登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
新会电厂为燃气—蒸汽联合循环机组,燃气轮机和蒸汽轮机分别各自拖动一台发电机,联合循环功率450MW(ECR)。燃气轮机由美国通用电气(GE)提供,PG9371FB型多级轴流式,燃用天然气,燃机功率314MW,燃机排气温度640℃,IGV开度88°~21.5°连续可调。蒸汽轮机由哈尔滨汽轮机厂(HTC)制造,N150/C120-11.00/3.30/0.43/1.40 型,抽凝式汽轮机,额定功率151.29MW(纯凝),120.82MW(抽汽)。余热锅炉(HeatRecoverySteamGenerator—HRSG)由东方菱日(MHDB)生产,MHDB-PG9371-Q1型,自然循环余热锅炉,烟囱高度80m。燃气轮机控制装置随机配套,GE公司的MARK-Ⅵe。余热锅炉、汽轮机和电厂主要辅机的DCS选用艾默生的OVATION。
燃气—蒸汽联合循环机组产生的电量全部源于燃气轮机的热能,燃气轮机的热能由天然气在其燃烧室内燃烧产生,总体热能差不多三分之二经燃气发电机转换成电量,还有大约三分之一热能存在于燃机的排气中,燃机排气流经余热锅炉生成过热蒸汽驱动汽轮发电机转换成电量。按照燃机的启动顺序,燃机点火升速到3000rpm,同期并网后,须控制燃机排气温度调节余热锅炉蒸汽温度与汽机HIP缸温相匹配(即燃气/蒸汽温度匹配, Temperature Matching ON,简称“温匹”),实现燃机排气、余热锅炉蒸汽、汽机金属壁温等主设备热力参数的协调。当蒸汽品质及相关工艺参数符合汽轮机冲转要求后,汽轮机暖机冲转、同期并网、带目标负荷,待DEH转入“压力控制”模式,温匹退出。
所谓的燃气/蒸汽温度匹配,就是通过调节燃机压气机进口导叶(INLET GUIDE VANE—IGV) 开度或者燃料量将燃机排气温度控制在某一设定值,确保余热锅炉的主蒸汽温度高于汽轮机HIP汽缸壁温,并为汽缸通流后缸壁温度适配和机组升负荷提供条件。温度匹配调节回路在机炉OVATION(DCS)和燃机MARK-Ⅵe(DCS)上都设有手动/自动投切按钮,而温度设定值和温度变化率均由OVATION(DCS)给定,当机组冷态启动时,燃气轮机排气温度相对缸温较高,需要开大 IGV的角度,增加稳定输出功率时的空气流量,降低排气温度来应对较低的汽机金属温度。当机组热态启动时,燃气轮机排气温度相对缸温较低,此时 IGV又处于最小开度,需要增加燃料量来提高燃机排气温度。
整体看燃气/蒸汽温匹调节可以认为是一个PID串级调节回路,PID主调节器(简称主调)设计在OVATION上,副调节器组态(简称副调)在MARK-Ⅵe中,OVATION主调输出的温匹给定信号通过硬接线送至MARK-Ⅵe副调的输入端(STPT)。HRSG高压过热器入口烟温是温匹主调的过程测量值(PV),温匹主调的给定值(STPT)由一个随动定值系统产生。
当燃气—蒸汽联合循环机组启、停受控于APS(Automatic Procedure Start-up/ Shut-down—自动程序启、停系统)时,温匹调节必然被纳入APS管控。新会电厂APS对标具有DIA(Digital Intelligent Automation—数字式智能自动化)理念的国际规范进行设计和组态,新会电厂APS机组启、停规划为8个阶段,机组启动4个阶段:1)节点BP01—辅机启动;2)节点BP02—燃机启动;3)节点BP03—汽机冲转;4)节点BP04—机组升负荷。机组停止4个阶段:1)节点BP51—机组降负荷;2)节点BP52—停机熄火;3)节点BP53—真空破坏;4)节点BP54—闷炉。
