登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
(来源:“中国电力”作者:张志勇1, 莫华2, 王猛1,2, 帅伟2)
摘要:以某600 MW超临界燃煤机组为例,研究了燃用高硫、中高灰、特低挥发分煤的W火焰锅炉排放效果。机组采用“选择性非催化还原(ive non-catalytic reduction, SNCR)+选择性催化还原 (ive catalytic reduction, SCR)脱硝+配高频电源和旋转电极的双室五电场电除尘器+双塔双循环技术的石灰石-石膏湿法脱硫(3+5层喷淋)”的超低排放技术路线,根据机组分散控制系统(distributed control system, DCS) 和连续排放监测系统 (continuous emission monitoring system, CEMS)数据,烟囱出口NOx、烟尘和SO2浓度均能稳定达到超低排放水平。SNCR装置运行状态良好,SCR装置氨逃逸较大,最大值为27.51 mg/m3,A、B侧超过设计值2.28 mg/m3的概率分别为51.86%和45.96%,原因为脱硝系统浓度场分布不均。脱硫系统浆液密度控制较好,一级塔浆液pH值控制较好,二级塔浆液pH值控制偏低,未发挥出双塔双循环技术的优势。SO2、NOx和烟尘排放强度比2019年全国平均排放强度低48.7%、7.7%和28.9%。
引言
火电行业是支撑国民经济和社会发展的重要基础性产业,也是煤炭消费和大气污染物排放的重点固定污染源。结合日趋成熟的烟气治理技术,国家分别下发了《煤电节能减排升级与改造行动计划(2014−2020年)》(发改能源〔2014〕2093号)和《全面实施燃煤电厂超低排放和节能改造工作方案》(环发〔2015〕164号),要求到2020年,300 MW及以上燃煤发电机组(暂不含W型火焰锅炉和循环流化床锅炉)实施超低排放改造(即在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10、35、50 mg/m3)。截至2020年,达到超低排放水平的装机容量约9.5亿kW(约占全国煤电装机总量91%),火电行业清洁生产水平快速提高为环境质量改善做出了重要贡献[1]。中国某些地区煤矿资源多为高硫、低挥发分的无烟煤,为适应此煤种,多家电厂选用W型火焰锅炉机组[2]。W型火焰锅炉具有燃烧稳定、运行可靠及可用率高等优势,但由于炉膛燃烧温度较高导致锅炉出口NOx浓度偏高[3-4]。因此,W型火焰锅炉机组烟气污染物通常具有高氮、高硫特性,对环保设施性能要求较高。国家虽然未要求W型火焰锅炉机组实施超低排放改造,但山西、山东、河南等省份已要求W型火焰锅炉实施超低排放改造,其中山西要求其NOx排放浓度限值为50 mg/m3,与其他炉型不予区别对待,山东和河南则将W型火焰锅炉NOx排放浓度限值定为100 mg/m3;在西南地区,如四川和贵州,均鼓励W型火焰炉实施超低排放改造。目前已有部分W型火焰锅炉机组完成了超低排放改造[5-8],但对超低排放实施效果、相关烟气治理设备运行情况和污染物治理成本等问题未有系统研究。本文选择已完成超低排放改造的某600 MW超临界W型火焰锅炉机组,以2019年1~8月的连续分散控制系统(distributed control system, DCS) 和连续排放监测系统 (continuous emission monitoring system, CEMS)小时平均记录为依据,分析了该机组主要大气污染物达到超低排放水平的稳定性、相关烟气治理设备的运行情况、污染物减排效益和经济性等。
1机组概况
1.1 机组基本信息
该电厂建有2×600 MW超临界燃煤机组,本文研究对象为2号机组,2017年2月13日通过超低改造环保验收。锅炉为600 MW级超临界参数、W型火焰燃烧、单炉膛露天岛式布置、垂直管圈水冷壁变压直流锅炉。燃用无烟煤,呈高硫、中高灰、特低挥发分特征。研究期间燃煤收到基硫分、收到基灰分和干燥无灰基挥发分平均值分别为3.19%、36.26%和19.94%,较设计煤质稍好。1.2 超低排放控制技术
