登录注册
请使用微信扫一扫
关注公众号完成登录
目前,金属材料的高温服役性能仍是限制先进能源转化系统发展的首要问题。受限于奥氏体钢的高温腐蚀问题,再次提升蒸汽温度就必须采用镍基合金材料,机组成本急剧增加。同时,相对于一次再热机组,二次再热机组的汽水流程明显增加,机组耦合控制技术更为复杂,在保证机组运行效率的基础上提高二次再热机组的深度灵活调峰能力是未来的重点研究方向。
1.1.2 超超临界循环流化床机组
循环流化床燃烧发电技术具有煤种适应性广、环保效益好、资源综合利用率高等优势,能够充分利用低热值煤资源、高硫无烟煤、煤矸石等劣质燃料,是理想的先进低碳发电技术之一。目前,中国已成为世界上循环流化床锅炉装机容量最多的国家。2013年,四川白马电厂超临界600 MW循环流化床机组投产,蒸汽参数为25.4 MPa/571 ℃/ 569 ℃。数据显示,该机组主要运行指标均达到国际先进水平。
近年来,为提高机组热效率,减少机组污染排放,国内已开展超超临界循环流化床锅炉科技攻关,参数设置分别为26.25 MPa/605 ℃/603 ℃和29.4 MPa/605 ℃/623 ℃。相对于超临界机组,超超临界循环流化床机组的主蒸汽流量、温度和压力均升高,由此引发的热力系统布置优化问题、水动力安全性问题、高温受热面壁温安全性问题以及低负荷再热蒸汽温度问题仍在探索之中。但随着“双碳”目标的提出,循环流化床燃烧技术将作为先进低碳发电技术之一,在中国逐步实现碳中和目标中发挥重要作用。贵州威赫和陕西彬长2台超超临界660 MW循环流化床机组正式开建,将成为先进低碳发电技术示范项目之一。未来,大型化、高参数、燃料适应性广的高效超超临界循环流化床机组是发展方向,但仍须解决燃料掺烧灵活性、机组深度灵活调峰及副产品综合利用等关键问题。
1.2 先进IGCC与IGFC技术
IGCC和IGFC是洁净煤发电技术中被认为最具有前途的发电方式之一。它们可实现煤的完全清洁利用,且联合循环效率高于传统燃煤机组,但目前,尤其是当前“双碳”目标下,要求配套CO2捕集系统时,其投资费用和发电成本仍然较高。
IGCC由煤气化、净化系统和燃气蒸汽联合发电系统联合组成,通常煤粉经气化系统气化后,经过净化系统除去主要污染物如硫化物、氮化物、粉尘等,变成清洁的气体燃料,然后进入燃气轮机燃烧推动燃气透平做功,排汽经过余热锅炉加热给水,产生的高温高压蒸汽推动蒸汽透平做功。美国加利福尼亚州的冷水电站是世界上最早成功运行的IGCC电站。目前,全球投运IGCC电站已超过35座。中国首座自主设计和建造的IGCC电站为华能天津IGCC示范电站。其煤气化系统采用“两段式干煤粉加压气化技术”,2 000 t/d级全热回收的废锅式气化装置,燃气蒸汽联合循环部分选用了德国西门子公司的SGT2000E型燃气轮机,蒸汽轮机为三压再热方式。2016年,国内首套燃烧前CO2捕集装置在该电站试验成功,煤清洁利用程度进一步提高。目前,IGCC电站投资费用较高,国内外研究机构针对大型煤气化技术、净化技术、空气分离技术、燃气轮机技术以及系统集成控制技术已展开联合攻关研究。
