登录注册
请使用微信扫一扫
关注公众号完成登录
本文首先介绍了CES系统的工作原理及主要特点,指出了CES系统的主要性能评价指标,然后基于CES系统的发展历程,分析了不同CES系统方案的技术特征和研究现状,总结了CES技术的关键技术、主要方向和技术挑战,最后展望了CES技术的发展前景。
1 二氧化碳储能系统概述
1.1 工作原理
二氧化碳储能是在压缩空气储能和Brayton循环的基础上提出的,以CO2作为储能系统工作介质,通过多级绝热压缩、等压加热、多级绝热膨胀和等压冷却等过程实现,但由于CO2工质特殊性,系统为封闭式循环,系统设备和参数设置也和压缩空气储能有较大差异。
图1展示了二氧化碳储能系统的工作原理,系统主要由高、低压储罐,压缩机,透平和蓄热蓄冷单元组成;蓄热蓄冷单元主要包括再冷器、再热器、蓄热罐和蓄冷罐。其工作原理可分为储能阶段和释能阶段两个过程。储能时,低压储罐中的低压液态CO2经过蓄冷换热器吸热气化,再经过(多级)压缩机压缩至超临界状态,同时通过再冷器吸收压缩热并通过蓄热介质将热量储存在蓄热罐中,最后将超临界状态CO2储存在高压储罐中,即将电能以热能和势能形式储存;释能时,高压储罐中的超临界CO2经过再热器升温,再进入透平中推动透平发电,同时再将再热器出口的低温蓄热介质冷量储存在蓄冷罐中,末级透平出口的CO2再经过冷却器和蓄冷换热器冷却至液化状态,最后储存在低压储罐,即将热能和势能转化为电能输出。
图1 二氧化碳储能系统原理图
CES系统一般采用压缩热回收利用代替传统CAES系统中的燃料补燃,避免了对化石能源的依赖;同时设置压缩机与透平分布,从而能够灵活控制系统储能、调节释能工况,减少机组启停切换时间;CES系统中多采用多级压缩和多级膨胀,最大储能压力可达20~25 MPa,同时通过中间冷却和中间再热使压缩机和透平近等温运行,提高了系统循环效率;CES系统可根据可再生能源消纳、电网调峰调频、用户侧削峰填谷等应用场景,满足数小时甚至数十天的储能周期需求,且具有较长运行寿命。
1.2 主要性能评价指标
对于压缩气体储能系统,最能反映系统储能特性的评价指标主要有系统循环效率(round trip efficiency,RTE)和储能密度(energy storage density,ESD)。
RTE反映了储能系统同一周期内储能和释能过程的能量转化与平衡关系。如式(1)所示,RTE为储能时系统输入电能和释能时系统输出电能之比,与压缩机、透平功率和储释能时间相关。如果系统设置补燃设备,还需要考虑消耗热能的输入,一般按燃气按折合系统0.39考虑。
(1)
ESD反映了储能系统储能工质单位储存容积时储能容量的大小,也可称为单位体积发电量(energy generated per unit volume,EVR)。如式(2)所示,ESD为系统输出电能和储存设备总容积之比,由于超临界CO2和液态CO2密度远大于空气,所以二氧化碳储能系统的储能密度具有较大优势,使得系统工质储存容积和设备成本显著降低。
(2)
式(1)、(2)中,Win为系统输入电能;Wout为系统输出电能;VH为高压储罐容积;VL为低压储罐容积。
2 二氧化碳储能技术研究现状
2.1 二氧化碳电热储能(TE-CES)系统
将CO2作为工质并应用于储能系统最早是2012年由瑞士洛桑埃尔科尔理工大学的Morandin教授提出,他设计了一种基于热水蓄热、冰浆蓄冷的二氧化碳电热储能(thermo-electrical carbon dioxide energy storage,TE-CES)系统,并基于换热器网络编写了系统优化算法。如图2所示,该系统的工作原理是:在储能过程中,电能驱动热泵系统压缩机将CO2压缩至超临界态,并将CO2内能通过蓄热罐进行储存,即将电能以热能形式储存;在释能过程中,CO2吸收蓄热器热能,再进入膨胀机做功,即将热能转化为电能输出。
图2 二氧化碳电热储能系统原理图