该机组原采用选择性非催化还原 (ive non-catalytic reduction, SNCR)脱硝工艺,催化剂层数按2+1模式布置,后增加了第3层催化剂,满足GB 13223—2011排放限值。超低排放改造增设选择性催化还原 (ive catalytic reduction, SCR)脱硝装置,采用尿素溶液作为还原剂,安装56支喷枪,分为一区和二区。一区布置在标高为43.5 m层的炉膛前后墙,安装26支伸缩式喷枪:前墙13支,后墙13支;二区布置在标高为48.0 m层的炉膛前后墙及侧墙,共安装30支固定式喷枪:左、右两侧各2支,前后墙各13支。此外,更换了SCR脱硝装置初装2层催化剂且增加了催化剂模块的高度,新增催化剂为蜂窝式,催化剂模块层高为1260 mm,体积为600.7 m3,开孔率为74.6%。设计SNCR入口NOx浓度为800 mg/m3,炉膛出口NOx浓度为560 mg/m3;设计SCR入口NOx浓度为640 mg/m3,出口NOx浓度为50 mg/m3。
原采用2台双室五电场静电除尘器,第1~3电场采用高频电源,第4、5电场采用工频电源。超低排放改造将第5电场改为旋转电极。电除尘器有效断面积为480 m2,比集尘面积为109.29 m2/(m3·s–1),烟气流速为0.96 m/s,5个电场效率分别为71.95%、20.18%、5.66%、1.59%、0.57%。设计电除尘器出口烟尘浓度为30 mg/m3。经脱硫塔、除雾器后,颗粒物排放浓度低于10 mg/m3。
采用石灰石-石膏湿法脱硫技术,原设5层喷淋层,超低排放改造为双塔双循环工艺,新建一级吸收塔,喷淋层为3层,未设计除雾器,吸收塔内径为17 m,高度为40 m,原吸收塔作为二级塔,设置5层喷淋层,1层管式+3层屋脊式除雾器。一、二级吸收塔浆液循环泵流量均为9800 m3/h。设计入口和出口SO2浓度分别为11583 mg/m3和35 mg/m3,脱硫效率为99.7%。
2超低排放控制效果
该机组总排口烟尘CEMS采用稀释抽取式+光散射法,SO2和NOx均采用直接抽取式+非分散红外法,与主流超低排放应用的CEMS采样和分析方法一致。表1给出了2019年二、三季度CEMS比对结果,可以看到,CEMS数据精度满足HJ 75—2017《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》中参比方法验收技术指标要求。
表1 总排口CEMS比对结果
Table 1 Comparison results of total outlet CEMS
2.1 NOx控制效果
表2为SNCR装置出口(SCR入口)浓度情况。A、B侧NOx浓度分别为349.4~859.28 mg/m3和295.5~826.61 mg/m3,小于SCR入口设计值640 mg/m3的概率分别为94.07%和92.61%。
表2 SNCR装置出口运行效果Table 2 Operation effect of SNCR unit exit
表3为SCR出口NOx浓度情况,SCR反应器A、B侧出口NOx小时浓度分别为7.35~60.32 mg/m3和9.01~43.53 mg/m3,小于50 mg/m3的概率分别为99.88%和100%,烟囱出口NOx排放浓度为8.29~48.05 mg/m3,达到超低排放水平的概率为100%。
表3 SCR装置运行效果Table 3 Operation effect of SCR unit
表4为SCR装置氨逃逸情况,A、B侧氨逃逸分别为0.03~27.51 mg/m3和0.02~16.47 mg/m3,超过设计值2.28 mg/m3的概率分别为51.86%和45.96%,氨逃逸较大,空预器有堵塞风险。图1给出了A侧氨逃逸与负荷的关系,可以发现,在各负荷段,氨逃逸超过设计值的概率均较高,但随着负荷的增大,氨逃逸有下降趋势。图2为SCR出口和烟囱出口NOx浓度分布情况,烟囱出口NOx浓度明显高于SCR出口,烟囱出口NOx平均浓度与SCR出口A、B侧平均浓度的偏差分别为17.42 mg/m3和20.6 mg/m3,存在“倒挂”现象[9]。原因可能是由于SCR出口NOx浓度分布不均,建议进行喷氨优化试验,必要时调整SCR出口CEMS测点位置或采用多点采样方式。
