登录注册
请使用微信扫一扫
关注公众号完成登录
1 氧化物固态电解质
氧化物固态电解质的主要优点是通用性强、稳定性高、寿命长、操作安全、无泄漏,可极大提高储能钠基电池的安全性能。目前在中高温熔融钠金属电池中使用的固态电解质主要为β/β"-Al2O3。此外,随着研究的深入,钠快离子导体(NA-SICON)的化学稳定性以及热稳定性近年来也得到显著提高,使其可作为新型的固态电解质用于储能钠电池中。
1.1 β/β"-Al2O3
早在20世纪60年代美国福特汽车公司首次在陶瓷基氧化铝中发现了钠离子快速传输现象。如图2所示,根据Na与Al的元素比例的大小可将氧化铝基陶瓷的电解质分为β-Al2O3与β"-Al2O3两种。β"-Al2O3材料则由3个尖晶石结构堆砌组成菱面体结构,尖晶石层与Na-O层交替堆积。β"-Al2O3结构中含有较多的Na+可在电化学反应下进行移动,这种结构使其在300 ℃以上的高温具有较高离子电导率。由于其高离子电导率以及优异的热稳定性,β"-Al2O3成为中高温Na-S电池以及钠-金属氯化物电池用固态电解质的主流材料。
图2β/β"-Al2O3晶体结构
2004年,Oshima等将β"-Al2O3成功应用于高温Na-S电池中。然而,由于β"-Al2O3的热力学稳定性较差,很难制备出纯的β"-Al2O3,在β"-Al2O3的合成过程中不可避免地会形成一小部分离子电导率较低的β-Al2O3。因此,在制备的固体电解质中最大限度地提高β"-Al2O3相的比例非常重要。在β"-Al2O3的合成过程中添加烧结剂是实现高β"-Al2O3相比例的有效策略。例如,Chen等人通过固态反应掺杂MgO合成了高性能的β″-Al2O3电解质,结果表明MgO掺杂可以通过降低烧结温度,并显著改善β″-Al2O3陶瓷的致密化。当MgO掺杂量为0.4%(质量分数),烧结温度为1550 °C时,制备的β″-Al2O3电解质具有最佳的弯曲强度和较高的离子电导率。Yi等在烧结β"-Al2O3过程中添加适量的TiO2和ZrO2增强了β"-Al2O3烧结动力学,在降低烧结温度的同时提高了材料的离子电导率。此外,对β"-Al2O3进行掺杂改性也是一种有效提高β"-Al2O3相比例的办法。Lee等通过掺杂适量的过渡金属Fe和Ti有效提高β"-Al2O3比例,Fe和Ti掺杂的β"-Al2O3的最高离子电导率为0.16 S/cm(350 ℃)。此外,在β″-Al2O3体系中还可以加入了其他的化合物作为稳定剂来抑制β″-Al2O3的相变,如NiO、Nb2O5、ZrO2、TiO2等(表1)。
表1不同氧化物固态电解质的离子电导率
1.2 NA-SICON
1976年,Goodenough等首先报道了NA-SICON型离子传输材料Na1+xZr2P3-xSixO12。NA-SICON以其优越的物理化学稳定性、宽电化学窗口以及良好的离子电导率在钠离子固态电解质领域受到广泛关注。NA-SICON属磷酸盐(氧化物)家族,其中以Na1+xZr2P3-xSixO12(0≤x≤3)为代表,当x=2时Na3Zr2Si2PO12室温离子电导率最佳(6.7×10-4S/cm)。如图3所示[16],NA-SICON由[SiO4]、[PO4]四面体和[ZrO6]八面体组成,Na1和Na2的两个不同的Na位点在菱面体相中构建了一个三维Na+扩散网络,使得大量可移动的Na+和可用的相邻空位同时存在,这对Na+扩散非常有利。在NA-SICON型化合物中,不同的组成可以导致很大的离子电导率差距。由于在NA-SICON中存在大量的可取代位置,对三维框架中的离子进行部分取代或替换,适当拓宽离子传输路径,是进一步提高材料体相离子电导率的重要方法。近年来,研究者发现NA-SICON型电解质在锆位掺杂稀土元素不仅能降低烧结温度、提高离子电导率,还能通过抑制杂质相形成来提高相纯度。当Zr4+被低价阳离子部分取代后会产生正电荷的缺陷,需要额外的Na+进行电荷补偿,从而提高Na+浓度并提高离子电导率。Ma等选择用Sc3+(74.5 pm) 进行取代,因为它具有与Zr4+(72.0pm) 相近的离子半径,因此在掺杂后只会产生正电荷缺陷,不会造成晶体结构扭曲变形。最终具有最佳掺杂量的Na3.4Sc0.4Zr1.6Si2PO12在室温时离子电导率可以达到4.0×10-3S/cm。然而,由于Sc价格昂贵,资源有限,极大地限制了它的应用。Song等发现碱土金属离子可以占据[ZrO6]八面体中Zr4+的位置,他们通过机械化学法得到了一系列碱土金属元素掺杂的Na3.1Zr1.95M0.05Si2PO12(M= Mg、Ca、Sr、Ba) 材料。研究发现,随着碱土金属离子半径的增加,离子的传输路径逐渐变窄,当采用Mg2+掺杂时,材料结构具有最大的离子传输通道,得到的室温离子电导率为3.5×10-3S/cm。除此之外,还有如Zn2+、La3+和Yb3+等许多可以替代的元素,掺杂后均在一定程度上提升了原始材料的离子电导率。表1中给出了不同NA-SICON型固态电解质的离子电导率。