IGFC是将IGCC的燃气蒸汽联合循环发电系统替换成为燃料电池发电系统,目前主要包括固体氧化物燃料电池和熔融碳酸盐燃料电池系统。相比较IGCC系统,IGFC将煤气化后的H2、CO通过燃料电池发电,实现了热力循环发电和电化学发电系统的耦合。一方面,燃料电池理论高温余热可通过余热系统回收利用,综合效率更高;另一方面,燃料电池系统终端排放物为纯水和高浓度CO2,在布置碳捕捉收集系统后,完全实现清洁、低碳、高效循环,CO2近零排放。2019年,日本新能源产业技术综合开发机构宣布投资73.3亿日元开展IGFC示范工程研究,预计CO2捕集率超过90%,单位CO2排放量减少到590 g/(kW•h),同时净热效率达到55%以上。中国于2017年7月启动IGFC国家重大专项项目资助。2020年10月,国内首套20 kW级联合煤气化燃料电池在宁夏煤业实验基地试车成功。目前,IGFC处于起步阶段,煤气净化提纯技术、高温燃料电池技术、系统耦合控制技术等相关技术研究正逐步开展。
1.3 CCUS技术
CCUS是把生产过程中排放的CO2进行提纯,继而投入新的生产过程中进行循环再利用。CCUS技术是碳捕获与封存技术的升级,可实现CO2的循环再利用,主要包括先进的CO2捕集技术,地质、化工、生物和矿化等CO2利用前沿技术以及CO2地质封存关键技术等。其中CO2捕集技术分为燃烧前捕集技术(物理吸附和化学吸收法等)、燃烧中控制(富氧燃烧)和燃烧后捕集技术(化学吸收法、吸附法、膜分离法等);CO2利用包括提高石油采收率或者工业应用(CO2衍生燃料、CO2衍生化学品、CO2衍生建筑材料以及利用CO2提高生物制品的产量);CO2封存主要通过工程技术手段将其封存在储油层、盐层和不可开采的煤层等地下层,达到减排目的。
近年来,美国、欧盟、澳大利亚、加拿大、挪威等国家都制定了相应研究计划,开展CCUS技术的理论、试验、示范和应用研究。仅2020年,就有17个商业CCUS项目开始启动。如英国Drax BECCS项目,将4台生物质机组中的1台发电机组用来捕集CO2,预计每年可捕集400万t CO2;美国Enchant能源公司碳捕获与封存(carbon capture and storage,CCS)项目,通过燃烧后捕集技术每年捕集量高达600万t CO2,用于提高二叠纪盆地的石油采收率;新西兰塔拉纳基地区Rivers Capital的波瓦凯项目,是一个集合制氢、生产化肥和发电的工业综合体,该项目将使用天然气为原料,并将部署CCS(CO2捕集量约为100万t/a),实现近零排放。中国早在2007年国家发展和改革委员会公布的《中国应该对气候变化国家方案》中强调重点开发CO2的捕获与封存技术。2015年克拉玛依敦化石油CCUS提高采收率(enhanced oil recovery,EOR)项目开始投运,最大捕集能力为10万t/a,采用工业分离技术,CO2用于强化采油;2018年,中石油吉林油田CO2EOR项目,最大捕集能力达到10万t/a。此外,中石化胜利发电厂CCS项目和中石化齐鲁石化CCS项目已进入早期开发阶段,预计CO2捕集能力分别为100万t/a和40万t/a。
目前,CCUS已进入技术更新迭代阶段。随着CO2捕集机制(先进溶剂、金属有机框架材料等)、CO2利用新技术(CCS制氢技术、结合CCS的生物能利用技术)和CO2封存新技术(咸水层、枯竭油田封存)的不断进步,CCUS被广泛认为 是助力中国2030年前实现CO2达峰的可规模化 解决方案。
1.4 其他代表性技术
1.4.1 燃煤发电与太阳能、生物质等复合发电技术