二氧化碳电热储能系统在蓄热端进行显热交换,CO2处于单相区;在蓄冷端进行潜热交换,CO2处于两相区。因此,系统换热过程具有较好的热匹配性。由于液态水的高热容、高流动性特性,且成本极低,相比于其他常见蓄热介质(表2),在储能系统蓄换热过程中被广泛使用。
表2 蓄热介质性能对比
基于上述系统,韩国学者Kim等分析了压缩机、膨胀机效率、压力比、冷热罐流量等参数对系统循环效率的影响,发现热罐中水的质量和温度越高,等温TES系统的循环效率越高,系统最大循环效率可达74.5%;等温膨胀的压力比可以在最高循环温度下充分提高,且内部耗散造成的㶲损失低于等熵情况。瑞士苏黎世Ewz公司于2013年建设了Auwiesen热电储能电站。该电站基于已有Auwiesen(220 kV/150 kV)和 Aubrugg(150 kV/22 kV)两座变电站,提供电力并网和生物质废热,同时可通过热力管线供热。Auwiesen热电储能电站储能容量1 MW,储能时间6 h,释能时间3 h,最大循环效率40%~45%,二氧化碳循环压力在3~14 MPa,储热温度最高120 ℃,储热罐总容量达上千立方米。
2.2 跨临界二氧化碳储能(TC-CES)和超临界二氧化碳(SC-CES)储能系统
基于压缩空气储能系统的研究与应用,中国科学院工程热物理研究所杨科等提出了以CO2为工质的压缩二氧化碳储能系统。根据系统透平出口压力,可具体分为跨临界二氧化碳储能(transcritical carbon dioxide energy storage,TC-CES)和超临界二氧化碳(supercritical carbon dioxide energy storage systems,SC-CES)储能系统,若透平出口压力低于临界压力称为TC-CES系统,若高于临界压力则称为SC-CES系统。目前,关于这两种系统的研究相对较多,主要研究机构包括中科院工程热物理所、华北电力大学、西安交通大学、华中科技大学等,但主要还停留在系统理论设计和性能分析阶段。
北京大学Zhang等研究了基于热水蓄热的跨临界和超临界压缩二氧化碳储能系统。如图3所示,这两种系统本质上没有区别,TC-CES系统相较于SC-CES系统另外设计了压缩前预热器,目的是使低压储罐中的液态CO2在进入压缩机前完全气化,而SC-CES系统低压储罐中CO2本身就处于超临界态,可直接进入压缩机。研究发现系统以1 MW释能功率输出时,跨临界运行CO2工质流量为38.52 kg/s,循环效率为60%,储能密度为2.6 kWh/m3;超临界运行CO2工质流量为6.89 kg/s,循环效率为71%,㶲效率为71.38%,储能密度为23 kWh/m3。结合文献[21-22]的研究结果,图4对比了传统CAES、AA-CAES、TC-CES和SC-CES系统在释能功率均为1 MW工况下的循环效率和能量密度数据。可以发现,TC-CES的循环效率高于传统CAES,但略低于AA-CAES,其储能密度均高于传统CAES和AA-CAES;而SC-CES的循环效率最大,且其储能密度远高于其他三种系统。因此,虽然SC-CES比CAES系统额外增加了低压储存设备用于释能过程中透平存储出口CO2(对于SC-CES系统此时CO2仍处于超临界态),但由于其工质整体储存容积需求较低,所以仍具有较高的储能密度。
图3 TC-CES系统和SC-CES系统原理图
图4 不同CES和CAES系统性能对比
由于二氧化碳储能系统高压侧压力较大(一般为10~25MPa),因此对于高压侧储存容器提出了较严苛的要求,一般性钢制压力容器往往不能满足安全要求,并且为了满足系统释能工况稳定,压力容器设计时容积需要有相当部分的富裕量,这样就造成了较大的材料成本投入,影响二氧化碳储能系统的整体经济效益。因此,有学者提出结合二氧化碳封存技术,采用地下储库(硬岩穴、盐穴、废弃煤矿井、咸水层、海下等)储存高低压二氧化碳。