图3NA-SICON晶体结构
然而,硬度大导致的界面接触差以及相对较低的室温离子电导率限制了NA-SICON型固态电解质的进一步应用。目前研究者们通过复合聚合物电解质、对电解质涂层包覆、进行离子(Mg2+、Sc3+、Ge4+、Hf4+、Nb5+等)掺杂等措施对NA-SICON型固态电解质进行改性,力图构建性能更加优异的固态电解质。例如,Shen等设计了一种含有微量离子液体的复合电解质,该电解质由20%聚环氧乙烷以及80% Na3.4Zr1.9Zn0.1Si2.2P0.8O12颗粒组成(质量分数),生成的复合电解质在25 ℃时具有1.48×10-4S/cm的高离子电导率和对金属钠的良好界面稳定性。Cai等采用金属Pb对NA-SICON结构的Na3Hf2Si2PO12(NHSP)固态电解质进行表面调控。由于Na和Pb之间形成的界面具有良好的润湿性和快速的电荷传导性,Pb修饰的NHSP与金属钠的润湿角仅为35°。
2 钠-硫(Na-S)电池
Na-S电池的发展历史可以追溯到20世纪60年代,早期被用于电动汽车电源。NGK公司于1983年开始布局开发用于电网固定式储能的Na-S电池储能系统。2002年,NGK公司实现钠硫电池的批量化生产,并由东京电力公司实现了高温钠硫电池的商业化,至今已在世界各地运营200多个电力储能项目,将钠硫电池储能系统成功实现了4 GWh以上。如图4所示,传统型钠硫电池使用β"-Al2O3固态电解质陶瓷管作为电解质兼具正负极隔离以及离子传导的作用,钠金属作为负极置于陶瓷管内,液态硫正极置于管外。钠硫电池组成可表达为(-)Na|β"-Al2O3|S/Na2Sx|C(+),其中x=3~5,电池基本的化学反应为:2Na+xS↔Na2Sx。Na-S电池实际工作温度较高,通常在300~350 ℃,开路电压为2.08 V。当电池处于放电状态时Na+透过β"-Al2O3固态电解质与硫在正极形成多硫化钠,充电时Na+则回到负极被还原而形成金属钠。高比容量的硫正极(1672 mAh/g)和金属钠负极(1166 mAh/g)赋予了Na-S电池优异的能量密度,目前实际能量密度可达240 Wh/kg,成为最可靠的固定式电网储能电池之一[26]。
图4 钠-硫电池
然而,为了保证金属钠和单质硫的液态特征以及β"-Al2O3固态电解质的高效离子传导,Na-S电池的运行通常需保持在300~350 ℃,高的运行温度始终存在令人担忧的安全隐患,阻碍了其更广泛的应用。最为严重的Na-S电池安全事件发生在2011年9月21日,由东京电力公司在三菱材料株式会社(Mitsubishi Materials Corporation)筑波厂建造运行的Na-S电池系统(NGK生产)出现火情,历时2周之久。因此,Na-S电池的安全性成为其进一步的发展面临的首要挑战之一,也是近几年的研究重点。在高温状态下,液态钠与熔融硫发生反应的理论反应焓为-420 kJ/mol。一旦陶瓷氧化物电解质破损,液态钠和硫就会直接接触而形成短路,会导致温度迅速上升至2000 ℃,造成严重的热失控,因此,防止β"-Al2O3陶瓷管破裂是提高Na-S电池安全性的策略之一。目前主要通过提高氧化物固态电解质的机械强度及降低固体电解质局部电流密度等方法来防止陶瓷管的破裂。
Viswanathan等在β"-Al2O3的高温烧结过程中掺入质量分数为15%的ZrO2,显著提高了β"-Al2O3陶瓷管的韧性以及抗断裂强度。经测试,ZrO2的掺入将β"-Al2O3陶瓷管断裂韧性范围从2.5~3 MN∙m-3/2提高到5.0~8.0 MN∙m-3/2。随后,Liu等探究了添加YSZ(氧化钇稳定氧化锆)对Al2O3/β"-Al2O3/ZrO2复合材料的微观结构和力学性能的影响。研究结果表明,YSZ的加入促进了复合材料的致密化和四方ZrO2相的形成,复合材料表现出更高的断裂韧性。2019年,该团队进一步探究了不同氧化钇(Y2O3)含量的YSZ对Al2O3/β"-Al2O3/ZrO2复合材料增韧效果的影响,发现YSZ的掺入导致Al2O3晶粒细化,而只添加Y2O3的复合材料显示出更大的Al2O3基体晶粒尺寸。加入体积分数7.5%的YSZ颗粒后,最大断裂韧性值可达5.7 MPa∙m1/2,抗弯强度达481.8 MPa。近期,Lee等在β"-Al2O3烧结过程中加入MnO2,结果表明质量分数0.6%~2%的MnO2可以较好地提升烧结样品的相对密度,从而起到提高β"-Al2O3陶瓷管韧性的目的。
