登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
式中,ϕ为通用变量,分别代表速度分量u、v、w,湍流动能k,湍流动能耗散率ε,焓h,可燃性气体质量分数Yfu等。
1.2 物理模型
本文换电站模型根据已投入运行的某综合能源站内使用的一组并列式预制舱换电站为依据,建立了1∶1实际尺寸的三维仿真物理模型。并列式预制舱换电站由两个并行排放的换电舱以及一个换电站控制室组成,每个换电舱具有两处开孔薄弱部位,分别为0.5 m×0.5 m的排气扇以及0.5 m×3.1 m的百叶窗。换电站以及薄弱部位坐标与示意图分别如表1、图1所示。
表1换电站建筑、关键部位尺寸及位置Table 1The size and location of the building and key parts of the power exchange station
图1换电站结构示意图Fig. 1Power exchange station structure diagram
1.3 参数设置
(1)网格划分为同时保证流体计算速度与结果准确性,将仿真计算区域划分为核心区域与非核心区域。以发生燃爆事故的换电舱为核心区域,燃爆舱以外为非核心区域,核心区域网格加密处理,非核心区域网格进行拉伸,并进行了网格无关性验证,0.25 m网格与0.5 m网格计算结果大致相同,结果如表2所示。
表2不同网格尺寸下爆炸超压计算结果Table 2Calculation results of explosion overpressure under different grid sizes
网格尺寸为0.25 m拉伸系数为1.2,最大网格尺寸为0.5 m,区域内共设置网格1255040个,网格设置参数如表3所示。
表3不同网格区域的参数设置Table 3Parameter settings for different grid areas
(2)初始条件与边界条件本文选取的换电站实际运行工况为常温常压,且正常工作下不开启通风设施,因此初始条件设置为环境温度20 ℃、初始风速0 m/s、初始压力101.325 kPa。对于爆炸模拟,边界条件通常为EULER[14]。爆炸模拟初始条件与边界条件如表4所示。
表4初始条件与边界条件设置Table 4Initial and boundary condition settings
(3)爆炸气云电池燃爆事故后果与电池荷电状态呈正比,当SOC达到100%状态时电池燃爆危险性最大[15-16],因此对100%SOC状态下的280 Ah方形磷酸铁锂电池进行了热滥用产气实验,电池热失控产生的气体主要为二氧化碳、一氧化碳、氢气、乙烯以及甲烷。取主要可燃气体进行归一化处理,作为可燃气云组分,可燃气云气体组成如表5所示。试验测得单个电芯热失控时可燃气体的产量为6 L/Ah,换电站单个电池包电量为12960 Ah,因此单个电池包热失控即可产生充满整个换电站的当量气云。为模拟最坏事故场景,将气云填满燃爆换电舱。
表5可燃气云组分及各组分体积分数Table 5Combustible gas cloud components and their volume proportions
(4)泄压板由于舱体存在开孔的薄弱结构,具有较弱的抗冲击能力,因此本文在预制舱百叶窗、换气扇处设置泄压板,以模拟两处薄弱结构承受一定强度冲击波后破坏打开的过程与影响。根据文献[9,17]中相关参数的设置,将百叶窗与换气扇的开启压力均设置为3 kPa,泄压板类型设置为Popout。泄爆装置通过设置泄压板的形式实现,其泄压板类型也设置为Popout。(5)点火时间本文中均以点火时刻为起始时刻,火源为持续时间0 s的瞬时火源。
2 并列式预制舱换电站爆炸过程模拟与分析
爆炸产生的冲击波是爆炸事故中最主要的伤害形式,需要研究换电站现有结构下爆炸事故冲击波的传播过程,以此分析现有结构下换电站燃爆事故的危险性与影响范围。换电站燃爆事故点火源位置为(1.8,3.5,1.5)。
图2为冲击波传播中超压分布变化。由图2可知,爆炸发生后,冲击波迅速从点火源处沿y轴方向扩散;0.07 s时冲击波突破百叶窗与排风扇,在自由空间内传播,0.162 s时舱外超压迅速衰减,0.311 s时舱内超压开始消退。受点火源位置以及换电舱结构的影响,冲击波在y方向上具有更多的加速空间与时间,加之换电舱百叶窗开口面积大于排风扇面积,因此冲击波主要从百叶窗处传至舱体外部,对y方向的影响也最大。