燃煤发电与太阳能复合发电技术路线是把太阳能作为燃煤机组回热系统的热源,全部或部分替代汽轮机抽汽;或把太阳能发电和风力发电引入厂用电系统,降低机组自身的厂用电率,实现燃煤机组和可再生能源发电共同发展,以燃煤电站庞大热力系统的汽水特性来吸纳不稳定的可再生能源资源。2010年,美国科罗拉多州Xcel电站建成了世界上第一座太阳能集热与燃煤集成互补电站,设置了8列150 m的槽式太阳能集热系统与1台 49 MW燃煤机组进行集成。2012年10月,澳大利亚新南威尔士州配置了9.3 MW的太阳能蒸汽发生装置的Liddel火电站Noval光热-燃煤混合发电项目正式投运。国内尚无示范电站运行,目前仍处于理论探索和试验研究阶段。华北电力大学、中国科学院工程热物理研究所、华中科技大学以及浙江大学等国内科研院所从互补发电系统的能量迁移和能耗规律、系统集成优化设计以及性能评价等方面开展了大量研究。理论结果显示,600 MW燃煤机组吸纳最大容量太阳能热量时,耦合系统的最大节煤量为8~14 g/(kW•h)。
此外,燃煤与生物质、固废耦合发电技术是未来经济高效、易于实施的燃煤电厂减碳的重要方向之一。一方面通过燃料部分替换可降低煤电机组的碳排放量,另一方面可综合利用生物质、固废等资源,提高耦合机组发电灵活性。英国Drax电厂4台660 MW燃煤机组经过近15年的掺烧试验改进,已改造成为100%燃烧生物质颗粒燃料的机组。中国2018年批准84个燃煤电厂生物质耦合发电试点项目,其中大唐长山热电厂超临界660 MW燃煤机组耦合20 MW生物质发电示范工程开始运行,燃煤机组度电CO2排放约减少6%。未来在燃用生物质的基础上再采用CO2捕集和埋存,可实现负碳排放,是先进发电技术的可选择方式之一。
1.4.2 超临界CO2动力循环系统
超临界CO2动力循环系统采用高温高压超临界CO2(304.13 K/7.377 MPa)作为循环工质,利用其能量密度高、压比小的特点,建立高参数、结构紧凑的发电系统。相较于先进超超临界燃煤发电机组,循环发电效率可提升4百分点~8百分点。2013年,美国可再生能源实验室和法国电力公司先后提出超临界CO2动力循环塔式太阳能电站和超临界CO2动力循环燃煤发电机组的概念,并开展大量理论试验研究。2020年,西安热工研究院有限公司已建成5 MW燃气超临界CO2试验平台,并成功开展试运行,极大促进了超临界CO2发电技术的推广应用和工程 示范。华中科技大学煤燃烧国家重点实验室已建成300 kW燃煤超临界CO2动力循环系统,是世界上首台燃煤超临界CO2动力循环系统原理样机,为超高参数高效CO2燃煤发电基础理论与关键技术研究奠定了坚实基础;此外华北电力大学、西安交通大学、中国科学院工程热物理研究所也相继开展了超临界CO2动力循环系统材料腐蚀特性和系统性能优化研究等工作。
虽然超临界CO2动力循环系统的高效灵活性引起了国内外众多学者的关注,但高温关键部件在超临界CO2环境下高温腐蚀问题、系统设计优化问题、关键设备开发研制以及系统灵活性问题仍是限制超临界CO2动力循环发电系统的关键技术。
2 先进发电技术研究展望
2.1 先进超超临界发电技术提质增效
先进超超临界发电技术发展趋势是提高蒸汽初参数,即提高朗肯循环的热端平均温度,进而提高机组热效率。但目前铁素体/马氏体耐热钢、奥氏体不锈钢的使用温度已达上限,开发630 ℃超超临界燃煤机组技术需要加紧研发更高等级的耐热钢,如集箱和大口径管道试验可选材料有镍基合金617B、C-HRA-3等材料,锅炉受热面可选奥氏体钢Sanicro25、Haynes282等材料。2011年6月,国家能源局正式启动700 ℃超超临界燃煤发电技术研发计划,初步确定以600 MW机组为示范电站,蒸汽参数为35 MPa/700 ℃/720 ℃。受限于奥氏体不锈钢材料研制进度影响及镍基合金高昂的材料成本,“700 ℃计划”进展较为缓慢,仍未进入示范验证阶段,但更高参数的先进超超临界发电技术是未来煤炭清洁利用的发展方向之一。