另一个防止陶瓷管破裂的有效方法是降低固体电解质局部电流密度。虽然β"-Al2O3与正极侧的硫/多硫化物不会发生化学副反应,但循环后的β"-Al2O3却仍然易发生退化的现象。研究表明这是因为β"-Al2O3对钠金属的浸润性差而导致β"-Al2O3陶瓷管局部电流密度增大所造成的。在β"-Al2O3陶瓷管表面涂覆一层对钠金属浸润性强的涂层[如碳质材料以及镍(Ni)、铅(Pb)涂层等]是降低固体电解质局部电流密度的最常用方法。2012年Hu等以葡萄糖和聚甲基丙烯酸甲酯(PMMA)为前体,制备了多孔碳膜修饰的β"-Al2O3电解质,提高了β"-Al2O3对钠金属的浸润性[图5(a)]。在300 ℃下,钠液滴与多孔碳涂层的β"-Al2O3电解质的接触角为94.5°,远远小于纯β"-Al2O3电解质与钠的接触角(151°),进而有效降低了电池的局部电流密度和电化学极化。2013年,该团队又设计了一种镍金属纳米线网络涂层的β"-Al2O3电解质,该涂层由直径约为100 nm的镍纳米线组成,且呈现高度多孔的形态[图5(b)]。300 ℃时,镍纳米线涂层β"-Al2O3电解质上熔融钠液滴的接触角减小到了40°[图5(c)],并且该涂层具有低的电子电阻(约为1 Ω/m2)[图5(d)],极大地提高了β"-Al2O3陶瓷电解质对钠金属的浸润性。最近,Chang等利用水合乙酸铅对β"-Al2O3固态电解质进行表面改性,处理后的β"-Al2O3电解质表面形成了一层微米级铅颗粒的涂层,改性后的β"-Al2O3对钠液滴的接触角在200 ℃时甚至仅有16°,进一步改善了β"-Al2O3电解质对钠金属的浸润性,为降低固体电解质局部电流密度提供了有效的解决方案。同时研究发现,不同的碱金属,如钾(K)、铷(Rb)和铯(Cs),与钠形成的合金同样也可以提高与β"-Al2O3固态电解质的浸润性。例如,Lu等在Na中加入摩尔分数5%的碱金属Cs进行合金化,在100 ℃下,NaCs合金与固态电解质的接触角为88.6°,这与250 ℃下纯Na和固态电解质的接触角相当。此外,其他过渡金属元素(如Sn)也被证明具有提高钠负极对β"-Al2O3固体电解质浸润性的作用。
图5 (a) 多孔碳涂层的微观示意图; (b) 镍纳米线作为β"-Al2O3涂层的界面示意图; (c) 镍纳米线涂层β"-Al2O3和原始β"-Al2O3润湿性及(d)界面阻抗对比结果
与此同时,单质硫或多硫化物对集流体的腐蚀同样会导致Na-S电池容量的快速衰减。Li等通过原位透射电镜配备电系统加热装置研究循环过程中多硫化物的生成和转化过程。在放电过程中,硫正极发生了从S8到Na2Sx的电化学转变(x≥6),然后生成Na2S5、Na2S4、Na2S2,最后生成Na2S。目前,解决的办法主要是在集流体中引入抗腐蚀的金属图层,比如Mo、Cr、Al等。此外,杜晨阳通过磁控溅射在不锈钢集流体表面沉积了Cr3C2涂层来解决多硫化物对集流体的腐蚀。扫描电子显微镜(SEM)分析发现,沉积的Cr3C2涂层在350 ℃的熔融多硫化钠中腐蚀180 h后,涂层部分表面变成絮状结构,但涂层整体较为完整,没有明显的点蚀坑或剥落的现象。从腐蚀后的X射线衍射仪(XRD)图谱中可见,生成了少量的NaCrS2和Cr2S3等物质,这是由于涂层中存在的单质Cr与腐蚀介质发生了反应。
从目前来看,Na-S电池在安全性方面还需进一步提高,尤其是考虑到其运行温度必须维持在300~350 ℃的高温条件。为此,Werth等用溶于四氯铝酸钠(NaAlCl4)熔盐中的三氯化锑(SbCl3)取代硫电极,使电池工作温度低至210 ℃。但是,因SbCl3电极溶于NaAlCl4熔盐,在充放电过程中,Sb3+会自发地向陶瓷电解质一侧移动,继而与其中的Na+进行离子交换,造成陶瓷管退化,影响电池性能;另一方面,正极材料的溶解度过高,造成活性Sb3+无法在集流体上发生电化学反应,电池的容量损失增大。这直接促使了钠-金属氯化物电池的诞生。
3 钠-金属氯化物电池
