登录注册
请使用微信扫一扫
关注公众号完成登录
2 先进绿色制氢关键技术研究进展
2.1 电解水制氢技术
现阶段,常用的电解水制氢技术包括碱性电解水制氢、质子交换膜电解水制氢及固体氧化物电解水制氢三大类。
2.1.1 碱性电解水制氢
碱性电解水(AWE)制氢装置由电解槽与辅助系统构成,以KOH为电解液、多孔膜为隔膜,在直流电的刺激下将H2O分解为H2和O2。碱性电解水制氢的优点是不需要贵金属作为催化剂,成本相对较低,装备技术成熟,产品耐久性好,服役寿命可达30年。缺点在于所需的隔膜较厚,电阻较大,制氢的工作电流低,设备体积大等。此外,由于多孔膜透气性强,需有效保证电解槽两侧的压力平衡。更重要的是,碱性电解液会与空气中的CO2反应,形成难容性的碳酸盐(如K2CO3、Na2CO3等)。
2.1.2 质子交换膜电解水制氢
质子交换膜(PEM)电解水制氢采用的质子交换膜很薄、电阻较小,可在高效率前提下承受较大的电流,因此设备体积和占地面积都远小于碱性电解水设备。同时由于PEM电解水采用不透气的膜,可承受更大的压力,无需两侧严格的压力控制,可做到快速启停,功率调节的幅度和响应速度也远高于碱性电解水。当前国外PEM制氢技术已较为成熟,进入市场化应用早期。普顿、西门子、ITM Power等代表性企业已相继分布了兆瓦级PEN电解水系统产品,大力推动了其规模化应用。中国PEM制氢产业发展相对滞后,虽部分企业已形成具有较高自主化程度的制氢样机,但还存在质子交换膜等关键材料的“卡脖子”问题。后续应加大力度攻关低成本催化剂和气体扩散层等关键技术,提升关键设备的效率与寿命。
2.1.3 固体氧化物电解水制氢
固体氧化物(SOEC)电解水制氢是一种高温电解水技术,操作温度为700~1000℃,其结构由多孔的氢电极、氧电极和一层致密的固体电解质组成。由于其工作温度高,能够大大增加反应的动力,同时可大幅降低电能消耗。在某些特定场合,如高温气冷堆、太阳能集热等,SOEC电解水制氢技术有较大的发挥空间。SOEC电解水制氢技术在电耗等方面具有不小优势,但仍存在使用温度高、投入大、启停慢、循环寿命低等技术壁垒,尚处于室内验证阶段,未实现市场化推广。目前除固体氧化物电解水外,AWE和PEM制氢都已获得规模化应用。
2.2 太阳能分解水制氢技术
目前,已存在的太阳能分解水制氢涵盖光催化法制氢、光电化学法制氢及固光热分解法制氢三大类。
2.2.1 光催化法制氢
光催化制氢的原理是利用光催化剂的吸光特性,实现光解水反应。光催化剂在光照的作用下可产生一定数量的光生电子和空穴,可将吸附在催化剂表面的H2O分子还原为H2(图2)。光导体材料应具备的特殊性能应涵盖:①太阳光响应范围广;②电子和空穴分离效率高;③合适的表面反应活性位;④耐久性强等。光催化制氢具有光催化材料易得、制氢系统简便、成本低等优势,具有广阔的应用前景。但光催化剂现阶段还处于示范研发阶段,普遍存在制氢效率低、光激电子-空穴对易复合等难题,与商业化应用仍有较大距离。
2.2.2 光电化学法制氢
光电化学(PEC)制氢在分解水过程中,可产生大量的载流子,可实现强光条件下和强电解质中的长期耐久性。迄今为止,已研发的PEC制氢光电极材料包括:GaAs、InGaN、MoS2及金属硒化物等。MoS2因具备经济、合成流程简易及良好的光电效应等特性,制氢效果最好。经大量实践证明,经改性后的MoS2材料制氢性能更优,通过引入高性能碳材料,能够大幅增加MoS2表面的活性位点,同时显著改善其电学性能。
2.2.3 光热分解法制氢
早在1971年,Ford等便率先报道了直接光热分解制氢工艺,其主要原理为:在光照下使系统温度达到2000K以上,一步到位直接获取H2和O2,最后再利用分离装置获取纯氢。因此,光热分解制氢(TWSC)的核心在于良好的抗温材料和有效的气体分离设施。为显著改善TWSC制氢的功效和纯度,研究人员提出了上百种太阳能热化学制氢方法,包括HyS、Cu-Cl及S-I等TWSC制氢技术。而Cu-Cl制氢因其产氢纯度高、污染小、节约等优势,已成为当下TWSC制氢的主流。Pal等于21世纪初建立了Cu-Cl制氢模型,并成功应用于全年光照充足的Algeria地区,现场结果显示,该模型的太阳能利用效率高达93%,年制氢量突破82 t/a。
