂二期工程项目4号机组汽轮机顺利完成扣盖,标志着4号机组汽轮机本体安装进入收尾阶段。据了解,大埔电厂二期项目是广东省2024年重点建设项目,也是广东能源集团“百千万工程”重点建设项目之一,位于梅州市大埔县三河镇,项目规划建设两台1
国电电力胜利电厂2×660MW供热改造EPC项目公开招标项目中标候选人公示招标编号及包号:CEZB250004259001第一中标候选人:国能龙源电力技术工程有限责任公司,投标报价:10325.000000万元。第二中标候选人:中国电力工程顾问集团西北电力设计院有限公司,投标报价:11187.000000万元国电电力胜利电厂2×
大唐浙江分公司大唐台州头门港电厂(2×660MW)桩基检测服务招标项目招标公告
近日,江苏省招标投标公共服务平台发布江阴苏龙2×66万千瓦四期扩建项目三大主机设备监造中标候选人公示。中标候选人第1名:西安热工研究院有限公司,投标报价:253.234万元,质量:满足招标文件要求,服务期:满足招标文件要求;中标候选人第2名:北京中唐电工程咨询有限公司,投标报价:279.0026万元
7月10日,威海市公共资源交易网发布威海热电2×66万千瓦热电联产项目全过程监理服务中标公告,山东恒信建设监理有限公司中标该热电联产项目全过程监理服务,中标金额:1220万元。威海热电2×66万千瓦热电联产项目位于山东省威海市临港经济技术开发区蔄山镇东,威海路与南京路交叉口东南侧。西距烟台市
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!