APS启机节点BP02“燃机启动”步序逻辑的第6步发出“投入温匹”指令,温匹投入“自动调节”。燃机投入温匹的必要条件为“燃机已带负荷30MW”,指令从OVATION发出至燃机的MARK-Ⅵe,MARK-Ⅵe此时须切换在“外部负荷”控制方式。
APS启机节点BP04“机组升负荷”步序逻辑的第8步发出“退出温匹”指令,待 IGV开度≤41.8,两分钟内开度变化率<0.05度,汽机有功功率>30MW,目标负荷设定≥50MW,汽机高压主调阀、中压A、B主调阀皆在全开位置,汽机主汽压力升至2MPa,DEH切至“压力控制方式”,温匹自动退出。
APS控制下的模拟量调节必定要按照APS节点“一键启停”的要求进行设计,工作方式能“自动地投自动”和全工况定值随动是最基本的控制策略。
图1 燃气—蒸汽联合循环机组燃气/蒸汽温度匹配调节原理图
燃机排气温度调节设计有 “三态式”智能切换功能。参阅图1,条件“热工设备可用”和“工艺系统启动”得到满足,三态式智能切换器将调节回路“自动地投自动”。若“热工设备可用”而“工艺系统启动”条件不满足,调节回路切至自动伺服(Stand—By)”。按下调节回路M/A站“自动”键,但“热工设备可用”条件不满足,调节回路被锁定在“手动”,这表明热工装置异常,消除故障后才能再次投入。
燃机排气温度调节全工况定值随动给定在满足条件:APS已投入(APS IN)且人工按下“温匹定值自动/手动”键在“自动”,则触发器RS1=“1”、切换器T1=“1”,调节器定值工作方式切换为自动给定,给定信号从切换器T1的YES端输入。如果APS没有投入,调节器给定只能采用手动方式。APS已投入,为灵活适应机组运行工况,也可置“温匹定值自动/手动”键在“手动”,触发器RS1输出=0,调节器STPT改由人工给定。
调节器自动给定工作方式下,根据机组启动冷、温、热状态,分别设定不同的给定值。需要说明,下文中出现的温度参数,有厂家给出的工艺要求,作为机组运行的安全保障,也有依据新会电厂机组多年运行经验总结出来的优化参数,选为随动给定的补偿值,经过拟人化的逻辑组态用于提升机组运行的安全性能和经济效益。
切换器T2识别到汽机冷态启动,开通YES端,接收切换器T3发来的给定值。切换器T3的开关信号由以下逻辑生成:高压过热器入口烟温减去汽机高中压下半缸内缸金属壁温,差值<75℃,时间超过3秒,发出2秒脉冲,触发器RS2输出=“1”(燃机未退出温匹),T3切换器接通YES端,YES端给定值为高压过热器入口烟温度加80℃,与限定值500℃进行小值比较,低者为冷态给定值。若高压过热器入口烟温减去汽机高中压内缸下半缸金属壁温,差值≮75℃(触发器T3输入端S=“0”),切换器T3接通NO端输入,切换器T3输出给定值371℃。
汽机不在冷态(汽机冷态=“0”,接通切换器T2输入NO端)即温态或热态启动,调节器给定值以汽机高中压下半缸内缸金属壁温V1(实时变量)为基准值,如果高压过热器入口烟温与汽机高中压下半缸内缸金属壁温差值<50℃,则在基准值V1自动增加5℃(维持足够高的燃机排气温度)形成加法器的输出V2。
温匹投入(触发器T3输入端R=“0”,非温匹自动升温状态;APS启机“机组升负荷”节点BP02步序逻辑第6步“燃机投温匹”指令至触发器T3输入端S=“1”),触发器RS3输出=“1”,V3等于切换器T4锁定V2的当前值,V3与温态或热态的补偿值相加得到V4,就是调节器的随动给定值,根据机组长期运行经验,温态随动定值V4=V3+80℃,热态随动定值V4=V3+100℃。
APS启机节点BP04“机组升负荷”步序逻辑第2步指令,温匹自动升温=“1”,退出温匹,切换器T4释放对V2的锁定,给定值V3=V2,随V1变化。