表4 SCR装置氨逃逸
Table 4 Ammonia escape from SCR unit
图1 SCR装置A侧氨逃逸与负荷的关系(负荷率≥50%)Fig.1 The relationship between ammonia escape of A side from SCR unit and load (load rate≥50%)
图2 SCR出口和烟囱出口NOx浓度分布(负荷率≥50%)Fig.2 Distribution of NOxconcentration at SCR unit outlet and chimney outlet (load rate≥50%)
2.2 烟尘(颗粒物)控制效果
图3为脱硫系统进出口烟尘浓度分布,脱硫入口(电除尘器出口无浓度测点)烟尘浓度为3.87~44.36 mg/m3,设计指标(30 mg/m3)保证率为96.01%,静电除尘器运行状态良好。脱硫出口烟尘浓度为0.40~7.95 mg/m3,平均烟尘浓度为6.10 mg/m3,达到超低排放水平(10 mg/m3)的保证率为100%。脱硫系统协同除尘效率为39.50%~89.66%,平均效率为68.16%,优于文献中双塔双循环脱硫系统52%的平均除尘效率[10],脱硫系统协同除尘效果较好。
图3 脱硫进出口烟尘浓度分布
Fig.3 Particulate matter concentration distribution at desulfurization tower entrance and outlet
此外,脱硫系统入口烟尘浓度变化较大,图4给出了脱硫系统入口烟尘浓度和烟气温度(电除尘器出口无浓度测点)的关系,可以发现,烟气温度越高,烟尘浓度越大,因此,为保证烟尘达标排放,尽量将烟气温度控制在较低范围,达到节能目的。
图4 烟尘浓度与烟温的关系Fig.4 The relationship between particulate matter concentration and flue-gas temperature
2.3 SO2控制效果
双塔双循环脱硫技术主要是通过2座串联的脱硫塔增加烟气与循环浆液的反应时间,其特点是一级吸收塔重氧化,二级吸收塔重吸收。2座脱硫塔均设有独立的循环系统,可通过调节一、二级吸收塔浆液pH值实现分区控制。一级吸收塔处于低pH值运行,能够促进石膏的结晶和氧化,提高二级吸收塔pH值可实现高效脱硫[10-14]。一级塔浆液pH值宜控制在4.5~5.3,二级塔浆液pH值宜控制在5.8~6.2[15]。图5为一、二级吸收塔浆液pH值,由图5可见一级塔浆液pH值为4.5~5.59,平均值为4.96,在4.5~5.3范围内占比为94.32%,浆液pH值控制较好。二级塔浆液pH值为4.56~7.27,平均值为5.13,在5.8~6.2范围内占比仅为0.15%。虽然二级吸收塔pH值较一级吸收塔略高,但与推荐pH值相差较大,可进一步优化。建议后续运行过程中,积累运行经验,探索合理的pH值,以提高脱硫效率,充分发挥双塔双循环技术的优势。
图5 脱硫塔浆液pH值分布Fig.5 pH distribution of slurry
该机组一、二级吸收塔各有3台和5台浆液循环泵,表5为循环泵运行情况,一级吸收塔2台泵和3台泵运行情况分别占61.77%和38.23%;二级吸收塔78.5%情况为3台泵运行,即大部分时段为一级吸收塔2台泵运行、二级吸收塔3台泵运行。二级吸收塔有1.78%情况为5台泵运行,主要集中在高负荷阶段,且同时段一级塔3台泵也全部开启。由前述可知,二级塔浆液pH值控制偏低,建议在保证系统安全稳定运行的前提下,适当提高二级塔浆液pH值,以减少浆液循环泵的开启台数,达到节能降耗的目的。
表5 脱硫塔循环泵运行统计
Table 5 Operation statistics of circulating pump of desulfurization tower
图6为脱硫出口SO2浓度分布,SO2排放浓度为4.27~34.86 mg/m3,满足35 mg/m3的概率为100%,脱硫系统运行效果良好。