采用综合系统节能提效技术是提高超超临界发电机组运行安全性和经济性的科学方法之一:
1)开展超超临界锅炉水动力、热质传输及与燃烧过程的耦合研究,如保证受热面壁温均匀可采用新型燃烧器抑或等离子点火或微油点火技术、组织良好的炉内燃烧动力场,合理设计联箱及各级受热面连接方式、精细设计节流孔和纠偏喷水减温器等,通过分烟道设置挡板开度调节再热汽温等;
2)开展热力循环系统优化、余热梯级利用研 究,如采用“二级省煤器+空预器旁路”烟气余热深度利用方案,采用双机回热热力系统或直接空冷机组全高位布置技术等;
3)开展超超临界机组全工况能耗、污染物协同控制研究,如选择性催化还原联合脱硫脱硝脱汞一体化技术、活性焦脱硫脱硝脱汞技术以及副产物资源化利用技术等。
超超临界循环流化床机组综合环保性指标较好,可实现低成本的超低排放和超低能耗,同时炉膛内温度(850~900 ℃)、热流密度相对超超临界燃煤机组都低很多,技术实现度相对容易,但仍需开展炉内燃烧特性和传热规律研究。主要包括:
1)开展再热器布局和结构优化、合理控制受热面焓增,保证受热面材料在许用温度范围内;
2)开展配套辅机选型设计和技术研发工作;
3)开展污染物协同控制、综合利用技术研究,如电除尘器、电袋除尘器和布袋除尘器的耦合优化布置技术等。
2.2 颠覆性技术联合科技攻关
2.2.1 IGCC技术
IGCC是先进发电技术中比较成熟、而又最具发展前途的一种发电方式,提高其运行可用率、降低投资费用和发电成本是IGCC未来发展的主要方向。主要包括:
1)开展大容量、煤种适应性广的先进煤气化技术,如加压固定床气化技术、流化床气化技术以及气化床气化技术(水煤浆水冷壁气化技术、粉煤加压气化技术、催化气化、超临界水气化、等离子气化、加氢气化)等;
2)适应于IGCC的先进F级、H级燃气轮机开发研究,如GE公司9HA/7HA燃气轮机、西门子SGT5-8000H燃气轮机以及三菱公司M501J/M701J燃气轮机技术等,另外重点在燃气轮机燃烧性能、结构材料和涂层、增材制造工艺以及系统集成技术等方面开展联合研究;
3)热力系统余热回收、梯级利用技术研究,如针对单循环和联合循环燃气轮机开发非常规热力循环以提高热效率,将燃气轮机与其他技术(如燃料电池)有效集成耦合混合燃气轮机系统。
针对IGFC,可重点关注燃料电池技术的大容量电池堆组装技术、电池隔离膜板技术以及系统集成技术研究。
2.2.2 CCUS技术
CCUS技术在“双碳”目标提出后迎来了新的发展,全国碳排放交易市场的建立为CCUS技术发展提供新的驱动力。随着第一代捕集技术(胺基吸收剂、常压富氧燃烧等)的示范运行,第二代捕集技术(新型膜分离技术、新型吸收技术、新型吸附技术、增压富氧燃烧技术、化学链燃烧技术等)也正式开始试验验证,碳捕集的效率更高、能耗更低。电力行业迅速脱碳是实现净零排放的关键所在。Allam-Fetvedt循环为实现低排放低成本CCS燃煤燃气发电提供一条参考途径。该循环以合成气为燃料,比传统化石燃料发电成本更低,具有高灵活性、碳捕集能力,以及近零排放和水耗。此外,结合CCS的生物能技术和结合碳封存的直接空气捕集技术是未来重要研究方向,美国伊利诺伊州Decatur乙醇工厂和瑞典的Climeworks公司已开始示范研究。