图2 换电站爆炸事故的超压分布
Fig. 2 Overpressure distribution of explosion accidents in power plants
图3展示了两个预制舱排风扇与百叶窗处的压力变化情况,由图3可知在发生爆炸后燃爆舱的排气扇与百叶窗受到远大于开启压力(3 kPa)的冲击,两处结构在0.1 s内均被完全破坏;由于排风扇距离点火源更近,因此排风扇在0.05 s左右先被破坏,在图2(b)中也可看出冲击波先从排风扇处传播至舱外;邻侧非燃爆舱的百叶窗会受到燃爆舱冲击波的影响,最大压力为2.3 kPa,低于百叶窗的开启压力,从图2中也可看出百叶窗未受到结构性破坏;邻侧非燃爆舱的排风扇几乎未受到燃爆舱冲击波的影响。
图3 预制舱薄弱部位泄压板的压力变化
Fig. 3 Pressure variation of the pressure relief plate at the weak part of the prefabricated cabin
因此,现行结构的换电站发生爆炸时,若舱体未发生结构性破坏,冲击波主要影响排气扇与百叶窗沿线处,由于冲击波主要从百叶窗处传播至舱外,换电站爆炸冲击波的最大影响距离在百叶窗沿线位置。考虑到综合能源站中存在较多钢结构构筑物,因而选取10.4 kPa作为换电站爆炸最大影响范围的判断阈值,建筑物在不同超压下的损坏程度[18]如表6所示。
图4展示了燃爆舱中心轴线处(x=1.8 m)yz截面的超压分布情况。换电站发生爆炸后,冲击波从百叶窗处传至舱外,沿y轴方向迅速传播,在0.205 s时冲击波传播至最大影响距离处,换电站爆炸产生的影响范围约为21 m。
图4燃爆舱中心轴线处 (x=1.8 m)yz截面的超压分布Fig. 4Overpressure distribution ofyzsection at the central axis of the explosion chamber (x=1.8 m)
3 并列式预制舱换电站泄爆效果模拟与分析
3.1 泄爆装置开启压力对泄爆效果影响的模拟研究
泄爆装置的开启压力是影响装置泄爆效果的关键因素。泄爆装置开启压力设置过小容易因误动作造成泄压装置意外开启,开启压力设置过大则存在响应慢、泄爆效果差等问题,明确开启压力对换电舱安全至关重要。本文模拟了不同泄爆装置开启压力对换电舱内燃爆压力与泄爆效果的影响规律。模拟设置了舱体顶部开启面积为1 m×1 m,中心点位置(1.8,6.5,3.2)的泄爆装置,泄压装置开启压力分别为10 kPa、20 kPa、30 kPa、60 kPa、90 kPa、120 kPa、150 kPa。点火源位于燃爆舱前端,位置坐标(1.8,3.5,1.5)。
图5为不同开启压力下泄爆装置压力变化与开启时间,图6为不同开启压力下换电舱燃爆产生的最大压力与泄爆率。由图5可知,在泄压装置开启压力分别为10 kPa、20 kPa、30 kPa、60 kPa、90 kPa、120 kPa、150 kPa时,装置的开启时间分别为爆炸发生后0.278 s、0.283 s、0.290 s、0.302 s、0.324 s、0.345 s、0.372 s。泄爆装置的响应时间与开启压力近似呈线性相关,开启压力越小泄爆装置越容易受冲击波影响而发生响应,即开启时间越早。
图5不同开启压力泄爆装置的压力变化与开启时间Fig. 5Pressure changes and opening time of explosion relief devices with different opening pressures
图6 不同开启压力下换电舱燃爆的最大压力与泄爆率
Fig. 6 The maximum explosion pressure and venting rate of the container under different opening pressures