华北电力大学刘辉、何青等 、郝银萍分别对使用地下双储气室的二氧化碳储能系统进行了研究。其中,文献[25]提出了一种基于地下储气室的跨临界二氧化碳储能系统,如图5、6所示,系统分别以1700 m深和100 m深的地下咸水层作为高低压储气室,同时使用热泵系统储热,提高了储热温度。研究结果显示,RTE、储能效率及储热效率分别为66.00%、58.41%和46.11%,此外,探讨了压缩机和透平绝热效率对系统性能的影响规律,研究还验证了以水为蓄热介质时系统性能最佳。
图5 TC-CES系统地下储气室
图6 基于地下储气室的TC-CES系统原理图
2.3 液态二氧化碳储能(LCES)系统
针对跨临界、超临界二氧化碳储能系统需要耐高压储存设备且储能密度相对较低的问题,有学者提出一种液态二氧化碳储能(liquid carbon dioxide energy storage,LCES)系统,即将高压侧和低压侧CO2均以低压液态(0.5~1.0 MPa,-56~-40 ℃)形式储存,密度大于1 000 kg/m3,极大地降低了存储压力,且不受地理条件限制,还可以显著降低压力容器加工制造成本,提高了二氧化碳储能系统在空旷的荒漠、高原等可再生能源聚集地区的运行安全性。此外,关于液态空气储能技术的研究也证实了液态工质储能系统在实际工程应用的可行性。
西安交通大学Wang等提出了一种结合ORC的液态二氧化碳储能系统。如图7所示,该系统由压缩机、透平、蓄热器、蓄冷器、储罐和液体泵组成。储能时:罐2中的液态CO2经过稳压阀和蓄冷器吸热气化,进入压缩机被压缩,然后通过蓄热器储存压缩热,再经过水冷液化储存到罐1中。释能时:罐1中的液态CO2通过液体泵增压,再进入蓄热器和透平吸热做功,然后经过蒸发器和蓄冷器冷却液化,回到罐1储存,温度可达-56 ℃,高于LAES系统液化温度,降低了系统冷损。研究结果显示,该系统的循环效率可达到56.64%左右,储能密度为36.12 kWh/m3,高于AA-CAES系统和其他二氧化碳储能系统。
图7 结合ORC的液态二氧化碳储能系统原理图
LCES系统在压缩后也可以采用节流阀或液体膨胀机通过节流效应进行液化,但由于节流过程仍有部分CO2不能液化,所以需要配置气液分离器并将气态CO2返回压缩机继续压缩液化,这种系统可以避免外设低温冷却系统。吴毅等设计的一种采用液态膨胀机的液态二氧化碳储能系统如图8所示,该系统在高压侧的储能过程和释能过程分别采用液体膨胀机和低温泵控制储能压力和释能压力。通过热力学分析和多目标优化,发现该系统最佳释能压力为18.3 MPa,最佳储能压力为11.7 MPa,对应系统储能效率为50.4%,储能密度为21.7 kWh/m3。但由于存在膨胀机功损失,意味着这个系统还有很大的改进潜力。
图8 采用液体膨胀机的液态二氧化碳储能系统原理图
应当注意的是,虽然LCES系统解决了压力容器的加工制作和运行安全问题,提升了系统整体储能密度,但由于其一般需要将CO2冷却液化的换热量通过蓄热系统回收并用于膨胀过程中CO2的加热气化,所以引入了另一套较复杂的蓄热蓄冷系统;此外,低温液体泵功耗和低温CO2耗散也成为制约LCES系统循环效率的重要问题,因此LCES系统的循环效率一般略低于其他CES系统。
2.4 耦合其他能源系统的二氧化碳储能系统
二氧化碳储能系统不仅具备CAES系统的功能特性,可将风电、光电等间歇能源“拼接”起来,保障新能源的持续电力输出;还可以和CCS、液化天然气(LNG)等多种能源系统耦合,实现二氧化碳储能的多场景应用和效率提升。
文献[33]提出了一种利用太阳能光热系统补热的LCES系统,如图9所示,该系统在透平入口前引入额外的光热热源,在透平出口设置回热器回收400 ℃二氧化碳的余热,从而提高了透平进口温度。与常规LAES系统相比,该系统具有较高的循环效率和㶲效率。但需要注意的是,该系统需要控制太阳热量的波动以减小对LCES系统透平进口温度稳定性的影响。
图9 利用太阳能光热系统补热的LCES系统原理图