随着对Na-S电池研究工作不断深入,南非ZEBRA Power Systems公司的Johan Coetzer教授认识到Na-S电池存在的很多技术问题和性能限制是由于硫电极引起的。因此,如果有其他正极材料可替代,安全、可靠的高温钠电池依然是可行的。在Werth工作基础上,Johan Coetzer等研究了不溶于NaAlCl4熔盐中的过渡金属元素的氯化物,旨在解决SbCl3电极溶于NaAlCl4熔盐中的问题,并提出一种新型钠电池,即钠-金属氯化物电池。其中,以NiCl2作为活性电极材料的钠-氯化镍电池(Zebra电池)为典型代表。如图6所示,Zebra电池与Na-S电池结构相似,负极采用液态金属钠,β"-Al2O3陶瓷作为固态电解质;区别是由液态的NaAlCl4熔盐与固态的金属氯化镍组成正极材料。相比于Na-S电池,Zebra电池拥有略低的工作温度,为270~320 ℃,更高的开路电压,为2.58 V (300 ℃)。Zebra电池的基本电池反应是:2Na+NiCl2↔2NaCl+Ni。在放电态下组装的Zebra电池,正极以NaCl和Ni为初始材料,避免了直接使用钠金属负极,因此电池制备过程安全性高。钠金属负极是由首圈充电过程中来自正极材料NaCl的Na+通过β"-Al2O3固体电解质迁移到负极所生成。与此同时,正极中的Ni失电子后形成Ni2+与Cl-在Ni颗粒表面形成NiCl2。正极液态的NaAlCl4熔盐的存在巧妙避免了电解质和正极活性材料之间的固-固接触,通过有效Na+介导保证了正极与固态电解质的离子的高效转移。
图6 Zebra电池反应机理
重要的是,相比Na-S电池,Zebra电池本质上具有高安全性。即便当电池损坏或者陶瓷电解质管发生破裂时,正负极直接接触,也无明显的安全风险。这是由于熔融钠与NaAlCl4熔盐电解质之间发生化学反应NaAlCl4+3Na→4NaCl+Al,从而将熔融钠经化学反应转变为固态NaCl,避免了Na与氧气接触发生剧烈氧化反应的潜在危险。同时,该反应的理论比能量仅为650 Wh/kg,是Zebra电池正常放电反应式的理论比能量(788 Wh/kg)的82%,不易导致电池热失控。此外,Zebra电池所有组成材料在其工作温度范围都呈低蒸气压状态(表2列出了Zebra电池正、负极、电解质材料的沸点),保证了电池正常工作过程不会析出任何气体。可见,不论从工作原理还是组成材料物性方面,Zebra电池都具有高的安全性能。
表2Zebra电池正、负极、电解质材料的沸点
高安全性、高能量效率、运行寿命长、环境无污染及维护成本低等优点让Zebra电池成为最有发展前景的大规模储能技术之一。虽然Zebra电池具有良好的发展前景,但镍基正极材料仍存在循环稳定性差和成本高等问题,而且高运行温度仍需要辅助加热及温度控制装置,使其对应用环境要求较为苛刻,也限制了其在高寒地区或极端环境中的应用。为此,近几年科研工作者从正极颗粒的生长行为调控,成本低的新型氯化物正极开发和电池运行温度降低等几个方面对Zebra电池进行综合优化,为其真正的产业化奠定基础。
3.1 限制正极颗粒的生长
正极颗粒(Ni、NiCl2、NaCl)无规生长和粗化是导致Zebra电池循环稳定性差的主要原因之一。在电池连续的充放电过程中,正极发生连续的多相转化反应,活性成分动态变化,易发生团聚,电化学反应的活性表面积缩小,导致电池极化增加。针对此问题,一些研究人员开发了镍-碳复合正极,通过使用碳孔限制Ni颗粒的生长进而提高电池寿命。Gao等通过静电纺丝和电沉积法合成镍-碳纳米纤维复合网络(NCCNs),构建了一种新型的Zebra电池三维正极[图7(a)]。通过碳纤维限制Ni和NaCl晶粒的体积膨胀,结果表明,充放电50次循环后,它们的尺寸分别小于500 nm和7 μm,大大提高了电池的容量和循环寿命。此外,该复合正极在338 mA/g的高电流下,充放电循环350次后容量没有明显减少。随后,Li等设计了一种3D结构正极,其由碳纤维(CF)和多壁碳纳米管(MWCNT)作为导电基体,Ni以及NaCl颗粒均匀地分布在结构之中[图7(b)]。通过3D碳基体的分层结构抑制Ni和NaCl正极颗粒的长大。经过170圈循环后,电池容量仍保持在90 mAh/g。最近,中国科学院上海硅酸盐研究所温兆银研究员等结合Zebra电池的正极颗粒特征、长循环性能曲线与放电电压弛豫曲线进行了分析,得到Zebra电池将经历前期活化、中期稳定和后期性能老化等3个不同的性能阶段。通过观察电池的电压弛豫曲线的变化,可以较好地判断电池性能所处的阶段,从而获取电池的健康状态。并以此判断为基础,通过改变阴极的组成可减少电池活化时间,达到保持电池长循环稳定性的目的。
图7 (a) 镍-碳纳米纤维复合网络示意图;(b) Ni/NaCl-CNF-MWCNT 3D分层结构示意图及其电池循环性能
3.2 降低电池正极成本
为了减少Zebra电池中价格较高的镍元素的使用,降低电池的正极成本,科学家们开发了许多成本更低的新型氯化物正极,例如FeCl2、CuCl2、ZnCl2等。
3.2.1 氯化亚铁正极