图6 脱硫出口SO2浓度分布Fig.6 Distribution of SO2concentration at the outlet of desulfurization system
图7为脱硫效率分布情况,脱硫效率为99.46%~99.95%,平均效率为99.77%,高于文献中双塔双循环系统脱硫效率[16]。部分低于设计值99.7%是由于脱硫入口SO2浓度低于设计值11583 mg/m3(实际运行脱硫入口SO2浓度在4954.69~13155.43 mg/m3,平均9249.98 mg/m3)。在燃烧过程中,0.5%~1.5%的SO2会被氧化为SO3,在SCR反应器中催化剂的作用下又会有小部分SO2氧化为SO3[17],当SO3排放浓度达到18~36 mg/m3时,可能出现“蓝色烟羽”[18-19]。对于该机组,SCR反应器内SO2/SO3转化率按设计值1%计算,则生成的SO3浓度为138~231 mg/m3,浓度较高,建议电厂监测SO3排放浓度,关注“有色烟羽”治理技术。
图7 脱硫效率分布
Fig.7 Distribution of desulfurization efficiency
3污染物减排效益
表6和图8对比了超低排放改造前(2016年1~6月)和改造后(2019年1~8月)大气污染物排放浓度和排放量。可以看到,改造后SO2、NOx和烟尘平均排放浓度分别为20.76、39.41和5.94 mg/m3,实际排放量分别为119.97 t、226.59 t和33.95 t。排放浓度较改造前大幅下降,SO2、NOx和烟尘分别减排92.2%、74.1%和58.3%。
表6 超低排放改造前后主要大气污染物排放量统计Table 6 Statistics of air pollutant emissions before and after ultra-low emissions reconstruction
图 8 超低排放改造前后大气污染物排放浓度对比Fig. 8 Comparison of air pollutant emission concentration before and after ultra-low emissions reconstruction
图9为该机组污染物排放强度与火电行业2019年全国平均排放强度的对比,该机组SO2、NOx和烟尘排放强度比全国平均排放强度分别低48.7%、7.7%和28.9%。
图9 主要大气污染物排放强度与2019年全国平均排放强度对比
Fig.9 Air pollutant emission intensity compared with the national average emission intensity in 2019
根据电厂提供的部分成本数据,估算单位发电量污染物脱除成本(仅包括投资成本、电耗成本、脱硝还原剂成本和脱硫石灰石成本,未考虑催化剂成本、用水成本、财务成本、维修成本、人工成本等)达0.0616元/(kW·h)(实际更高),其中以脱硫系统成本最高,为0.047元/(kW·h)。根据相关电价政策,该电厂执行0.027元/(kW·h)的环保电价(其中,脱硫0.015元/(kW·h)、脱硝0.010元/(kW·h)、除尘0.002元/(kW·h))和0.01元/(kW·h)的超低排放电价。可见,污染物脱除成本远高于环保电价补贴0.037元/(kW·h),电厂应优化运行方式(如SCR喷氨优化[20]、探索合理的浆液pH值等),以降低运行成本。
4结论
(1)该机组采用“SNCR+SCR脱硝、配高频电源+旋转电极的双室五电场电除尘器、采用双塔双循环技术的石灰石-石膏湿法脱硫(3+5层喷淋)”的超低排放技术路线,烟囱出口主要污染物浓度能稳定达到超低排放水平。
(2)SCR装置A、B侧氨逃逸分别为0.03~27.51 mg/m3和0.02~16.47 mg/m3,超过设计值2.28 mg/m3的概率分别为51.86%和45.96%,氨逃逸较大,原因为脱硝系统中浓度场分布不均,脱硝过程中NOx与NH3的单点监测结果不具代表性,应尽快开展脱硝系统运行优化,减少氨的耗量与氨逃逸。