基于CCS技术的快速发展,如何合理应用地下封存的CO2、降低CCS整体经济成本受到相关学者关注。文献[34]提出了一种结合废旧矿床存储二氧化碳的二氧化碳储能(CES-CCS)系统。如图10所示,该系统的工作原理是将电厂捕获的CO2经过多级压缩机压缩,当达到储能压力时,CO2存储过程停止,多余的CO2通过注入井进行地下封存或驱油,释能时CO2再进入多级透平做功发电,出口CO2通过废弃洞穴暂存。通过热力学分析和参数分析,该系统在储能压力为21.9 MPa时,最高RTE为53.75%,且在碳排放税不超过47美元/吨时具有一定经济优势。但是,该系统将CO2迁移当做理想渗流过程,在工程应用时需要更深入细致的地质勘探和模拟分析,所需要的应用场景也较难吻合。
图10 CES-CCS系统原理图
此外,液化天然气(LNG)冷能利用也为LCES提供了一个较好的发展方向。由于LNG必须气化升温后才能供用户使用,LNG从-162 ℃升至常温能够释放约830 kJ/kg的冷能,然而目前LNG冷能浪费严重。因此,Zhao等提出了一种耦合LNG的LCES系统,如图11所示。该系统在常规LCES系统外加入LNG冷能利用子系统和燃烧子系统,采用LNG液化低压CO2,加热后的LNG一部分供给用户,一部分进入燃烧室中燃烧,以提高透平进口温度。结果表明,该系统充电时间为2.02 h,恒压和变压放电时间为3.64 h和2.88 h,恒压模式下的循环效率为64.96%,而变压模式下的循环效率可达67.37%。该系统为解决我国东南沿海LNG冷能利用问题提供了有效方案,但由于过程中需要燃烧化石燃料,所以需要对系统整体净碳排放效果进行详细评估。
图11 耦合LNG的LCES系统原理图
3 二氧化碳储能系统关键技术
作为一种较前沿的物理储能技术,二氧化碳储能在热力学循环构建理论、CO2临界转换特性、系统动态运行控制策略、关键设备设计开发和高性能材料选择等方面需要攻克的关键技术还有许多,也面临着诸如设备加工制造、系统应用等技术挑战,如表3所示。
表3 二氧化碳储能研究方向、关键技术和挑战
4 二氧化碳储能技术的发展前景
我国对压缩空气储能技术的研究虽然起步较晚,但随着国家政策支持和相关成果落地,已经实现了从技术追赶到技术领先的重大转变。同时,二氧化碳储能作为一种新型压缩气体储能技术,凭借其储能工质物性优良、系统性能稳定、流程设备紧凑等优势,近年来已经成为国内外相关学者的研究热点,具有较好的发展前景。
二氧化碳储能技术的发展趋势将以解决高压储存设备依赖、关键涡轮机械设备开发和“源-网-荷-储”多场景应用为导向,结合CCUS和CO2工质化利用技术进步,逐步实现从概念设计,到实验验证,再到工程示范,最后实现技术的应用推广。因此,结合高温热能储存利用的TE-CES系统、地质封存储库的TC-CES系统以及LCES系统将成为二氧化碳储能技术的重要发展方向。在技术研发上,将主要集中在电动、气动、热动等系统复杂动态过程设计和机制研究、高参数旋转叶轮机械动力学设计、开发以及系统集成控制等方面。在面向多场景应用方面,一是“新能源+储能”模式,根据可再生能源出力禀赋实现并网匹配及持续、稳定清洁电力输出;二是大型电网辅助模式,参与电网调峰、调频、调相、黑启动、旋转备用、多能联供等场景,维护地区供电稳定,提高电网鲁棒性;三是用户侧微型电站模式,对于高电耗和高排放工业用户,建设微型CES系统,通过峰谷电价增加经济效益;四是能源互联网模式,充分发挥CES系统储能、储热、储冷特性,通过建立分布式能源站将化石能源、可再生能源、电能用户、冷热能用户等多品位能量单元统一管理,实现区域多能互补协同运行,促进新型能源利用体系发展。
5 结论
面对全球能源结构转型压力和大规模清洁物理储能技术应用的紧迫需求,二氧化碳储能(CES)技术是一种具备长时间、稳定、高效储能特性且行业吸引性高的新型清洁物理储能技术。本文介绍了典型CES系统的工作原理和主要性能评价指标,梳理了不同形式CES系统的研究和发展现状,探明了CES技术后期研究和应用面临的重点研究方向、关键技术和发展前景。