我国铁资源储量丰富,居世界第9位,广泛分布于全国31个省市。因此,将铁基电极材料应用于钠-氯化物电池对降低其成本具有现实意义。FeCl2作为正极应用在熔融钠金属电池的报道最早出现在1986年(图8),其运行温度约为250 ℃,开路电压为2.35 V。2015年,Li等设计了一种新型钠-氯化亚铁(Na-FeCl2)电池,首次在FeCl2正极中使用少量的S作为正极添加剂,使Na-FeCl2电池可以在<200 ℃下运行,并且电池具有快速充电能力。2016年,Ahn等提出了一种镍-铁复合材料的微观结构(图9),其中Ni作为添加剂。当Ni颗粒粒径大于Fe颗粒时,Fe颗粒会聚集在Ni颗粒之上,在正极中形成了紧凑且均匀的形貌。这不仅降低了电池成本,还兼顾了优异的循环性能,充放电100次循环后,Na-(Ni/Fe)Cl2电池容量保持率约为65%,远高于Zebra电池(容量保持率约为40%)。最近,Zhan等进一步设计了一种可以在190 ℃下运行的Na-FeCl2电池(少量Ni作为添加剂)。在33.3 mA/cm2的电流密度下,该正极具有116 mAh/g的比容量。在电流密度10 mA/cm2条件下,电池放电能量密度超过295 Wh/kg。并且,研究明确指出FeCl2正极中少量(摩尔分数10%)的Ni作为添加剂,可以有效减轻电池过充(形成不可逆的FeCl3)而造成铁颗粒粉碎引发的电池的容量衰减。虽然正极仍使用少量Ni,但FeCl2作为主要正极活性物质有效降低了Zebra电池成本。
图8Na-FeCl2电池的(a)示意图和及其(b)倍率性能
图9 复合正极材料宏观结构 (a) 及其 微观结构示意图(b)
3.2.2 氯化锌正极
对于钠-氯化物电池的正极活性元素,研究者不仅仅将目光放在镍与铁上。Lu等在2013年提出了一种新型低成本Na-ZnCl2电池,其工作温度为250~280 ℃,电池正极由Zn、NaCl以及熔融的NaAlCl4电解质组成。在充电的第一阶段,正极NaCl与Zn反应形成Na2ZnCl4。当所有的NaCl被消耗掉,Na2ZnCl4和Zn之间进一步反应,形成NaCl-ZnCl2共晶相,而后NaCl-ZnCl2共晶相与Zn进一步反应生成固体ZnCl2。作者将电池在20%~90%荷电状态(110 mAh)下进行30 mA的恒电流充放电测试,结果显示充放电过程中电池极化无明显增大,证明了Na-ZnCl2电池的稳定电化学性能。2019年,Lee等在Na-ZnCl2电池中使用较便宜的碳毡作为电子导电框架。与传统电池相比,220 mAh(1.37 V)和400 mAh(1.61 V)新型Na/ZnCl2电池的放电终止电压分别提高了15%和50%,并且在160 mA放电电流下,220 mAh电池的总电荷转移电阻在第51圈循环时显著降低了62%,这种趋势在高容量(440 mAh)电池中更为明显。在260 ℃下与传统Na/ZnCl2电池相比,新型Na/ZnCl2电池表现出更好的倍率性能和循环稳定性(图10)。
图10 (a) Na/ZnCl2电池的正极结构示意图及其 (b) 不同电流密度充放电电压结果
3.3 降低电池运行温度
此外,高温是限制钠-氯化物电池规模应用的一大难题。为了保证金属钠的液态特征和固态电解质的离子传导性能,此类电池工作需要保持在300 ℃上下的运行温度,同样需要控温装置辅助,电池的运行成本和场地要求较室温电池高。因此,如何将钠-氯化物电池工作温度降至中温(120~300 ℃)甚至室温区间是目前研究的重点方向之一。降低电池的操作温度的关键是如何在保证较低的操作温度下,电极及电解质中依然具有较高的Na+电导率。Li等用NaBr等低熔点碱金属盐部分取代NaAlCl4中的NaCl,在较低的温度下具有较好的离子导电性和足够的电化学稳定性,含有NaBr正极电解质的电池在150 ℃下表现出稳定的性能,这个温度远远低于一般Zebra电池的工作温度(300 ℃)。
2015年,Kim等基于钠离子快离子导体(NA-SICON)固体电解质,成功设计出可在195 ℃下正常运行的新型Zebra电池。他们发现得益于NA-SICON的高Na+离子电导率,在相同的扫描速率下(5 mV/s)和运行温度(180 ℃)下,使用NA-SICON的电池(N-Cell)比使用常规的β"-Al2O3固体电解质电池(β-Cell)拥有更大Ni/Ni2+氧化还原电流(即更快的Ni/Ni2+反应动力学)[图11(a)]。此外,在9.6 Ah全电池高电流密度充放电过程中(充/放电流密度为50/100 mA/cm2,运行温度195 ℃),N-Cell比β-Cell具有更小的过电位和电化学极化[图11(b)],进而显著提高了电池的能量效率(表3)。此外,N-Cell的充电容量利用率只有82.7%,是传统β-Cell(28.8%)的3倍。
图11 (a) NA-SICON和β"-Al2O3作为电解质的全电池在180 ℃下的CV;(b) 在195 ℃下,9.7 Ah全电池的充电和放电曲线