泄爆装置的泄爆效率受装置开启时间影响,开启时间越早则更多未参与爆炸的可燃气体扩散至舱体外,从而降低参与整个爆炸过程的气体量,产生更好的泄爆效果。由图6可知,在不设置泄爆装置条件下,可产生的最大爆炸超压为357 kPa,泄压装置可以有效降低爆炸压力水平。不同开启压力下,燃爆最大压力分别为122 kPa、123 kPa、124 kPa、132 kPa、140 kPa、150 kPa、161 kPa,泄爆率分别为66%、65.5%、65%、63%、60%、58%、55%。泄爆装置的泄爆效果与装置开启压力近似呈线性相关,开启压力越小则泄爆效果越明显。但由于爆炸产生的压力远大于泄爆装置开启压力,加之冲击波传播速度快,泄爆装置的开启时间非常短,因此装置开启压力的改变对响应速度以及泄爆效果影响较低,开启压力降低93%,泄爆装置响应速度与泄爆效果仅分别提高25%、11%。
3.2 泄爆装置与点火源相对位置对泄爆效果影响的模拟研究
换电舱内存在大量的输电线路与用电设备,产生点火源的位置具有不确定性,泄爆装置与点火源相对位置对燃爆事故发展过程、爆炸冲击波强度有较大影响。因此本文研究了不同泄爆装置与点火源相对距离下的泄爆效果,模拟设置了舱体顶部开启压力3 kPa,开启面积1 m×1 m的泄爆装置,通过改变点火源位置来设置不同泄爆装置与点火源的相对距离,相对距离为点火源到泄压装置中心点的距离。点火源设置位置如表7所示。
表7点火源与泄爆装置的位置设置Table 7Location setting of ignition source and explosion relief device
图7为泄爆装置与点火源不同相对距离下燃爆舱内的最大压力与泄爆率。由图7可知泄爆装置与点火源的相对距离对泄爆装置的泄爆效果影响较大,泄爆装置与点火源的相对距离越小,泄爆装置的泄爆效果越好。相对距离为4 m时燃爆最大压力为161 kPa,泄爆率为55%,相对距离为0 m时燃爆最大压力为36 kPa,泄爆率为90%,燃爆最大压力下降78%,泄爆率提升35%。但泄爆率的提升幅度随着泄爆装置与点火源相对距离的缩小而降低,泄爆装置与点火源相对距离由4 m缩小至3 m时泄爆率提升16%,泄爆装置与点火源相对距离由1 m缩小至0 m时泄爆率仅提升3%。
图7 不同相对距离下换电舱燃爆的最大压力与泄爆率
Fig. 7 The maximum explosion pressure and venting rate of the container under different relative distances
当泄爆装置距离点火源越近时,爆炸产生的冲击波以及未点燃的可燃气体可以更快地从泄爆装置传播至舱外,舱内冲击波加速距离短且参与爆炸的可燃气体减少,泄爆装置泄爆效果提升。由于舱体内点火源具有不确定性,在对舱体设置泄爆装置时,可采取分散式布局并在易产生火源的位置布置泄爆装置,降低可能存在的点火源到泄爆装置的相对距离以达到最佳泄爆效果。
3.3 泄爆装置位置对泄爆效果影响的模拟研究
目前对于预制舱泄压孔位置的设置具有多种方式,包括预制舱前后部、侧部、上部等位置,本文通过仿真模拟研究了泄爆装置的位置对泄爆效果的影响,并确定泄爆装置的最佳设置位置。模拟中分别在舱体前部、侧部、上部设置了开启压力为3 kPa以及开启面积1 m×1 m的泄爆装置。泄爆装置设置位置如表8所示。
表8 点火源与泄爆装置的位置设置
Table 8 Location setting of ignition source and explosion relief device
图8为不同泄爆装置位置下换电舱燃爆产生的最大压力。由图8可知,当泄爆装置设置在后部时,燃爆最大压力为43 kPa,泄爆率为88%;当泄爆装置设置在侧部时,燃爆最大压力为126 kPa,泄爆率为65%;当泄爆装置设置在上部时,燃爆最大压力为161 kPa,泄爆率为55%。泄爆率由高到低为后部、侧部与顶部。
图8 不同泄爆装置位置下换电舱燃爆的最大压力
Fig. 8 The maximum explosion pressure of the container at different positions of explosion relief devices
受预制舱结构影响,燃爆产生的火焰波加速距离在x、y、z三个方向上存在差异。因为在y方向上具有更长的加速距离,前驱冲击波具有更大的传播速度并推动更多的未燃气体沿y方向运动,加之后部的泄爆装置垂直于火焰与冲击波运动方向,使得火焰波与未燃气体更快地泄放至舱外,产生最佳泄爆效果。
4 结论