2.2.3 耦合发电技术
将波动性、间歇性的太阳能等可再生能源与稳定性、系统性好的燃煤系统进行耦合可以进一步减少化石燃料污染物排放,提升系统综合利用效率。燃煤发电与太阳能等复合发电技术涉及光电转换、化学燃烧、能量流耦合等复杂过程,目前研究集中在燃煤发电系统侧、对集成方案和运行模式的对比分析,对于复合系统工况特性、能量迁移机理和模型研究较少。未来,研究低品位的太阳能资源与燃煤电站高参数高品位工质的集成机理,多种能源系统的能量传输机理和集成原理是重点方向之一。
生物质、固废与燃煤耦合混烧是未来降低煤电机组的碳排放量,加强燃煤发电的可持续性,以及煤电走向低碳化一条现实可行的路径。探索优化耦合燃烧技术,完善生物质、固废燃料储运技术,加强污染物协同治理研究是当前工程实际运行中仍需关注的问题。此外,还应积极推动国家法规政策对燃煤电厂混烧生物质、固废等燃料进行激励和支持,促使更多的示范工程建成落地运行。
2.2.4 超临界CO2动力循环系统
超临界CO2动力循环系统的驱动热源可为化石能源、核能、太阳能等。美国Argonne国家实验室和西班牙Comillas Pontifical University集中研究了核能驱动超临界CO2循环系统,韩国原子能研究所、英国曼彻斯特大学对超临界CO2的变工况特性、传热过程、压力机械及透平开展了系列研究,但目前仍未有示范系统。未来,超临界CO2动力循环的材料腐蚀特性、系统循环特性、关键设备开发研制以及控制系统研发是研究重点。此外,煤粉在超临界水中氧化后的复合工质循环系统也是超临界CO2动力循环的实现路径之一。
3 总结与展望
1)先进超超临界发电技术是当前起基础性托底作用的燃煤机组脱碳、零碳以及负碳进程中最为重要的技术之一,应进一步探索大容量、高参数先进发电机组,如630、700 ℃超超临界燃煤发电技术、优化二次再热超超临界燃煤发电系统,确保高参数机组高效低碳运行。针对超超临界循环流化床机组,应进一步提高机组可靠性和燃烧效率,协同控制污染物排放,发展更高蒸汽参数的循环流化床系统,持续提升发电效率,逐步实现近零排放。
2)先进IGCC和IGFC技术是目前最受关注的洁净煤技术,是煤炭从主体能源向基础能源转变情境下除超超临界发电技术外实现燃煤发电近零排放技术的有力补充。在各个系统优化完善的基础上,应积极探索600~1 000 MW级IGCC电站以及兆瓦级IGFC电站示范工程建设,实现全产业链的产业化升级。
3)CCUS技术一方面可应用于化石能源的低碳利用方面,另一方面可实现生物质能源的负碳排放,甚至在氢能等未来能源生产方面,它也将发挥重要的减排作用。目前仍需积极推进CCUS商业化应用,加大科技投入,重点研发第二代捕集技术及CO2规模化输送、先进发电技术与CCUS的深度耦合协同优化技术等。
4)燃煤发电与太阳能、生物质等复合发电技术、超临界CO2动力循环以及其他先进清洁低碳发电技术仍需加大联合攻关力度,重点研究系统设计优化、高温材料研发等具有自主知识产权的技术,实现先进发电技术的大规模应用。
引用本文格式
王哮江, 刘鹏, 李荣春, 等. “双碳”目标下先进发电技术研究进展及展望[J]. 热力发电, 2022, 51(1): 52-59.