表3 在195 ℃下,使用NA-SICON和β"-Al2O3的电池测试结果
注:充/放电流密度为50/100 mA/cm2。
4 结语
目前,我国太阳能、风能等新能源发电发展迅速。但与此同时,新能源发电电力输出的不稳定性和不连续性导致其并网难度大,严重阻碍了新能源发电行业的发展。因此,亟需发展用于电网削峰填谷、改善电力质量的规模储能技术,作为连接新能源和电网规划的纽带。以Na-S电池和钠-金属氯化物电池为代表的基于氧化物固态电解质钠电池(OSSBs)拥有高功率密度、长使用寿命和高转化效率等特点,非常适合大规模储能应用。对于尚存在的科学问题和技术瓶颈,近年来科研界已经开始有针对性地研究,在新材料、新机理方面进行大量有益的探索,较之传统OSSBs体系在循环性能、安全性、成本等方面取得了显著的进步。然而,同样需要认识到,OSSBs运行温度过高仍然是限制其商业化应用的主要挑战。因此,OSSBs未来的研究重点应该是在保证储能电池电化学性能的前提下,降低电池的工作温度。运行温度的降低能够保证储能电池的长期运行稳定性、安全性及可靠性,同时有利于规模化的成本控制,以及有望适用于复杂环境和场景的应用。然而,电池温度的降低不仅会引起固态电解质电导率的下降,而且会提高正极钠金属以及正极活性成分与固态电解质的阻抗。如何实现固态电解质在低温区间的电导率以及如何实现低温下正负极材料与固态电解质的有效界面是最关键的问题。开发新型的钠离子导体(如结构改性的NA-SICON材料及多相复合固态电解质),探索新型的低阻抗、高稳定的界面行为和离子传导机理是未来可行的研究方向。NA-SICON固体电解质能够应用于固态储能钠电池的重要前提是具备较高的室温离子电导率和优异的界面稳定性。因此,一方面,通过进行合适离子对骨架离子取代,调控可迁移钠离子浓度及传输通道瓶颈尺寸,可提高晶粒电导率;另一方面,提高物相纯度和致密度,可减少阻碍钠离子传输的低电导率杂相和晶界气孔的产生,有望使晶界电导率得到提升。对于界面稳定性来讲,通过构建三维界面骨架、原位/非原位热处理等方法形成界面润湿层是非常有效的手段。此外,操作温度的降低可能需要新的正极材料及氧化还原反应体系,为了保证充分的界面传输,辅助的低温流动态离子介质(如低温共熔体、类离子液体及寡聚物材料)同样需要进一步探索。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
3月28日上午,2025年“投资北京”大会在2025中关村论坛年会期间举办。会上,北京星川新能源电池科技有限公司(以下简称“北京星川”)超高倍率锂离子电池项目签约落地北京经开区(北京亦庄)。该项目预计将于明年6月开始量产。北京经开区有关负责人在大会上作推介。“北京星川超高倍率锂离子电池项目总
北极星储能网获悉,4月1日,深圳新宙邦科技股份有限公司披露投资者关系活动记录表,回答投资者提问。对于公司电解液市场后续规划,新宙邦回答:公司核心业务之一为电池化学品,主要产品包括:锂离子电池化学品(如电解液、添加剂、新型锂盐、碳酸酯溶剂)、超级电容器化学品、一次锂电池化学品、钠离子
2025年3月31日,在“2025榆林—珠三角地区经济合作交流座谈会”深圳主会场,中钠储能技术有限公司控股子公司-定边中钠新能源有限公司与榆林市政府、产业链合作伙伴正式签署协议,启动总投资9.7亿元的“500MW全钒液流储能电池制造项目。项目规划建设年产500MWh全钒液流电池生产线及年产5000吨PPH储罐配
近期,储能安全与质量问题再度成为行业焦点。随着行业快速发展,低价竞标、假冒伪劣(性能虚标)、虚假宣传、服务乱象等问题接连出现,甚至引发安全事故。这其中行业既存在“无知”的问题——对电池及电化学储能的安全研究不够,防范方法缺失;又存在“知而不行”的问题,有的存侥幸心理,有的是从成本
北极星储能网获悉,4月1日晚间,龙净环保发布《2024年年度股东会提示性公告暨会议资料》,2024年,公司实现营业收入100.19亿元;利润总额9.76亿元,同比增长49.71%;归属于上市公司股东的净利润8.30亿元,较上年同比增长63.15%。经营性现金流21.77亿元,同比增长27.58%。其中新能源业务加速突破,取得
北极星储能网获悉,4月1日晚间,比亚迪公布2025年3月产销快报,3月公司新能源汽车销量为37.74万辆,同比增长24.76%;本年累计销量为100.08万辆,同比增长59.81%。2025年3月海外销售新能源汽车合计72723辆。2025年3月,比亚迪新能源汽车动力电池及储能电池装机总量约为20.347GWh,2025年累计装机总量约