本工作参照某综合能源站内换电站建立了并列式预制舱换电站三维仿真模型,以磷酸铁锂电池模块热失控产生的气体作为可燃气体,通过CFD模拟,揭示了某并列式预制舱换电站爆炸冲击波的传播与影响,并分析了不同泄爆装置的作用效果,给出了泄爆装置的相关建议。结果表明:
(1)现有换电站结构下,电池热失控引发的可燃气云爆炸最坏事故场景的最大燃爆压力可达357 kPa,燃爆事故发生后0.1 s内舱体薄弱部位均被破坏,冲击波从百叶窗与排气扇处迅速传播至舱外,爆炸冲击波最大影响范围位于燃爆舱百叶窗后方约21 m处,冲击波对并列式换电站邻侧换电舱影响不大;综合能源站平面布局应充分考虑换电站燃爆事故影响,避免换电站薄弱部位与油气氢设施布置在同侧,降低多米诺事故可能性。
(2)通过泄爆装置,爆炸产生的火焰波与未被点燃的可燃气体迅速泄放至燃爆舱外,减少参与爆炸反应的气体总量,大幅降低换电舱内燃爆事故冲击波超压,通过设置泄爆装置最大爆炸压力可降低90%。
(3)泄爆装置的泄爆效果受泄爆装置开启压力、设置位置以及开启方向影响。泄爆装置开启压力越小、与点火源相对距离越近,泄爆效果越好;泄爆装置设置在换电站后部时具有最佳泄爆效果,泄爆率由高到低为后部、侧部与顶部;泄爆装置应采取分散式布局并在易点火位置布置,且尽可能降低开启压力以提高泄爆效果。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年5月15日,第十七届深圳国际电池技术交流会在此拉开帷幕,全球新能源领域的目光汇聚于此。在这场技术与理念碰撞的盛会上,四川金时科技股份有限公司(股票代码:002951.SZ)(以下简称“金时科技”)携子公司四川金时新能科技有限公司(以下简称“金时新能”)首次以新能源企业身份亮相(展位号14
近日,华东能源监管局发布了《电化学储能电站本质安全提升工程工作方案》,明确以“全面消除安全风险、严格安全准入、淘汰落后设备、推广先进技术、科技赋能”为核心,提出在2025年底前完成淘汰退出严重危及安全的工艺设备及系统,在2026年底前完成对所有在运电站的安全改造升级,并于2027年底实现全省
在全球能源转型及“双碳”战略推动下,我国电化学储能装机规模迅猛增长,据相关数据统计,截至2024年年底,我国储能行业电力储能装机累计规模突破百吉瓦大关,达到137GW。然而,安全事故频发成为行业痛点;据相关统计,2024年全球储能电站火灾事故超80起,其中热失控占主因的75%。传统储能温控系统存在
【2025年5月8日,德国慕尼黑】在一年一度的全球新能源盛会——Intersolar2025上,华昱欣携覆盖户用、工商业及地面电站场景的全系列产品强势回归,以“车规级安全”重新定义智慧能源应用品质,为全球用户带来更高标准的多元场景光储体验。安全无界:打造车规级安全储能体验华昱欣秉持着“五大极致”理念
北极星储能网获悉,4月9日,瑞士阿尔邦的一处户用储能系统发生了50升钒电解液泄漏事件,但未引发火灾。瑞士图尔高州警方通报,阿尔邦的一栋公寓楼开展了一场“火灾及化学品救援行动”,事件涉及钒液泄漏。当天上午7点30分刚过,因大楼地下室冒烟,警方接到报警。警方初步调查称,“约500升钒(电解液)
北极星储能网获悉,近日,阳台光储企业征拓Zendure就3月25日的德国阳台光储系统起火进行调查后发表了一份声明,称事故原因不在于储能系统本身及电芯。Zendure在火灾后观察到该产品的AIO2400电池组没有变形或膨胀后,排除了电池单元是起火的原因。经调查,Zendure观察到最大功率点跟踪(MPPT)连接中存
北极星储能网获悉,5月8日,住房和城乡建设部发布应用锂离子储能系统的光伏高层建筑火灾风险评估及验证、光伏高层建筑火灾辅助逃生设施及简易自动喷水灭火系统的应用可靠性及关键技术验证公开招标公告,预算金额80.0万元。采购人为住房和城乡建设部。原文如下:住房和城乡建设部应用锂离子储能系统的光
[德国,慕尼黑,2025年5月6日]在IntersolarEurope2025期间,华为数字能源举办“光储融合,智构未来”的智能光伏战略和新品发布会,吸引约300名全球客户和伙伴共襄盛举。此次发布会聚焦全场景构网和高质量发展,重点发布面向大型储能电站、微网、工商业和户用场景的新一代构网型储能产品和解决方案,引