2.3 生物质制氢技术
目前,生物质制氢技术主要包括热化学法和生物法两大类。
2.3.1 热化学法制氢
当下主流的热化学制氢技术有生物质催化气化、生物质重整及生物质热解制氢等,其工艺流程如图3所示。生物质催化气化制氢的研究重点是提高产物中的H2纯度,由于气化过程中还产生H2S、HCl、碱金属等微量杂质,反应器中需加入吸附剂加以处理。生物油重整制氢最早由美国NREL于1997年报道,其通过生物质热裂解获得生物油,再结合水蒸气重整进而实现制氢。经过多年的创新和发展,已成为一项举足轻重的制氢技术。与前者相比,生物质热解制氢发展至今,技术成熟度已相对成熟,当前全世界已有多套商业化运作的生物质热解装置。与其他制氢技术相比,热化学制氢优势显著,但也存在一定的技术瓶颈,如热化学制氢成本高,混合产物中氢含量低,含有大量的CO、H2S及焦油等杂质。这些杂质均会对燃料电池产生一定的损害,因此混合产物适合作为燃料或工业原料,不适合于燃料电池等高纯氢应用场景。
2.3.2 生物法制氢
生物法制氢体系包括暗厌氧菌发酵、光合生物及其耦合制氢等。暗厌氧菌发酵制氢是通过厌氧细菌在氢化酶的作用下实现有机物分解从而获取H2,此过程可实现无光能产氢。光合生物制氢则是以光能为反应条件,利于微藻等光合微生物分解水产氢。该技术制氢利用的能源既有生物能也有光能,因此光发酵制氢效率一般高于暗发酵。光合-发酵耦合技术可兼具暗发酵与光合生物制氢的优势,不仅能够在一定程度上减少光能需求,同时可大幅增加H2的产量,是生物法制氢的主要发展方向。
2.4 核能制氢技术
核能到氢能的转化有多种途径,可以利用核能发电进行电解水制氢,也可利用核反应堆产生的热来制氢。核能发电制氢与普通电解水制氢技术相同,而利用核反应堆发热制氢是未来应用前景广阔的制氢技术,其制氢原理见图4。甲烷蒸汽重整(SMR)是工业上主要的制氢方法,利用核反应堆产生的热作为蒸汽重整的热源时,可显著降低过程所需甲烷气量和成本。但该技术仍属于化石能源制氢,会产生大量的温室气体,不利于推动碳中和进程。高温电解制氢是以核反应堆产生的高温蒸汽为原料,电耗可降至2.8kWh/m3,远低于传统制氢,但目前仍面临技术不够成熟和高成本等壁垒。而热化学循环分解水制氢则是利用核反应的产热直接制氢,由于反应需在2500℃以上的高温下进行,难以实际应用,如何利用热循环将反应温度控制在适合的范围内是未来该领域的主攻方向。
2.5 海水制氢技术
由于海水的成分复杂且缺乏行之有效的催化剂,直接电解海水会导致制取H2时副反应竞争、催化剂失活、隔膜堵塞等问题。基于此,诸多专家和学者提出了不同的间接海水制氢技术。有研究者采用固体氧化物电解技术对海水进行电解,将海水首先转化为高温水蒸气再电解,大部分海水中的杂质不会接触到电解装置,因此电解效率相对较好,但由于固体氧化物电解技术发展滞后,且经济性差,在全球范围内的活跃度相对较低。海水淡化-电解制氢是现今海水制氢技术的主流,其先通过处理技术将海水进行淡化,在结合成熟的淡水制氢技术来制取H2。从多方面考虑,海水淡化制氢都具备明显优势,但由于受相关技术条件的限制,该技术尚处于实验室阶段,与实际应用还有很长的距离。
3 评价与对策
3.1 不同绿色制氢技术特点对比
近年来世界各国对电解水制氢、生物质制氢及核能制氢等工艺进行了大量研究,绿色制氢方法正朝着多样化方向发展,各种新型制氢技术蔚然成风,在推动全球氢能资源的利用中扮演着重要的角色,不同绿色制氢技术在适用条件、应用效果及成本投入等方面不尽相同,其各自工艺特点如表1所示。
3.2 绿色制氢产业化面临的挑战