WANG Xiaojiang, LIU Peng, LI Rongchun, et al. Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J]. Thermal Power Generation, 2022, 51(1): 52-59.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
3月13日,深圳能源集团妈湾电厂升级改造煤电环保替代一期工程2×660兆瓦超超临界二次再热燃煤机组三大主机采购合同签约仪式顺利举行,标志着工程正式迈入实质性建设阶段。深圳能源集团、哈尔滨电气集团、上海电气集团相关领导及嘉宾共同见证这一时刻。该工程是深圳市全面落实国家“清洁低碳、安全高效
3月13日,中国华电党组召开会议,传达学习习近平总书记全国两会期间的重要讲话精神和全国两会精神,习近平总书记在中共中央政治局第十九次集体学习时的重要讲话精神。全国政协委员,集团公司党组书记、董事长江毅主持会议并讲话。公司领导叶向东、祖斌、吴敬凯、李旭红、赵晋山、赵晓东、曹海东、蒋方
3月12日,中国大唐集团有限公司党组书记、董事长吕军,董事、总经理、党组副书记张传江与江西省委常委、常务副省长任珠峰举行会谈。双方就进一步深化能源领域合作进行了座谈交流。中国大唐党组成员、副总经理曲波参加会谈。吕军、张传江对江西省一直以来给予中国大唐的关心和支持表示感谢,并介绍了中
3月12日,新疆维吾尔自治区与18家中央企业共同在北京举行产业兴疆重点项目2025年投资推进会,巩固提升产业兴疆成果,共商进一步深化央地互利合作、共赢发展大计。新疆维吾尔自治区党委书记、兵团党委第一书记、第一政委马兴瑞出席会议并讲话,自治区党委副书记、自治区主席艾尔肯·吐尼亚孜主持会议,
3月12日,国家电投集团党组书记、董事长刘明胜在总部与山东能源集团党委书记、董事长李伟会谈,就进一步深化战略合作进行交流。山东能源集团党委常委、副总经理张若祥,副总经理、总审计师茹刚;国家电投集团党组成员、副总经理陈海斌参加会谈。李伟感谢国家电投集团一直以来对山东能源集团的支持与帮
3月4日,华电甘肃公司在金昌发电分公司召开甘肃腾格里沙漠河西新能源基地金昌2×1000MW调峰煤电项目工程推进会。公司党委书记、董事长郑钢出席会议并讲话,公司党委委员、副总经理魏安平主持会议。郑钢强调,一是要提高政治站位,深刻把握煤电项目建设的战略意义,要落实习近平总书记关于“沙戈荒”大
深入学习贯彻党的二十届三中全会精神奋力谱写能源高质量发展新篇章党的二十届三中全会对进一步全面深化改革作出系统部署,对能源高质量发展提出新的明确要求。我们要认真学习领会习近平总书记关于全面深化改革的新思想新观点新论断,深入落实中央经济工作会议精神和全国发展和改革工作会议任务安排,扎
近期,西北能源监管局赴国能宁夏电力有限公司,就煤电机组节能减排、参与碳排放交易等开展工作调研。调研组了解了国能宁夏电力有限公司“十四五”以来煤电机组能耗、二氧化硫和氮氧化物排放有关情况,听取了参与碳排放交易有关工作现状和存在问题的汇报,对于调整空冷机组碳配额计算方法带来的影响等进
3月11日,东方电气集团总经理、党组副书记张彦军率队访问中国华能集团有限公司,与中国华能董事长、党组书记温枢刚就协同科技创新发展、深化能源领域合作进行友好交流。集团公司党组成员、副总经理李建华,中国华能党组成员、副总经理张涛参加会谈。张彦军感谢中国华能长期以来对东方电气集团的支持帮
北极星电力网获悉,3月11日,新集能源发布投资者关系活动记录表,披露电力装机容量及在建3座燃煤电厂投产时间。电力装机容量公司控股板集电厂(一期2×100万千瓦、二期2×66万千瓦)、上饶电厂(2×100万千瓦)、滁州电厂(2×66万千瓦)、六安电厂(2×66万千瓦),全资新集一电厂、新集二电厂两个低