北极星储能网获悉,国家能源局等五部门发布关于加强电化学储能安全管理有关工作的通知,全文如下:国家能源局综合司工业和信息化部办公厅应急管理部办公厅市场监管总局办公厅国家消防救援局办公室关于加强电化学储能安全管理有关工作的通知国能综通安全〔2025〕65号各省(自治区、直辖市)及新疆生产建
北极星储能网获悉,2025年3月29日,英国格洛斯特郡的赛伦塞斯特混合太阳能发电厂发生火灾,该电站由23MWP光伏发电、51MWh锂电池储能电站构成,占地超过88英亩,相当于50多个足球场,由沃灵顿自治市议会拥有。火灾于下午3点左右发生,浓浓的黑烟喷向天空,从邻近地区和主要道路上都能看到,40多名消防员
北极星储能网讯:近日,浙江省宁波市能源局发布了《宁波市电化学储能项目建设运行管理工作指南(试行)》。其中指出,电化学储能电站(设施)应按国家有关规定办理工程质量监督手续。用户侧电化学储能电站(设施)在公共连接点的电压偏差、电压波动和闪变、谐波等电能质量指标应满足国家相关标准要求。
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
北极星储能网讯:5月14日,宁夏市场监管厅发布《构网型电化学储能系统接入电力系统技术规范》《构网型储能参数整定技术规范》《虚拟电厂并网运行技术规范》、《新能源场站风光资源监测技术规范》《构网型储能系统接入电网测试规范》等5项地方标准征求意见稿。《构网型电化学储能系统接入电力系统技术规
北极星储能网讯:5月16日,平湖众顺新能源有限公司发布浙江平湖市独山港120MW/240MWh网侧储能项目招标,项目地点位于浙江省平湖市独山港高新技术产业园地块,项目资金为28800万元,约合单价1.2元/Wh。储能系统采用磷酸铁锂电池1500V液冷系统,室内站房式布置。主变压器容量需满足储能电站规模120MW/240
5月15日,在第十七届深圳国际电池技术交流及展览会(CIBF2025)现场,海辰储能5MWh集装箱储能系统获得由权威机构TüV莱茵颁发的欧标与美标双重认证证书。这一成果不仅意味着该产品获得了欧美市场通行证,更标志着海辰储能在电气安全、环境适应性及国际标准合规性方面已达到全球领先水平,可为全球储能
5月,短短一周时间,上能电气、汇川技术、中储科技、楚能新能源、天合储能、思格新能源、蜂巢能源、赢科数能等储能企业接连拿下超10GWh储能大单,引发业内广泛关注。这也说明,全球能源转型释放的储能需求仍在持续。5月14日,上能电气官微报道,上能电气与土耳其知名新能源公司Europower正式签署框架合
5月16日,阿特斯发布2025年第一季度业绩以及2025年第二季度、2025年度经营展望的公告。根据公告,CSIQ2025年第二季度预计总收入在19亿至21亿美元(折合人民币约136.4亿至150.8亿元)之间,毛利率预计在23%至25%之间,全年预计总收入在61亿至71亿美元(折合人民币约438.0亿至509.8亿元)之间。CSIQ2025
北极星售电网获悉,近日,“全国一体化算力网络”和林格尔数据中心集群绿色能源供给示范项目实现绿电供给,标志着内蒙古首个“绿电直供”算力中心项目投运。据悉,“全国一体化算力网络”内蒙古和林格尔数据中心集群绿色能源供给示范项目于2022年11月纳入自治区首批工业园区绿色供电项目清单,总投资16
美国公用事业厂商佐治亚州电力公司(GeorgiaPower)已经开始在佐治亚州建设一个装机容量为765MW的电池储能系统。2024年12月,佐治亚州公共服务委员会(PSC)一致投票通过了佐治亚州电力公司部署电池储能项目组合计划。当时,这些电池储能项目计划部署总装机规模为500MW。根据该公司最近发布的公告,McG
北极星储能网获悉,5月15日,云南省楚雄州永仁县500MW/2GWh全钒液流电池储能系统集成生产线项目首条电堆生产线正式建成投产。该项目由楚雄州金江能源集团有限公司与浙江聚合储能科技有限公司共同投资建设,生产线设计年产能达100MW,可实现年产值2.9亿元人民币,纳税754万元,创造工作岗位40个。同时,
刚刚结束的财报披露季,光伏组件行业可谓一片惨淡,或许“破界”早已成为诸多企业的战略之一。事实上,这也是新型电力系统构建下的必然路径,多元一体或将是新能源企业的统一选择。组件四寡头光伏制造行业的惨烈同样展现在头部企业。聚焦组件环节,此前北极星根据企业披露数据以及调研情况公布了今年一