(3)脱硫系统一级塔浆液pH值为4.50~5.59,pH值控制较好,二级塔浆液pH值为4.56~7.27,pH值控制偏低,未发挥出双塔双循环技术的优势。建议在保证系统安全稳定运行的前提下,探索合理的二级吸收塔浆液pH值,以减少浆液循环泵的开启台数,并达到节能降耗的目的。
(4)超低排放改造后SO2、NOx和烟尘平均排放浓度分别为20.76、39.41和5.94 mg/m3,较改造前分别减排92.2%、74.1%和58.3%;SO2、NOx和烟尘排放强度比2019年全国平均排放强度分别减排48.7%、7.7%和28.9%。
(5)污染物脱除成本在0.0616元/(kW·h)以上,远高于环保电价补贴0.037元/(kW·h),建议电厂优化运行方式,以降低运行成本。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,随着最后一片钢三角吊装就位,青海省投3×660兆瓦“上大压下”火电机组项目2号、3号间冷塔顺利封顶,实现今年内烟囱及1、2、3号间冷塔“四到顶”目标。项目间冷塔筒壁为双曲线钢筋混凝土结构,塔高168米,零米直径126.8米,X柱共计42对。对比原定工期,2号塔提前5天完成,3号塔提前35天完成建设
近日,江西公司电力工程公司《一种适用于捞渣机的张紧装置》发明专利获得国家知识产权局授权。该发明针对火电机组锅炉掺烧经济煤种导致掉焦量增多导致捞渣机张紧装置在受到掉焦冲击力过大时会出现的链条脱轨、卡链等问题进行了优化改进,将原张紧装置改为液压张紧、螺杆及弹簧的形式,使捞渣机在张紧装
近日,申能外三发电8号机组20%负荷深度调峰变负荷试验和一次调频试验顺利完成。这标志着外三发电8号机成为上海第一台通过改造实现20%额定负荷深度调峰,且满足干态运行的机组。自“双碳”目标提出以来,风电、光伏等新能源电力装机容量迅速增长,对燃煤发电机组的灵活调峰能力提出了更高要求。公司在夯
近日,华能集团发布华能河南分公司火电机组灵活性控制性能提升项目中标候选人公示,中标候选人第1名:徐州云启新域电力科技有限公司,投标报价:10272000元;中标候选人第2名:江苏东能锐科控制技术有限公司,投标报价:10894000元;中标候选人第3名:西安网源创优电力科技有限责任公司,投标报价:112
北极星电力网获悉,11月18日,中国神华公告披露,关于电力在建项目方面表示,2024年中国神华共有4个燃煤发电项目、2个燃气发电项目在建,共12台机组、约800万千瓦装机。主要位于广东、广西、江西,以及印尼南苏。截至目前,公司国能惠州二期燃气热电联产2台机组合计约100万千瓦装机已投运。随着国家最
近日,随着最后一片钢三角吊装就位,青海省投3×660MW“上大压下”火电机组项目2号、3号间冷塔顺利封顶,实现今年内烟囱及1、2、3号间冷塔“四到顶”目标。项目间冷塔筒壁为双曲线钢筋混凝土结构,塔高168米,零米直径126.8米,X柱共计42对。对比原定工期,2号塔提前5天完成,3号塔提前35天完成建设任
近日,青海省投3×660兆瓦“上大压小”火电机组项目1号机组定子顺利吊装就位,整个吊装过程安全平稳、质量可控,标志着发电机组本体设备安装工作全面展开。发电机组定子作为主厂房内最重的单体设备,净重285吨,长10.27米、宽3.92米、高4.019米。为确保1号机组定子吊装工作顺利完成,桥头发电公司协同
近日东北能源监管办黑龙江业务办有关同志参加国能北安热电有限公司2×350MW热电联产扩建工程可行性研究报告评审会议,深入了解项目技术路线、前瞻性规划、环保措施经济效益等多个方面情况。会议期间,东北能源监管局与黑龙江省发展和改革委员会代表充分发挥监管职能,就项目的合规性、安全性以及在区域
新能源产业是国家战略新兴产业中的重要一环,甘肃是我国清洁能源示范省,风能、太阳能技术可开发量分别为5.6亿千瓦、95亿千瓦,位居全国第四、第五。河西走廊能源资源富集、地形交通便利,腾格里、巴丹吉林、库木塔格大型风光电基地纳入国家布局方案,具备建设大型清洁能源基地的优越条件。新能源高比