总体来说,目前针对二氧化碳储能技术的研究还处于理论设计和初步实验验证阶段。后续还需要进一步完善二氧化碳储能的基础研究,强化理论论证,积累系统整体设计和试验项目运行经验,并进一步明晰系统全局优化方法和动态运行机制,为二氧化碳储能技术的工程示范和产业化推广奠定基础。随着国内外学者的不断研究与创新,二氧化碳储能必将朝着高性能、低成本、规模化、多应用场景的方向发展,从而为未来以可再生能源为主的能源体系和多能源协同互补网络提供重要解决方案。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,4月24日至26日,2025中国·滨州(成都)新动能产业创新暨跨区域合作恳谈会在四川成都举办。在项目集中签约环节,中建三局绿色产业投资有限公司与山东鲁北高新技术开发区管委会就海丰集团主导的“山东无棣300MW/4000MWh新型压缩二氧化碳熔盐储能绿色蒸汽示范项目”进行了签约,正式达
北极星储能网获悉,3月10日,建龙微纳发布投资者关系活动记录表,披露在吸附压缩气储能联合体中的角色以及项目进展。建龙微纳表示,2024年5月,由哈尔滨电气科学技术有限公司牵头,包括建龙微纳在内的十家单位联合组建了“吸附压缩气储能技术创新联合体”,公司将充分发挥在吸附材料大规模成型制备方面
北极星储能网获悉,1月13日,国家能源局发布2025年1号文件,公布《第四批能源领域首台(套)重大技术装备名单》。其中,包含储能领域项目15个,涵盖抽水蓄能、分布式储能、二氧化碳储能系统、压缩空气储能、钠离子电池储能系统、智能组串式构网型储能系统、液态空气储能系统、液流电池、飞轮储能、新型
作为能源存储领域的重要分支,压缩空气储能技术在过去一年中展现出了显著的进步与成就。从技术突破到商业化应用,从政策扶持到市场需求,压缩空气储能领域在多个维度上都取得了令人瞩目的成果。在技术层面,研发人员不断攻克技术难关,提升储能效率,降低生产成本,使得压缩空气储能技术的市场竞争力得
2025年1月8日,中能新合(北京)能源科技有限公司长三角总经理胡洋一行来安徽宿州,就多能互补CO2储能系统项目进行了深入的交流与洽谈。宿州市科技局党组成员、副局长孟斌主持召开座谈,相关业务科室人员参加。会上,中能新合的项目负责人详细介绍了公司基本情况、多能互补CO2储能在储能领域的技术优势
1月8日,中国长江三峡集团有限公司发布基于液冷数据中心的CO2储能系统关键技术研究及样机研发-CO2储能系统设备采购重新招标招标公告,项目采购1套百千瓦级CO2储能系统及其辅助设备,并完成整套系统装备及辅助设备的制造与组装。储能系统的放电容量不低于100kWx0.5h,储能系统的储电时长不超过1h。要求2
北极星储能网获悉,2024年12月31日,安徽芜湖市人民政府印发《芜湖市关于发展新质生产力率先突破行动方案(2024—2027年)》(以下简称《方案》)的通知。《方案》指出,建设新型能源系统。制定新型储能布点规划,多元化发展新型储能技术路线,丰富应用场景类型,提升电力系统调节能力,促进可再生能源
北极星储能网获悉,11月22日,国家能源局综合司发布《关于公示第四批能源领域首台(套)重大技术装备的通知》,拟将77项技术装备列入第四批能源领域首台(套)重大技术装备名单,其中储能领域12个项目入选,涉及到压缩空气储能、二氧化碳储能系统、钠离子电池储能系统、智能组串式构网型储能系统、液态
长春市科学技术局9月30日发布印发《长春市碳达峰碳中和科技创新行动方案》,通过实施能源绿色低碳转型科技支撑行动等11项专项行动,推动高质量如期实现碳达峰。长春市碳达峰碳中和科技创新行动方案一、指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大、二十大精神和习近平总书
近日,中国电建所属河北院签订华电木垒100兆瓦/1000兆瓦时压缩二氧化碳储能电站项目勘察设计合同。该项目位于新疆昌吉回族自治州木垒哈萨克自治县,建设1套压缩二氧化碳储能系统,规划容量100兆瓦,储能时长8小时,发电时长10小时,采用非补燃式压缩二氧化碳储能工艺系统。该项目是沙漠、戈壁、荒漠地
9月20日,四川德阳市生态环境局发布关于公开征求《美丽德阳建设规划(2024-2035年)(公开征求意见稿)》意见建议的公告。在推动能源绿色低碳转型、推进节能降碳增效行动等方面提到推动储能发展的具体措施,具体包括:切实推动能源绿色低碳转型。有序推动清洁能源发展,优化能源生产结构,加大生物质发