北极星能源网获悉,3月9日,靖远煤电清洁高效气化气综合利用(搬迁改造)项目一期工程顺利投产。作为大型煤化工产业项目,靖远煤电清洁高效气化气综合利用(搬迁改造)项目规划总投资54.67亿元,占地1089亩,整体建成达产后,年可实现销售收入27亿元,就地转化原煤约172.5万吨。
近期,西北能源监管局赴国能宁夏电力有限公司,就煤电机组节能减排、参与碳排放交易等开展工作调研。调研组了解了国能宁夏电力有限公司“十四五”以来煤电机组能耗、二氧化硫和氮氧化物排放有关情况,听取了参与碳排放交易有关工作现状和存在问题的汇报,对于调整空冷机组碳配额计算方法带来的影响等进
山东省绿色低碳高质量发展促进条例已于2025年1月18日经山东省第十四届人民代表大会常务委员会第十三次会议通过,自2025年3月1日起施行。其中提出,省人民政府应当加快建设新型能源体系,大力发展非化石能源,推动化石能源清洁高效利用,实现能源产供储销各环节协调互动,为绿色低碳高质量发展提供能源
为有效推进云南煤电机组节能降耗改造,提升煤电清洁高效利用水平,积极助力绿色低碳转型和实现碳达峰碳中和目标,云南能源监管办立足监管职责,对全省11家煤电企业2024年机组节能减排指标开展监管统计分析,助推云南煤电行业清洁高效发展。云南能源监管办对照国家政策要求,逐一梳理核实全省26台煤电机
近日,双辽市政府发布国能吉林双辽1×660MW煤电机组扩建项目环境影响评价信息公示(第二次),详情如下:国能吉林双辽1×660MW煤电机组扩建项目环境影响评价信息公示(第二次)国能吉林双辽1×660MW煤电机组扩建项目位于吉林省西南部的吉林、辽宁、内蒙三省区的交界处。电厂东南距双辽市约1.5km,东北
北极星电力网获悉,近日,山东、广东、安徽再披露一批关停机组名单,整理如下:相关阅读:功勋电厂,关停
北极星电力网获悉,2月27日,山东省能源局发布关于济宁、滨州、聊城市已关停淘汰低效燃煤机组名单的公示,共涉及8台机组,总装机达40.8万千瓦。详情如下:按照全省关于关停淘汰30万千瓦以下低效燃煤机组相关工作要求,现将济宁、滨州、聊城市已关停淘汰低效燃煤机组名单进行公示,接受社会各界监督。如
国家发改委、国家能源局发布的《关于建立煤电容量电价机制的通知》(发改价格〔2023〕1501号,以下简称“1501号文”)规定从2024年1月1日起煤电机组执行容量电价机制。由于1501号文没有明确煤电容量电价机制实施后电量电价水平的具体形成办法,各省普遍的做法是把容量电价折算成电量电价,然后在“基准
北极星电力网获悉,2月27日,浙江省人民政府发布关于印发浙江省推动碳排放双控工作若干举措的通知。通知提出,大力发展非化石能源。推进“光伏+”行动,有序推进核电、海上风电项目建设,大力发展生物质能、地热能、海洋能等新能源。到2025年底,新增风电光伏装机600万千瓦、核电装机100万千瓦,非化石
近日,四川能源监管办发布2024年度煤电机组大数据监管情况通报。通报指出,四川燃煤发电持续发挥“关键少数”重要作用,煤电兜底保障基础不断夯实,顶峰保供能力进一步发挥,企业经营情况进一步改善。全年枯水期完成发电量335.03亿千瓦时,提供了四川主网三分之一以上电量。2024年四川燃煤火电机组平均
近日,安徽省发改委发布促进煤电机组调峰与新能源消纳协同发展研究竞争性磋商公告。项目概况近年来,我省新能源出力持续高位运行。2024年1-11月,新能源实测最大出力2812万千瓦,其中新能源最大出力超2000万千瓦达142天。为应对新能源出力波动,保障电力系统稳定,煤电机组需进行调峰,即根据电力系统
相隔3天,华电集团2个煤电项目8台机组接连获得核准,总装机达664万千瓦。2月15日,内蒙古华电腾格里4×100万千瓦煤电项目获得核准,标志着内蒙古腾格里沙戈荒大基地项目全容量核准备案。据悉,内蒙古腾格里沙戈荒大基地总体建设规模1600万千瓦,包括4×100万千瓦煤电,1200万千瓦风电光伏。2月18日,柴