北极星储能网获悉,今日,首航新能将在深交所敲钟上市。据此前资料显示,首航新能本次发行募集资金总额48,659.79万元,扣除发行费用后募集资金净额41,252.25万元,用于首航储能系统建设项目、新能源产品研发制造项目、研发中心升级项目、营销网络建设项目、补充流动资金。公司控股股东为许韬。首航新能
在近期举行的2025年欧洲储能峰会上,调研机构WoodMackenzie公司分析师KevinShang和AnnaDarmani接受了行业媒体采访,深入剖析了欧洲电池行业市场格局。FreyrBattery公司计划在挪威莫伊拉纳建设电池生产工厂他们探讨了电池供应链持续变化以及欧洲客户对储能电池供应商和系统集成商日益严格的要求。讨论的
北极星储能网讯:3月31日,新疆立新能源发布三塘湖200MW/800MWh储能规模+800MW风电项目储能设备采购招标。本标段采购范围包括但不限于200MW/800MWh构网型储能系统所需设备的供货及指导安装,且包含成套设备五年质保期服务。要求投标人具备电芯、PCS、EMS中至少一个核心产品的研发制造能力,且PCS要求具
北极星储能网讯:3月31日,长峡电能(安徽)有限公司发布600MW/1200MWh储能系统集中采购招标,拟确定3家单位作为供货入围单位,不接受联合体投标,且不接受代理商、经销商投标。据悉,该项目招标人长峡电能(安徽)有限公司为三峡电能联合合肥国有资本出资设立的合资公司。原文如下:长峡电能(安徽)有限公
北极星储能网讯:3月31日,浙江温州市发改委、温州市住建委、以及温州市消防救援支队联合印发《温州市用户侧电化学储能电站消防技术导则》(试行)、《温州市微型预制舱式电化学储能电站消防技术导则》(试行)。这也是全国首部地市级用户侧储能消防技术导则。据温州市发改委负责人称,作为全国用户侧储能
北极星储能网获悉,3月27日上午,广西百色市田东县2025年一季度重大项目集中开竣工活动暨百色中森碳投30GWh高性能钠离子电池材料产业园项目(一期)开工仪式举行。项目由福建中森碳投新能源科技有限责任公司投建,总投资100亿元,建设年产30GWh高性能钠离子及固态电池材料产业园区项目,其中一期10亿元
2025年3月27日,在云南文山丘北县召开了云南文山丘北独立储能项目全容量并网运行座谈会,云南省能源局副局长张斌同志、文山壮族苗族自治州副州长刀锦祥同志、南网储能公司副总经理卢文生同志、丘北县政府领导及业主单位负责人参加了会议。会上,张斌副局长讲话并宣布项目全容量并网运行。这标志着云南
北极星储能网获悉,3月27日,华自科技在互动平台回答投资者提问时表示,储能技术种类很多,公司主要提供储能相关的控制设备和系统并形成业内领先的多能物联解决方案,目前有基于钠离子电池的储能产品。
3月19日,由淮南公司牵头研发的国内首套水系钠离子电池组在220千伏辛东变电站内挂网试运行,标志着这一新型电池技术研发应用迈入实用化新阶段。该电池组由3组128只电池单元并联形成,总容量达66千瓦时,将在变电站内交流供电系统异常时,为保护装置提供不间断后备电源。相较于目前在变电站内广泛使用的
2025年,钠电池正在打破其市场容量小、产业化进程慢的行业误解,正迎来产业化爆发的关键时间节点。近期,锂电池部分原材料价格呈上涨趋势,引发业界担忧情绪;与此同时,钠电池在电动汽车、工程车辆、两轮电动车,以及汽车启停、储能等领域,也呈现出多点开花的良好态势,且其性价比持续提升,逼近磷酸
北极星储能网获悉,瑞泰新材3月22日在互动平台回复投资者称,在新型电池材料方面持续性地进行了相关研发与积累,在固态电池、锂硫电池以及钠离子电池等新型电池方面皆有相应布局。公司与国内外多家固态锂离子电池相关企业均有合作,公司生产的双三氟甲基磺酰亚胺锂(LiTFSI)已批量应用于固态锂离子电
据容百科技消息,公司在仙桃(北京)招商推介会上追加投资12亿元,在湖北仙桃新建容百学院和年产6000吨钠电正极材料生产线项目及固态电池电解质中试线项目,打造全球规模最大的现代化、智能化、园林化高端动力锂电三元正极材料大型生产基地。资料显示,容百科技是一家高科技新能源材料行业的跨国型集团
北极星储能网获悉,3月21日,中科海钠发布郑重声明,针对网络和媒体出现关于中科海钠产业落地的一些传言,为澄清事实,声明如下:近期确有外界多地主动与我司沟通招商引入事项,也体现了各界对钠电产业和公司发展的高度认可,但截至目前公司尚未有任何相关的实质性决策;公司拟对外披露的重要信息,将
3月17日,申能集团旗下上海申能新动力储能研发有限公司发布奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)项目钠离子电池储能系统采购招标公告。本标的钠离子电池储能总容量5MW/20MWh,合同分两批次生效,第一批次为可扩展的最小单元容量(不大于2.5MWh),剩余容量为第二批次,第二批次合同生