截至11月1日14时08分,云南分公司年累计发电量突破1000亿千瓦时,较去年提前7天,再创公司年发电量破千亿最快纪录,年发电量连续六年超过千亿千瓦时。今年以来,公司切实扛牢能源电力保供政治责任,统筹水火风光共济增发、顶峰保供,圆满完成各重要时段保供任务。坚持水电与新能源并重发展,发挥流域水
北极星电力网获悉,11月5日,江苏国信公告披露在建6台百万千瓦机组投产计划,公司目前在建5控1参共6台百万千瓦超超临界二次再热燃煤机组,数量居全省首位,国信滨海港发电2×100万千瓦煤电项目是滨海综合能源基地的重要组成部分,国信沙洲2×100万千瓦煤电项目填补了公司在苏南地区的燃煤电厂布局空白
宁夏电投永利2×66万千瓦煤电项目工程脱硫EPC工程中标候选人公示,详情如下:
招标公告SZBGG2024110203号华润守正招标有限公司受招标人委托,对华润电力2024年度第49批招标华润仙桃电厂二期扩建项目脱硫EPC总承包工程进行公开招标。一、项目基本情况招标人:华润电力(仙桃)有限公司招标代理机构:华润守正招标有限公司项目地点:湖北省仙桃市东城大道99号项目规模:/项目资金来
11月4日,生态环境部印发《全面实行排污许可制实施方案》的通知,方案提出,到2025年,完成全国火电、钢铁、水泥等行业生态环境统计与排污许可融合。2025年开展全国火电、钢铁、水泥等重点行业全面衔接试点,制作统一信息报表并纳入全国排污许可证管理信息平台统一填报,相关数据同步传输至生态环境统
1.招标条件本招标项目名称为:国源电力国能博州2×660MW煤电工程烟气脱硫系统设备采购(EP)公开招标,项目招标编号为:CEZB240010709,招标人为国能博州新能源有限公司,项目单位为:国能博州新能源有限公司,资金来源为自筹。招标代理机构为国家能源集团国际工程咨询有限公司。本项目已具备招标条件
1.招标条件本招标项目名称为:河南公司孟津公司脱硫废水零排放改造项目EPC公开招标,项目招标编号为:CEZB240506791,招标人为国能孟津热电有限公司,项目单位为:国能孟津热电有限公司,资金来源为自筹。招标代理机构为国家能源集团国际工程咨询有限公司。本项目已具备招标条件,现对该项目进行国内资
北极星电力网获悉,国家能源集团近日发布科环集团国能水务南京分公司国能丰城4×340MW全厂脱硫废水深度治理EPC项目建安工程公开招标中标候选人公示,详情如下:标段(包)编号:CEZB240209857001第一中标候选人:河南新天地建设集团有限公司投标报价(人民币万元):717.599442第二中标候选人:山东正
大唐潮州电厂5-6号机组项目烟气脱硫(EP)设备采购招标公告2.1招标编号::CWEME-202408CZTLEP-W0012.2建设地点:广东省饶平县东南部的柘林镇,处在大埕湾与柘林湾之间;北向距县城(黄冈镇)约22km,南向距离南澳岛10km。2.3建设规模:2000MW2.4建设工期:计划暂定2024年09月28日正式开工建设,从主厂房
北极星电力网获悉,国家能源集团近日发布长源电力荆州公司一期脱硫废水零排放改造EPC公开招标中标候选人公示,详情如下:第一中标候选人:国能龙源环保有限公司投标报价(人民币万元):3290.000000第二中标候选人:成都锐思环保技术股份有限公司投标报价(人民币万元):3320.000000此前招标文件显示
北极星电力网获悉,华润集团近日发布沧州华润热电有限公司2×330MW机组环保创A脱硫提效EPC改造项目中标候选人公示,详情如下:公示编号:SZBHX202409050012号1.第一中标候选人:中瑞工程设计院有限公司1.1投标价格:6680000.00元2.第二中标候选人:世纪华扬环境工程有限公司2.1投标价格:6967000.00元
9月3日,国能福州公司成功入选2024年福州市生态环境监督执法“正面清单”企业,生态环保工作取得“免检”资质。该公司积极践行“绿水青山就是金山银山”的绿色发展理念,坚定不移走生态文明绿色发展之路,扎实开展生态环境保护工作,持续提升生态环保管理水平,连续两年获评集团“安全环保评级一级企业