在构建新型电力系统的时代征程中,核心技术"卡脖子"之痛如何破解?能源转型的硬核支撑从何而来?作为电力装备领域"国家队",西安西电开关电气有限公司(以下简称“西开电气”)以几十年磨一剑的坚守,交出了一份震撼答卷。破局:直击"卡脖子"痛点的硬核突围,核心技术攻坚战全面告捷随着电力需求的不断
两会聚焦:绿色转型成关键词,环保产业迎政策东风2025年3月5日,国务院总理李强在十四届全国人大三次会议上作政府工作报告,明确提出“协同推进降碳减污扩绿增长,加快经济社会发展全面绿色转型”,并强调“为实现‘碳达峰、碳中和’目标贡献力量”。报告释放出以创新驱动高质量发展的强烈信号,这一政
北极星电力网获悉,生态环境部等四部门近日发布关于促进企业温室气体信息自愿披露的意见,环办气候〔2025〕7号,详情如下:关于促进企业温室气体信息自愿披露的意见各省、自治区、直辖市及新疆生产建设兵团生态环境厅(局)、财政厅(局),中国人民银行上海总部,各省、自治区、直辖市及计划单列市分
在2025年湖北省两会召开之际,湖北省政协委员、省生态环境监测中心站副站长陈楠带来了《关于湖北高校践行双碳战略,助推绿色发展的建议》提案。她指出,湖北高校在双碳技术领域的探索与实践,对于国家双碳目标的实现及湖北的高质量发展具有重要意义。近年来,湖北高校在双碳技术方面取得了显著成果,成
近日,“永商荟”第六期永州市锂电产业招商推介会在广州举行。现场,湖南省永州市宁远县与新至双碳签署虚拟电厂战略合作协议。近年来,湖南永州市宁远县积极响应国家“双碳”战略,大力推动风电、光伏发电等清洁能源项目,注重新能源产业链延伸,引入储能技术、智能电网等相关企业,促进能源结构优化升
北极星电力网获悉,各地方2024年国民经济和社会发展计划执行情况与2025年国民经济和社会发展计划草案已经陆续发布,其中披露了2025年能源电力方面的重点规划,梳理如下:1、北京市北京市2024年国民经济和社会发展计划执行情况与2025年国民经济和社会发展计划的报告中,“2025年经济社会发展计划安排”
深学细悟笃行习近平经济思想扎实推动经济社会高质量发展国家发展改革委党组习近平经济思想是习近平新时代中国特色社会主义思想的重要组成部分,是以习近平同志为核心的党中央治国理政实践创新和理论创新在经济领域的集中体现,开拓了中国特色社会主义政治经济学新境界,是以高质量发展全面推进中国式现
1月17日,国家能源集团召开2025年安全环保工作会议,深入贯彻习近平生态文明思想和习近平总书记关于安全生产重要论述,全面落实集团公司年度工作会议部署,总结回顾2024年安全环保工作,分析当前面临的形势和问题,部署2025年安全环保重点任务。会议指出,2024年,集团系统实干担当、锐意进取,坚决贯
党的二十大报告指出,“要积极稳妥推进碳达峰碳中和”“逐步转向碳排放总量和强度‘双控’制度”。我国碳排放主要来源于能源活动和工业生产过程,其中能源活动占到总碳排放的88%,而电力行业碳排放占能源活动碳排放的41%,做好电力碳排放统计核算工作至关重要。近日,国家发展改革委等部门印发《完善碳
党的二十大报告强调:“要积极稳妥推进碳达峰碳中和,深入推进能源革命,加快规划建设新型能源体系。”能源领域是最大的碳排放源,电能是最清洁高效的二次能源。实现“双碳”目标,能源是主战场,电力是主力军。我国能源电力以自身加快绿色低碳转型全力助推“双碳”目标实现,取得了突出的成就,同时也
河北省政府工作报告指出,2025年,以更高标准加快绿色低碳发展。建设新型能源强省。抓好抽水蓄能项目,协同布局新型储能项目,推动氢能全产业链发展,新增风电光伏并网装机1300万千瓦以上。发展绿色低碳产业。拓展重点行业环保绩效创A成效,选树一批领跑企业。培育壮大绿色建筑等新增长点。稳妥推进碳
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!