北极星储能网获悉,3月17日,孚能科技在投资者互动平台上回答有关两轮车布局和钠电池进展问题。孚能科技表示,公司是国内最早布局电动两轮车的动力电池企业,拥有超14年的两轮车产品应用经验,服务客户包括Zero、春风动力、虬龙、雅迪、新日、EMC、Lightfighter、Polaris等国内外知名品牌。公司两轮车
北极星储能网获悉,3月17日,赣锋锂业披露公司2025年3月17日股东大会股东交流记录表。对于短期锂价,赣锋锂业认为目前的锂价已经处于相对底部区域的概率较大,这一判断主要基于:近期锂价感受到较强的成本端支撑、行业库存处于历史相对低位、以及近期需求有显著改善。未来锂价是否能上涨取决于供给侧是
北极星储能网获悉,4月1日,深圳新宙邦科技股份有限公司披露投资者关系活动记录表,回答投资者提问。对于公司电解液市场后续规划,新宙邦回答:公司核心业务之一为电池化学品,主要产品包括:锂离子电池化学品(如电解液、添加剂、新型锂盐、碳酸酯溶剂)、超级电容器化学品、一次锂电池化学品、钠离子
北极星储能网获悉,近日,中仑新材外宣布旗下长塑实业成功研发出固态电池专用BOPA(双向拉伸尼龙薄膜)。这款专为固态电池量身打造的BOPA,在柔韧性、抗穿刺、抗冲击等力学性能方面表现卓越,可满足固态电池对封装材料的严格标准,堪称固态电池的“硬核铠甲”。中仑新材研发负责人表示:“这款产品前后
钴镍铜等电池金属供应及价格震荡,产业链影响几何?电池金属供应及价格震荡,正在引发新一轮的市场担忧。刚果(金)的钴出口禁令、印尼的镍矿政策收紧、美国铜关税预期等事件接连冲击市场,不仅会推高电池制造成本,也或影响企业重新审视技术路径与供应链布局。从目前情况来看,钴与镍仍处供应过剩、库
北极星储能网获悉,3月27日上午,广西百色市田东县2025年一季度重大项目集中开竣工活动暨百色中森碳投30GWh高性能钠离子电池材料产业园项目(一期)开工仪式举行。项目由福建中森碳投新能源科技有限责任公司投建,总投资100亿元,建设年产30GWh高性能钠离子及固态电池材料产业园区项目,其中一期10亿元
北极星储能网获悉,3月24日消息,在2025徽商大会徽商回归项目集中签约仪式上,碳一新能源集团有限责任公司年产3万吨新型硅碳负极生产基地项目签约。项目将落户安徽池州皖江江南新兴产业集中区,总投资34亿元,拟用地500亩,主要产品为硅碳负极材料。项目分三期建设:一期投资7.6亿元,规划用地100亩,
北极星储能网获悉,3月26日,信宇人自愿披露与华中科技大学签署新能源材料及装备联合研究中心合作协议书,双方以联合研究中心为依托,围绕新能源材料及装备领域,拟开展固态电池关键装备及关键材料技术、涂布模头流道模拟与材料技术等课题的研究,具体课题以双方实际研究为准。在本协议的有效期内,信
3月24日晚间,东峰集团发布《关于控股股东控制权拟发生变更的进展公告》,公司控股股东香港东风投资集团有限公司与衢州智尚企业管理合伙企业(有限合伙)、衢州智威企业管理合伙企业(有限合伙)签署的《股份转让协议》项下之生效条件已全部达成,衢州市国资委即将成为公司实际控制人。时间回溯至1月21
北极星储能网获悉,3月21日,万润股份在互动平台回答投资者提问时表示,公司拥有涉及固态电池材料方面的专利,是公司在相关领域的前瞻性技术储备,公司积极关注相关领域下游行业发展情况。
北极星储能网获悉,3月21日,日播时尚公告,拟通过发行股份及支付现金的方式购买远宇投资等10名交易对方持有的茵地乐71%股权,对应交易价格为14.2亿元,其中,股份对价11.61亿元,现金对价2.59亿元。本次交易完成后茵地乐将成为公司控股子公司。同时,日播时尚将向控股股东梁丰及其控制的上海阔元发行
2月24日,刚果有关部门宣布暂停钴出口四个月,作为全球最大并坐拥全球近70%的钴资源的生产国,该项禁令一度使得钴的报价系统瘫痪,如今一个月过去,来自上游的供应缩减影响正持续演进。根据市场数据,自禁令发布以来,短短20个交易日,钴价一度从16.2万元/吨暴涨超26万元/吨,涨幅超60%。根据历史价格
北极星储能网获悉,近日,湖南安装分公司承建的湖北弗思创新材料有限公司新一代锂电池电解液核心材料项目正式开工。该项目总投资6.3亿元,为湖北省重点项目,受政府直接监管,建设内容包括2套锂盐生产装置,配套建设仓库、储罐、循环水站等,建成后年产1万吨(折固)锂电池电解液核心材料,将成为当地
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!