北极星电力网获悉,大唐集团近日发布大唐郓城630超超临界二次再热国家电力示范项目废水零排放处理EPC总承包工程中标候选人公示,详情如下:(招标编号:CWEME-202408SDYC-S001)第一中标候选人:江苏海容水务股份有限公司,投标报价:77986000.00元,工期:满足,质量:良好;第二中标候选人:济南山源
近期,广东关于2025年中长期交易价格问题的讨论引起了行业内的关注。电力中长期,常被视为电力交易的“稳健之锚”,被赋予了“压舱石”和“稳定器”的作用,在我国,电力市场建设以发用侧中长期交易起步,在相当长的历史时期内,中长期交易发挥了稳定市场、凝聚共识的重要作用。每逢岁末年初,主管部门
长期以来,煤电一直是我国的主体性电源,也是碳排放的主要来源。2020年9月,国家主席习近平在七十五届联大一般性辩论上提出中国将在“2030年前实现碳达峰、2060年前实现碳中和”的目标,随之而来,煤电的角色也必然将在推进该目标实现的进程中而改变。(来源:能源新媒文/秦旗作者系能源与清洁空气研究
北极星售电网获悉,河南能监办发布关于进一步做好煤电容量电价执行有关工作的通知,提出持续严格落实煤电容量电价政策要求、继续强化供热机组容量电价政策执行以及进一步加强容量电价执行监督和管理。详情如下:河南能源监管办关于进一步做好煤电容量电价执行有关工作的通知河南省电力公司,华能、大唐
北极星电力网获悉,国家能源集团天津公司盘山电厂创新升级及延寿改造项目日前并网发电,据了解,盘山电厂的一些主设备通过升级改造延寿了30年,改造完成后,机组供电煤耗降低了14%,供热能力提高了两倍以上。盘山电厂两台530兆瓦机组是我国最早一批超临界燃煤发电机组,设备是苏联生产。创新升级及延寿
11月19日,上海市发展和改革委员会发布关于中煤宝山煤电项目核准的批复。据悉,中煤宝山2×650MW超超临界煤电(煤气掺烧)替代扩建项目建设地点位于上海市宝山区宝钢股份宝山基地厂内,采用煤电联营、替代扩建的方式建设,计划对宝钢股份宝山基地厂内现有的3台350MW燃煤发电机组实施替代,新建2×650MW
近日,国家电投召开11月份生产经营工作例会,总结今年以来的生产经营成效,深入分析当前面临的形势与问题,部署安排年底收官工作和明年工作计划。国家电投总经理、党组副书记栗宝卿主持会议,集团领导徐树彪、卢洪早、刘丰、高伯余出席会议。会议指出,1-10月,国家电投能源保供有力有序,安全环保总体
近日,徐州公司总经理李桂芳会见徐州市交通控股集团副总经理、徐州港务集团董事长郝大强一行,双方就进一步拓展煤炭领域合作等事宜进行了深入交流。李总对徐州港务集团长期以来给予华润电力徐州公司的支持表示感谢,简要介绍了华润集团六大业务、华润电力经营情况与发展规划及徐州公司的业务板块、生产
北极星电力网获悉,11月18日,由中国能建中南院牵头总承包的大别山电厂三期2×1000兆瓦清洁煤电扩建项目5号锅炉钢架第一根立柱吊装就位,标志着5号机组安装工作全面开始。大别山电厂三期扩建项目为中国中煤和国家电投“煤电联营”合作项目。规划在电厂原一、二期工程扩建端建设2×1000MW级超超临界燃煤
11月17日,随着第一块储热高温盐罐底板吊装就位,安徽公司宿州电厂熔盐储热高温盐罐主体安装工程正式进入实施阶段。安徽公司宿州电厂1000兆瓦时熔盐储热示范项目是全国首个煤电机组熔盐储热项目,也是国内目前最大的煤电机组熔盐储热项目。该项目以宿州热电350兆瓦超临界燃煤汽轮发电机组为基础,通过
电力作为关系国计民生的基础和先导产业,是保障经济社会发展的动力之源。近年来,在大力践行“双碳”目标和加快构建新型能源体系背景下,我国能源绿色转型加速推进,电力装机规模稳居全球首位,电源结构持续优化,能源保障基础不断夯实,为经济社会发展提供了强有力支撑,尤其是《能源法》正式出台,为
为全面总结和分析全省煤电机组容量电价政策执行情况,进一步加强煤电机组最大出力申报、认定、考核和监督等各项工作,强化供热机组容量电价政策执行,减少发电机组非停和出力受阻,保障全省电力热力安全稳定供应,11月15日,河南能源监管办会同省发改委,组织河南省电力公司、河南电力交易中心、有关燃
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!