新型绿色制氢技术虽在诸多方面都体现出一定的优势,但由于相关技术条件的局限性,在应用过程中势必会有不少实际问题存在。(1)首先是制氢装备及技术方面,国内虽已有相关企业开展相应的技术研发,但均处于小批量试制阶段,尚未形成成熟的制氢工艺生产线,相关核心技术成熟度低,系统设备国产化程度不高。(2)其次是经济性方面,高投入成本仍是限制部分绿色制氢技术发展的最大因素,加之多数制氢工艺需添加后续的氢提纯技术,以获取高纯度H2,如何有效降低制氢成本是未来制氢领域的主要发展方向。(3)最后是标准体系方面,当前中国制氢产业单一、分散,关键技术指标多有缺少,强制性国家标准较少,已难以适应制氢产业标准化的需求。
3.3 推动制氢产业有序发展的策略
加强对制氢核心技术的研发力度,最优化提升制氢技术效率的同时,有效改善光催化剂、反应器等关键材料的耐久性,进而实现H2产量的最大化。聚焦低成本催化剂、气体扩散层等关键技术的提升,提高制氢装置效率和寿命的同时,加快实现低成本化制氢、产氢及提纯,最大化实现降本增效。打破传统制氢标准化工作模式,建立系统完整的制氢工艺产业链,尽快弥补制氢标准化工作与技术发展间的短板,缩小与美日等国成熟标准体系的差距。
4 展望
新型绿色制氢虽然在众多方面都具备显著的优势,但由于受能耗、成本等方面的限制,部分技术尚未在实际生产中得以应用,要想真正实现绿色低碳制氢并非易事。建议从不同角度出发,多管齐下,共同推动我国绿色制氢产业的有序发展。其一:增强国际合作,结合我国绿色制氢产业现状,积极开展适合本国国情的变革性制氢技术的研发。其二:深度学科交叉,集成反应动力学、热力学、气体分离及材料耐久性等多门学科,赋予制氢工艺目标性和高效性。其三:理论实践并举,加强先进制氢技术的实用性评价和经济可行性分析,室内验证、市场实践两手抓,为推动中国绿色制氢工艺规模化应用提供有力支撑。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,3月11日发布公告,披露了关于收购资产暨关联交易的进展情况。公告显示,卧龙资源集团股份有限公司同意拟以人民币72,603万元现金购买卧龙电气驱动集团股份有限公司(以下简称“卧龙电驱”)持有的浙江龙能电力科技股份有限公司(以下简称“龙能电力”)43.21%股权、浙江卧龙储能系统有限
3月3日,陕西氢能产业发展有限公司电解水制氢技术示范关键设备采购项目中标结果公示,本次招标共分五个标段,一标段中标人为西安隆基氢能科技有限公司,中标价格495.0000万元;二标段中标人为江苏天合元氢科技有限公司,中标价格473.5600万元;三标段中标人陕西华秦新能源科技有限贵任公司,中标价格50
近日,福建省发改委核准批复了绿氢中试基地风电制氢技术验证平台项目。根据《福建省发展和改革委员会关于福建省绿氢中试基地风电制氢技术验证平台项目核准的批复》,该项目位于位于古雷港经济开发区,建设规模20兆瓦,拟安装2台10兆瓦风力发电机组,风机所发电力经1回35千伏集电线路接入35千伏开关站,
北极星氢能网获悉,近日,哈尔滨工业大学深圳校区前沿学部理学院副教授陶有堃课题组在质子交换膜水电解制氢(PEMWE)阳极电催化领域取得重要研究进展,研究成果以《通过引入钨-氧桥联解决铱镍氧电催化剂重构的活性-稳定性难题》(Tacklingactivity-stabilityparadoxofreconstructedNiIrOxelectrocataly
2024年12月31日,陕西兴燃科技有限公司完成近亿元战略融资,本次融资由陕西盈峰势乘绿色能源产业投资基金领投,西安天泓高端装备基金、西咸金控原泉基金等跟投。据悉,兴燃科技创立于2019年4月,专注于研发、生产、销售PEM电解水制氢设备,并与南京大学、华北电力大学合作,从基础材料、核心零部件到电
近年来,以风电、光伏为代表的新能源在我国电力系统中的占比不断提高,由于风光电的波动性、间歇性、随机性特点,将进一步加大消纳难度,同时也给电网带来了较大的输送压力和安全性挑战。氢能作为长周期储能的有效介质,在消纳过剩的新能源电力上展现出了巨大的潜力,离网制氢可降低风光发电对电网冲击