温度匹配调节回路的参数全部采用工程单位。不过, M/A站之前的温标为摄氏度,其后经过摄氏/华氏温标转换为华氏度输出到燃机的MARK-Ⅵe温度匹配程序入口作为STPT值,当MARK-Ⅵe温度匹配程序检测到燃机排气温度与OVATION发来的“温匹调节给定值”(TemperatureMatching Setpoint)相差<5.6F°时,燃气/蒸汽温度匹配程序即告完成。
相关阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在科技快速发展的时代,我国火力发电厂的热工控制处在怎样的一个水平?也许有人认为,当前,国内火力发电厂DCS应用已经普及,DCS是现代先进的热控装置,热工控制水平当然处在国际先进行列。真的是这样吗?读史明智,鉴往知来。我们都知道,DCS是以计算机技术为本底平台的,计算机的使用功能是由硬件和
由北极星学社主办的线上培训班《火电厂热工控制APS从入门到精通》正式开课!我国上千台火电机组(燃煤机组和燃气/蒸汽联合循环机组)全部应用了DCS,硬件上已经进入到“数字化”时代,但“人工智能”属性的应用软件仍然是一个巨大的技术洼地。在国内火电机组上全面推广应用APS,会极大地提升火电机组的
电厂数字化智能自动控制(DIA)与APS王立地一、前言火电厂热工控制,按照规模和功能可划分为四个级别。设备操作级(Drive-D,直译驱动级)设备操作级直接控制对应设备,开关量的如阀门、挡板、风机与泵等,连续调节的如调节阀、调速泵、变频器等。单元控制级(Subgroup-SG,有的直译为子组)单元控制级
概述:APS(AutomaticProcedureStart-up/Shut-down)是火力发电厂一种热工自动控制功能,专注于机组的程序启动和停止。一台600MW等级的燃煤机组APS大约管控设备500多台套,一台450MW的燃气-蒸汽联合循环机组APS大约管控设备200多台套。满足DIA(DigitalIntelligentAutomation—数字式智能自动化)标准
据外媒报道,美国可再生能源开发商StrataCleanEnergy公司和公用事业厂商亚利桑那公共服务公司(APS)公司日前为计划部署的一个255MW/1GWh电池储能系统达成了一项为期20年的电力采购协议。这两家公司在5月24日签署了该协议,Strata公司将建造、拥有和运营这个电池储能项目,但在运营期间专门向APS公司提供
有人说:我国自二十世纪九十年代发电厂引进应用DCS(DistributedControlSystem—计算机集散控制系统),多年来经过了学习入门、全面掌握,再到进一步提升整体机组热工自动化水平的历程,由此APS应运而生。这种论点对不对呢?本文就APS的前生今世、来龙去脉做一介绍,解惑APS从何而来,答疑现状如何,以
新会电厂燃气—蒸汽联合循环机组APS(APS-AutomaticProcedureStart-up/Shut-down—自动程序启停)逻辑构建采用纵横框架结构。APS导引层启机横向4个节点,BP01—辅机启动;BP02—燃机启动;BP03—汽机冲转;BP04—机组升负荷,APS导引层停机横向4个节点,BP051—机组降负荷;BP052—停机熄火;BP053—
“复合变量”的热工系统实现顺序控制“一键启停”,有较高的技术难度,所谓的复合变量指的是在一个热工控制系统中,既有开关量又有模拟量。开关量和模拟量是两种特性完全不同的过程参量,单纯的开关量控制一般的都是采用条件逻辑,或者是条件逻辑加时序控制。模拟量调节通常采用PID算法,在电厂的热工
新会电厂燃气—蒸汽联合循环机组的循环水系统主要是为凝汽器、水水交换器、真空泵冷却器等提供冷却水。循环水来自循环水前池,经过循环水泵升压后,送至的凝汽器、水水交换器等用户,经换热后的循环水回到机力冷却塔进行冷却,再回到循环水前池。循环水系统采用机力风冷,每套系统按一机二泵配置双速卧