北极星储能网讯:4月30日,国家电投2025年度第一批5GWh储能系统中标候选人公示,海博思创、融和元储、新源智储、天合储能、中车株洲所、天诚同创6家企业入围。整体报价为0.422-0.477元/Wh。据悉,此次集采规模共5GWh,其中标段一集中式4GWh,标段二组串式1GWh。其中,集中式储能系统的中标候选人分别为
近日,福建省绿氢中试基地风电制氢技术验证平台公示风电机组(含附属设备、储能系统)设备采购中标候选。公告显示,第一中标候选人为东方风电,其投标报价为6895万元。该项目位于福建省漳州古雷港经济开发区古雷石化基地,由福建省氢能产业发展有限公司投资开发。招标公告显示,招标范围为采购2台总装
凭借丰富的可再生能源资源和日益增长的储能需求,智利正成为全球储能领域新一轮巨头角逐的热土。近日,由阳光电源供应储能系统的智利BESSdelDesierto储能电站完工,智利能源部长迭戈·帕尔多参加了其落成典礼。该项目规模达200MW/800MWh,该项目开发商称其为拉丁美洲首个大型独立储能项目。项目位于244
储能后市场时代正在到来,产业链企业准备好了吗?储能“后市场”时代正在到来。何为储能后市场时代,业界普遍认为,以新能源全面入市的“136号文”为重要节点,以储能运营、运维等为特征的后市场加速到来。从运营角度看,136号文之后,储能项目的收益从依赖“容量租赁费+行政补贴”转向市场化交易,包
近日,天合光能旗下天合储能宣布与美国知名储能系统及能源管理软件领先企业FlexGen达成合作,双方将共同为美国德克萨斯州休斯顿交付一套电网级电池储能系统。项目由独立电力开发商SMTEnergy开发。容量达371MWh,采用天合储能Elementa金刚2储能解决方案,充分体现天合储能以其技术可靠性、产品可融资性
4月29日,我国首个建设在高风速海域的海上光伏项目——三峡集团东山杏陈180兆瓦海上光伏电站项目在福建实现全容量并网。东山海上光伏项目位于福建省漳州市东山县海域,总装机容量180兆瓦。项目所在地太阳能资源丰富,但全年风速都较大,最大风速超过48米/秒,这是我国首个建设在如此高风速海域的海上光
近日,由中国电建集团西北勘测设计研究院牵头总承包建设的三峡能源青豫直流二期100兆瓦光热工程全系统投运发电。项目全系统投运发电标志着我国高海拔地区光热发电规模化应用实现历史性零的突破。据悉,三峡能源青豫直流二期100兆瓦光热发电项目坐落于青海省格尔木市乌图美仁乡,占地面积约287公顷,作
北极星氢能网获悉,4月30日,国家能源集团新疆哈密能源化工有限公司发布哈密能源化工一体化绿电示范工程新能源可行性研究咨询服务公开招标,招标范围涵盖绿氢耦合专篇编制。国家能源集团哈密能源集成创新基地项目是国家规划建设的三大煤制油战略项目之一,是关乎国家能源安全的重大战略项目,拟建于哈
北极星风力发电网讯:4月30日,中船科技股份有限公司发布《关于子公司对外投资的公告》表示,根据公司主营业务发展需要,中船科技子公司拟投资建设日照基地项目、通榆一期项目,总投资金额预计约为54.8889亿元。其中,日照基地项目总投资金额约为30.6098亿元,通榆一期项目总投资金额约为24.2791亿元。
北极星储能网获悉,近日,云南两大共享储能项目EPC开标,总规模350MW/700MWh,平均报价约0.758元/Wh。其中中国能建云南院0.7627元/Wh中标国家能源集团文山市秉烈150MW/300MWh储能电站EPC,中国电建上海院0.7505元/Wh中标深能景洪200MW/400MWh共享储能项目EPC。据悉,国家能源集团文山州秉烈储能项目位
北极星储能网获悉,4月30日,大唐云南公司首个独立共享储能电站在玉溪市新平县全容量并网一次成功。该项目总容量200MW/400MWh,占地面积61.386亩,采用磷酸铁锂电池储能系统,安装80个电池舱、40套升压变流一体机,配套新建一座220千伏升压站,采用架空线路送至220千伏新平变电站,线路长度1.336千米,