北极星储能网获悉,5月16日,深圳市首航新能源股份有限公司发布投资者关系活动记录表,表示2025年,公司将在继续巩固、强化已有的优势业务外,持续积极拓展光伏逆变器地面电站业务、工商业储能及集中式储能业务以及新兴市场业务。根据目前了解到的市场与客户需求情况,2025年公司的整体收入预计将保持
北极星储能网获悉,5月16日,深圳市首航新能源股份有限公司发布投资者关系活动记录表,表示2025年,公司将在继续巩固、强化已有的优势业务外,持续积极拓展光伏逆变器地面电站业务、工商业储能及集中式储能业务以及新兴市场业务。根据目前了解到的市场与客户需求情况,2025年公司的整体收入预计将保持
北极星储能网获悉,近日,第十七届深圳国际电池技术展览会(CIBF2025)于5月15-17日在深圳盛大举办。比亚迪储能携多款展品亮相,全方位展示其在储能领域的深厚技术积淀与行业引领地位。2025年3月重磅发布的MCCube-TProBESS,搭载比亚迪自研储能专用刀片电池,深度融合CTS超级集成技术。产品创新采用模
5月15日,第十七届深圳国际电池技术交流会/展览会在深圳会展中心盛大启幕,楚能新能源系统性展示了覆盖储能、动力等领域的全场景产品矩阵,并重磅推出了472Ah超大容量储能电芯、“浸默2.0”安全系统、CTP3.0大面液冷技术等多项行业突破性成果,彰显了“技术引领、场景驱动、全球布局”的战略图景。创新
亿兰科推出全新IP65PCS“背书包”方案,方案采用亿兰科125/130kW模块,该模块防护等级为IP65。作为2024年全球第三方工商业储能PCS出货量排名第四厂商,亿兰科“背书包”方案给用户多一种选择。该方案具有以下优势:1.兼容性更强:兼容市场主流电池厂商电池柜,电池厂商无需额外设计,简单外挂即可实现
近日,湖南中车时代电驱零碳产业园项目顺利并网。该项目实现37天极速交付,并于4月30日成功并网投运。项目创新采用建筑光伏一体化技术,利用厂房屋顶敷设光伏组件,为园区提供绿色能源供应,总装机容量约为9.93MWp,并配套建设7.5MW/15MWh工商业储能电站。通过"两充两放"智慧调控策略,实现年均削峰填
2025年136号文落地,新能源行业迎来市场化定价的“成人礼”:强制配储退出历史舞台,但分时电价波动加剧、限电率攀升的现实,却让储能的“必要性”以另一种形式回归。一边是电价收益的不确定性,一边是消纳压力的显性化,投资者正面临新的博弈——“不强制”不等于“不需要”,储能配置如何从“政策驱
为加速推进碳中和目标机电力市场化改革,日本政府可谓不遗余力。通过实施上网电价补贴和固定购电价格等政策,极大地激发了家庭和企业安装太阳能发电系统并配套储能设备的积极性。采用正泰电源产品的九州熊本光储一体化项目就是一个典型的高压并网自家消费应用案例。该项目采用正泰电源1.6MW/3.3MWh工商
中国化学与物理电源行业协会团体标准发布公告2025年第3号(总第35号)中国化学与物理电源行业协会批准发布2025年第三批团体标准,现予公告:1、《电池护照指南》(T/CIAPS0049—2025),本文件提供了电池全生命周期溯源数据管理的信息披露指南,旨在指导企业为其生产的电池产品生成电池护照,以便于对
北极星储能网获悉,5月9日,国网江苏发布关于江苏最新分时电价的解读,其中以南京某酒店为例,选择执行分时政策,要是配置9兆瓦/18兆瓦电池储能,每天一充一放,每年就能节约电费约367万元。江苏工商业的用电户主们注意啦!最近,江苏省发展改革委发布了一个超重磅消息,工商业分时电价出新政了。这次
北极星储能网讯:为期三天的2025年欧洲国际太阳能展(IntersolarEurope2025)近日在德国慕尼黑落下帷幕。本次展会有来自57个国家的2737家展商参展,约850家来自中国。中国储能企业不仅展出了储能电芯、储能系统、充电基础设施等能源解决方案,还签下超12GWh储能订单,成为展会的亮眼存在。据欧洲电力交
2025年2月,泰兴辰峰壹号用户侧5.805MW/11.286MWh工商业储能项目,经储能开关站汇流后以一回10kV电缆并网,正式投入运行。不同于一般工商储的一体柜方案,这个项目采用组串式变流器加电池舱的方案,由南瑞继保为本项目供货整体设备集成,包含3台组串式变流升压一体机,3台电池舱,1套能量管理系统。自2
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!