8月9日,中国(绵阳)科技城工业技术研究院举行线上发布会,推出了由中国工程物理研究院应用电子学研究研发的“微波煤制氢技术”。随着全球气候问题日益严峻,氢能作为清洁、高效、可再生的新型能源,正受到越来越多的关注。我国《氢能产业发展中长期规划(2021—2035年)》的发布,标志着氢能发展正式
北极星氢能网获悉,5月29日,国务院印发《2024—2025年节能降碳行动方案》。《方案》提出,有序建设大型水电基地,积极安全有序发展核电,因地制宜发展生物质能,统筹推进氢能发展。到2025年底,全国非化石能源发电量占比达到39%左右。加强氢冶金等低碳冶炼技术示范应用。推进石化化工工艺流程再造。加
业内人士认为,成本控制是电解水制氢产业能否快速发展的关键。近年来,随着可再生能源成本的下降和氢能应用需求的增加,电解水制氢行业快速发展。在业内人士看来,尽管电解水制氢产业发展前景乐观,但成本控制仍是其能否快速发展的关键。或成主流中国华能集团清洁能源技术研究院氢能部主任王金意指出,
北京时间4月24日晚,国际顶级学术期刊《自然》(Nature)杂志在线发表南开大学电子信息与光学工程学院罗景山教授课题组与英国剑桥大学、瑞士洛桑联邦理工学院团队在光电催化水分解制氢领域取得的联合研究进展。该研究题为“Highcarriermobilityalongthe[111]orientationinCu2Ophotoelectrodes”。团队基
北极星氢能网获悉,三峰环境3月25日在回复投资者提问时表示,垃圾制氢技术和工艺是制备氢能这种绿色能源的一种具有潜力的清洁方式和途径,目前垃圾制氢技术距离大规模实用化生产还有一定的距离。公司暂无进军氢能领域及开展氢能业务的明确计划。
作为智慧能源解决方案领域的先行者,天合光能已率先从光伏产品制造商向光储智慧能源解决方案提供商转型。秉持“以客户为中心,以场景为导向”的理念,通过深度挖掘分布式能源、集中式电站及新场景需求,构建覆盖光储及场景融合、智能微网、虚拟电厂、零碳园区、绿色算力、绿电制氢氨醇等多元场景的解决
据中国石油网消息,截至3月10日,独山子石化绿色低碳示范工程项目——塔里木120万吨/年乙烯项目二期的全厂地上管网完成率88%,混凝土浇筑完成率71%。这个项目利用副产氢气生产合成氨,对推动工业领域氢能应用具有良好的示范作用。近年来,独山子石化公司加快推进加氢裂化、加氢精制等环节利用清洁低碳
2月26日,中冶京诚与新疆恒泰绿能金属铸造有限公司举行《太阳能光伏发电制氢气在氢基竖炉加工金属球团(120万吨/年)绿色高纯精密铸件项目》签约仪式。中冶京诚党委副书记、冶金公司党委书记、总经理李铁,新疆恒泰董事长李闽峰出席签约仪式。仪式上,阿克陶县相关部门及领导表示对双方的合作高度关注
3月6日,君正集团发布关于签署《阿拉善风光制氢及绿色能源一体化项目战略合作框架协议》的公告。项目分两期实施,一期预计投资24.8亿元,二期预计投资168.8亿元,预计总投资约193.6亿元。项目建设主要内容及规模包括403万千瓦风光发电项目,15亿Nm/a电解水制氢装置、30万吨/年绿色甲醇和60万吨/年绿色
3月7日,内蒙古君正能源化工集团股份有限公司(以下简称“君正集团”或“公司”)发布《关于签署〈阿拉善风光制氢及绿色能源一体化项目战略合作框架协议〉的公告》。公告披露,2025年3月6日,君正集团与阿拉善盟行政公署签署了《阿拉善风光制氢及绿色能源一体化项目战略合作框架协议》。根据协议,为进
北极星氢能网获悉,2025年3月6日,内蒙古君正能源化工集团股份有限公司与阿拉善盟行政公署签署了《阿拉善风光制氢及绿色能源一体化项目战略合作框架协议》。该项目将分两期实施,一期预计投资24.8亿元,二期预计投资168.8亿元,预计总投资约193.6亿元。项目拟建设403万千瓦风光发电项目,包括新建设15
近日,辽宁华电铁岭发电有限公司工程调兵山制氢耦合绿色甲醇项目氢醇部分勘察设计服务批次中标结果公示,中标人东华工程科技股份有限公司。据了解,本项目建设450MW风力发电;295MW电解水制氢、5000吨氢气充装区;14万吨/年二氧化碳提纯;二氧化碳加氢合成10万吨/年绿色甲醇及精馏。