新会燃气-蒸汽联合循环机组设计有闭冷水系统,闭冷水系统配置3台闭冷水泵,一个膨胀水箱,膨胀水箱有除盐水和凝结水两路补水,正常运行时由除盐水补水至膨胀水箱。闭冷水系统设置两组水水交换器,正常运行时一运一备,水水交换器冷却用水为循环水。闭冷水用户:1)燃机系统用户(7个):燃机发电机氢冷
新会电厂燃气—蒸汽联合循环机组APS(APS-AutomaticProcedureStart-up/Shut-down—自动程序启停)逻辑构建采用纵横框架结构。APS导引层启机横向4个节点,BP01—辅机启动;BP02—燃机启动;BP03—汽机冲转;BP04—机组升负荷,APS导引层停机横向4个节点,BP051—机组降负荷;BP052—停机熄火;BP053—
“复合变量”的热工系统实现顺序控制“一键启停”,有较高的技术难度,所谓的复合变量指的是在一个热工控制系统中,既有开关量又有模拟量。开关量和模拟量是两种特性完全不同的过程参量,单纯的开关量控制一般的都是采用条件逻辑,或者是条件逻辑加时序控制。模拟量调节通常采用PID算法,在电厂的热工
新会电厂燃气—蒸汽联合循环机组的循环水系统主要是为凝汽器、水水交换器、真空泵冷却器等提供冷却水。循环水来自循环水前池,经过循环水泵升压后,送至的凝汽器、水水交换器等用户,经换热后的循环水回到机力冷却塔进行冷却,再回到循环水前池。循环水系统采用机力风冷,每套系统按一机二泵配置双速卧
新会燃气-蒸汽联合循环机组设计有闭冷水系统,闭冷水系统配置3台闭冷水泵,一个膨胀水箱,膨胀水箱有除盐水和凝结水两路补水,正常运行时由除盐水补水至膨胀水箱。闭冷水系统设置两组水水交换器,正常运行时一运一备,水水交换器冷却用水为循环水。闭冷水用户:1)燃机系统用户(7个):燃机发电机氢冷
凝结水系统的作用是利用凝结水泵将凝结水从凝汽器热井抽出,经轴封加热器加热后,送至余热锅炉低压汽包(除氧器),维持系统的汽水循环。凝结水系统配置一台双程表面式凝汽器、两台100%容量的立式外筒型多级离心式凝结水泵、一台轴封加热器以及相关的管道、阀门、仪表等。凝结水系统的用户有:(1)余
热工系统级的“一键启停”是APS的核心和中坚,也是使用APS功能过程中利用率最高的控制功能。从热工控制角度讲,机炉热工系统控制的对象可以认为是复合变量(模拟量+开关量+冗余设备联锁)。比如,燃气-蒸汽联合循环机组的汽机真空系统有启、停两套顺序控制、两个模拟量调节回路和两套开关量自动联锁
燃气轮机由压气机、燃烧室和透平组成,燃气—蒸汽联合循环机组动力来自天然气在燃气轮机燃烧室中燃烧产生的热能,根据能量平衡原理,燃气轮机的热能高低决定了燃气—蒸汽联合循环机组发电功率的大小,既包括燃气轮机发电机也包括汽轮机发电机。与燃煤机组的汽轮机不同,燃气—蒸汽联合循环机组中的汽轮
新会电厂的燃气—蒸汽联合循环机组包括两种发电机组,燃气轮机发电机组和蒸汽轮机发电机组,燃气轮机同轴拖动一台发电机,独立运行,汽轮发电机组也是独立运行。燃气轮机由压气机、燃烧室和透平组成。燃气—蒸汽联合循环机组工作过程大致为,空气被吸入压气机经压缩后与天然气混合并在燃烧室内燃烧转变
新会电厂燃气—蒸汽联合循环机组APS(APS-AutomaticProcedureStart-up/Shut-down—自动程序启停)导引层总体规划设计,对标国际设计规范。APS功能由四层逻辑构建而成,导引层位居APS的顶层,作为APS的决策和操作中枢,主要设计有APS操作器、节点控制器和节点步序等三部分控制逻辑。APS操作器确定APS的
欲设计出一套实用的APS(APS-AutomaticProcedureStart-up/Shut-down)控制系统,必先做好APS规划,APS规划之前需详细知晓机组的设备技术规范,充分掌握机组的启、停操作和运行特点。当然了,DCS(DistributedControlSystem)是热工专业人员必须精通的。APS规划的主要工作,一是确定设备的管辖范围,二