民营经济参与能源领域发展建设进入快车道电力规划设计总院能源政策与市场研究院院长凡鹏飞2023年12月召开的中央经济工作会议提出,要促进民营企业发展壮大,在市场准入、要素获取、公平执法、权益保护等方面落实一批举措。民营企业具有发展运营灵活性和创新能力优势,近年来在引领科技创新方向、健全完
2025年4月28日,西班牙与葡萄牙遭遇了欧洲近20年来最严重的全国性停电事故,5000万人陷入黑暗,交通瘫痪、医疗停摆、社会秩序一度混乱。这场持续近20小时的大停电不仅暴露了西班牙能源转型的深层矛盾,也为全球可再生能源发展敲响警钟。一、西班牙电力系统的现状:高比例可再生能源与脆弱性并存西班牙
4月29日,国家电投云南国际陆良县500兆瓦/1000兆瓦时共享储能项目(一期)顺利并网,是曲靖市首个顺利建成并网运行的新型储能项目。该项目顺利投运,助力曲靖市在新型储能项目领域实现从“0”到“1”的跨越,填补了曲靖市“源网荷储”发展模式的空白,为云南省构建新型电力系统奠定坚实基础,有效推动
4月28日,湖南华菱线缆股份有限公司已正式获得由国际权威检测认证机构TV莱茵大中华区(简称“TV莱茵”)颁发的储能系统用线缆TV莱茵2PfG2693型式认证证书。华菱线缆采用了无氧纯铜或镀锡铜作为导体材料以提升导电性和耐腐蚀性,并使用高性能交联聚烯烃作为绝缘护套材料,结合辐照交联工艺来增强耐温性
在能源电力供需格局持续演变的新形势下,电力行业的高质量发展面临诸多挑战。作为我国“西电东送”的主力军,云南省秉持资源经济与能源产业“一盘棋”的战略布局,加速推进能源全产业链建设,为绿色能源强省建设提供支撑。双轮驱动破解“三缺”矛盾记者在云南多地调研时发现,缺电、弃电和调节能力不足
北极星储能网获悉,天眼查APP显示,近日,江门公用储能技术有限公司成立,法定代表人为杨慧,注册资本5000万元,经营范围包含:节能管理服务;风力发电技术服务;太阳能发电技术服务等。企查查股权穿透显示,该公司由越秀资本旗下南网越秀双碳股权投资基金(广州)合伙企业(有限合伙)、江门公用新能
北极星储能网获悉,4月30日,中国能建发布2025年第一季度报告。报告期,公司实现新签合同额、营业收入、归母净利润分别为人民币3,888.96亿元、1,003.71亿元和16.12亿元,同比分别增长5.75%、3.05%、8.83%,均创历史同期新高。公司表示,自主研发的世界首套300兆瓦级压缩空气储能示范项目湖北应城压气储
在全球能源转型的浪潮中,储能技术作为新型电力系统的“核心引擎”,正经历从“规模扩张”到“价值重塑”的关键跨越。尤其伴随数字化和人工智能等新兴产业发展,工商业储能正在迎来新的增长机遇。据新能安评估,中国工商业储能潜在市场空间超500GWh,但开发渗透率却不足3%。如何让储能“保值”,成为全
北极星储能网获悉,4月29日,梅雁吉祥在投资者互动平台上表示,公司持有广东吉洋能源45%的股权。吉洋能源的主要业务包括电力行业高效节能技术研发、储能技术服务、轨道交通专用设备。飞轮储能技术作为一种高效、环保的物理储能方式,在轨道交通领域优势显著,飞轮储能应用被列入《国家发展改革委商务部
近日,南京市宏观经济研究中心公布《2025年度南京市瞪羚企业名单》,林洋储能凭借在新型储能领域的持续创新与高质量发展,荣获南京市“瞪羚企业”称号!作为具有高成长性、高技术含量和高附加值特征的创新型企业群体,瞪羚企业已成为新质生产力的重要代表。2025年全国两会《政府工作报告》中提出“支持
据Eco-Business报道:在两年前的COP28气候大会上,各国签署了到2030年将可再生能源部署增加三倍的承诺,这一宣布受到了极大的欢迎和媒体关注。当时,在东南亚国家中,只有印度尼西亚和越南没有做出这一承诺,而菲律宾、泰国、马来西亚和新加坡则支持了这一协议。然而,该地区总体上并没有以科学家们所
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!