北极星氢能网获悉,2月24日,黑龙江集贤风储氢醇一体化(化工端)项目完成备案,总投资额为231076.4万元,项目单位双鸭山鸿展生物科技有限责任公司。项目建设规模及内容:集贤风储氢醇一体化(化工端)项目主要建设13万吨绿色甲醇生产装置及其配套设施,项目计划总占地面积约25.44万平方米。本项目以电
北极星氢能网获悉,近日,内蒙古兴安盟与昆仑氢能就通辽—兴安盟天然气长输管道工程达成开工共识,破解项目用地审批等关键堵点,确保春季开工;与恒基伟业敲定光热风电一体化项目实施方案,实现新能源多能互补开发;与金风科技加速推进200万千瓦风电制氢制甲醇项目,一期工程预计9月底投产。同时,与京
近日,黑龙江省齐齐哈尔瀚雅氢醇新能源有限公司风电制氢合成绿甲醇一体化(化工端)项目完成备案。公开信息显示,项目总投资额842964.59万元,建设规模及内容为62万吨绿色甲醇生产装置及其配套设施、4万吨绿色航煤生产装置及热储能装置,项目计划总占地面积约70万平方米。本项目以电解水制氢的氢气和发
近日,中国天楹辽源风光储氢氨醇一体化系列项目-基于废矿坑绿色修复风光储氢氨醇一体化项目(氢氨醇化工工程部分)一期项目环境影响报告书受理情况公示。本项目位于辽源高新技术产业开发区化工产业园区内,为“风光储氢氨醇一体化”系列项目中的绿氢、绿色甲醇生产部分,主要建设17万吨规模甲醇生产装
1月10日,山西美锦能源股份有限公司(证券代码:000723,以下简称“美锦能源”)与博彦科技股份有限公司(证券代码:002649.SZ,以下简称“博彦科技”)正式签署战略合作协议,双方将携手推进能源领域的数字化转型与可持续发展。博彦科技董事长兼CEO王斌与美锦(北京)氢能科技董事长姚锦丽出席活动并
当前,国际能源发展出现了新趋势,我国能源供需格局发生了新变化,如何在推进实现碳达峰、碳中和战略目标下保障国家能源安全,是我国迫切需要面对和解决的重大课题。为此,记者采访了全国政协委员、中国石化集团公司总经理马永生。马永生表示,据国际氢能理事会预测,到2050年,氢能将满足全球18%的终
氢气是一种理想的二次能源,根据质量的不同,任何其他燃料在燃烧过程中释放的能量都低于氢释放的能量,CH4、汽油和煤的单位质量热值预计分别比H2低2.4、2.8和4倍。目前氢燃料电池已经少量应用于汽车领域,而且随着该产业的持续研究,在未来的人类生活中将会广泛应用。目前世界商用氢气的48%来自于化石
汽车以及大动力装置都离不开柴油这一宝贵能源,氢气则是面向未来的清洁能源——两者都是人类赖以生存的能源基础。近日,大连化物所王峰研究员团队提出并在实验中实现了一种利用光能(太阳能或人造光源)并以生物质下游产品为原料,制备柴油和氢气的设想。相关论文发表在国际顶级学术期刊《自然·能源》
利用秸秆和林木废弃物等生物质的下游产品制备氢气,生成的其他产物经过进一步加工,还可生成高品质柴油,“一箭双雕”生成两种重要能源品……近日,大连化物所王峰研究员团队实现了利用太阳能、人造光源等光能,以生物质的下游产品为原料,制备柴油和氢气的设想。相关论文发表在近期的《自然·能源》杂
近日,我所催化基础国家重点实验室05T6组邓德会研究员团队首次提出并实现了一种高能量效率制备高纯氢气(99.99%)的新策略:室温电化学水汽变换(EWGS)反应。相关结果以全文形式发表在《自然-通讯》(Nat.Commun.)上。氢能源被视为21世纪最具发展潜力的清洁能源。目前,水汽变换(WGS)反应(CO+H2O
氢能被誉为下一代二次清洁能源,但氢气的高效制备以及安全存储和运输一直以来是阻碍氢能源大规模应用的瓶颈。由于甲醇可以安全运输,将氢气存储于液体甲醇中,通过水和甲醇低温液相重整反应原位产氢,在释放出甲醇中存储的氢气的同时也活化等摩尔的水而释放出额外的氢气,就成为氢能利用的可行途径。这
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!