在科技快速发展的时代,我国火力发电厂的热工控制处在怎样的一个水平?也许有人认为,当前,国内火力发电厂DCS应用已经普及,DCS是现代先进的热控装置,热工控制水平当然处在国际先进行列。真的是这样吗?读史明智,鉴往知来。我们都知道,DCS是以计算机技术为本底平台的,计算机的使用功能是由硬件和
由北极星学社主办的线上培训班《火电厂热工控制APS从入门到精通》正式开课!我国上千台火电机组(燃煤机组和燃气/蒸汽联合循环机组)全部应用了DCS,硬件上已经进入到“数字化”时代,但“人工智能”属性的应用软件仍然是一个巨大的技术洼地。在国内火电机组上全面推广应用APS,会极大地提升火电机组的
概述:APS(AutomaticProcedureStart-up/Shut-down)是火力发电厂一种热工自动控制功能,专注于机组的程序启动和停止。一台600MW等级的燃煤机组APS大约管控设备500多台套,一台450MW的燃气-蒸汽联合循环机组APS大约管控设备200多台套。满足DIA(DigitalIntelligentAutomation—数字式智能自动化)标准
有人说:我国自二十世纪九十年代发电厂引进应用DCS(DistributedControlSystem—计算机集散控制系统),多年来经过了学习入门、全面掌握,再到进一步提升整体机组热工自动化水平的历程,由此APS应运而生。这种论点对不对呢?本文就APS的前生今世、来龙去脉做一介绍,解惑APS从何而来,答疑现状如何,以
新会电厂燃气—蒸汽联合循环机组APS(APS-AutomaticProcedureStart-up/Shut-down—自动程序启停)逻辑构建采用纵横框架结构。APS导引层启机横向4个节点,BP01—辅机启动;BP02—燃机启动;BP03—汽机冲转;BP04—机组升负荷,APS导引层停机横向4个节点,BP051—机组降负荷;BP052—停机熄火;BP053—
“复合变量”的热工系统实现顺序控制“一键启停”,有较高的技术难度,所谓的复合变量指的是在一个热工控制系统中,既有开关量又有模拟量。开关量和模拟量是两种特性完全不同的过程参量,单纯的开关量控制一般的都是采用条件逻辑,或者是条件逻辑加时序控制。模拟量调节通常采用PID算法,在电厂的热工
新会电厂燃气—蒸汽联合循环机组的循环水系统主要是为凝汽器、水水交换器、真空泵冷却器等提供冷却水。循环水来自循环水前池,经过循环水泵升压后,送至的凝汽器、水水交换器等用户,经换热后的循环水回到机力冷却塔进行冷却,再回到循环水前池。循环水系统采用机力风冷,每套系统按一机二泵配置双速卧
新会燃气-蒸汽联合循环机组设计有闭冷水系统,闭冷水系统配置3台闭冷水泵,一个膨胀水箱,膨胀水箱有除盐水和凝结水两路补水,正常运行时由除盐水补水至膨胀水箱。闭冷水系统设置两组水水交换器,正常运行时一运一备,水水交换器冷却用水为循环水。闭冷水用户:1)燃机系统用户(7个):燃机发电机氢冷
凝结水系统的作用是利用凝结水泵将凝结水从凝汽器热井抽出,经轴封加热器加热后,送至余热锅炉低压汽包(除氧器),维持系统的汽水循环。凝结水系统配置一台双程表面式凝汽器、两台100%容量的立式外筒型多级离心式凝结水泵、一台轴封加热器以及相关的管道、阀门、仪表等。凝结水系统的用户有:(1)余
热工系统级的“一键启停”是APS的核心和中坚,也是使用APS功能过程中利用率最高的控制功能。从热工控制角度讲,机炉热工系统控制的对象可以认为是复合变量(模拟量+开关量+冗余设备联锁)。比如,燃气-蒸汽联合循环机组的汽机真空系统有启、停两套顺序控制、两个模拟量调节回路和两套开关量自动联锁
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!