登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
式中,ϕ为通用变量,分别代表速度分量u、v、w,湍流动能k,湍流动能耗散率ε,焓h,可燃性气体质量分数Yfu等。
1.2 物理模型
本文换电站模型根据已投入运行的某综合能源站内使用的一组并列式预制舱换电站为依据,建立了1∶1实际尺寸的三维仿真物理模型。并列式预制舱换电站由两个并行排放的换电舱以及一个换电站控制室组成,每个换电舱具有两处开孔薄弱部位,分别为0.5 m×0.5 m的排气扇以及0.5 m×3.1 m的百叶窗。换电站以及薄弱部位坐标与示意图分别如表1、图1所示。
表1换电站建筑、关键部位尺寸及位置Table 1The size and location of the building and key parts of the power exchange station
图1换电站结构示意图Fig. 1Power exchange station structure diagram
1.3 参数设置
(1)网格划分为同时保证流体计算速度与结果准确性,将仿真计算区域划分为核心区域与非核心区域。以发生燃爆事故的换电舱为核心区域,燃爆舱以外为非核心区域,核心区域网格加密处理,非核心区域网格进行拉伸,并进行了网格无关性验证,0.25 m网格与0.5 m网格计算结果大致相同,结果如表2所示。
表2不同网格尺寸下爆炸超压计算结果Table 2Calculation results of explosion overpressure under different grid sizes
网格尺寸为0.25 m拉伸系数为1.2,最大网格尺寸为0.5 m,区域内共设置网格1255040个,网格设置参数如表3所示。
表3不同网格区域的参数设置Table 3Parameter settings for different grid areas
(2)初始条件与边界条件本文选取的换电站实际运行工况为常温常压,且正常工作下不开启通风设施,因此初始条件设置为环境温度20 ℃、初始风速0 m/s、初始压力101.325 kPa。对于爆炸模拟,边界条件通常为EULER[14]。爆炸模拟初始条件与边界条件如表4所示。
表4初始条件与边界条件设置Table 4Initial and boundary condition settings
(3)爆炸气云电池燃爆事故后果与电池荷电状态呈正比,当SOC达到100%状态时电池燃爆危险性最大[15-16],因此对100%SOC状态下的280 Ah方形磷酸铁锂电池进行了热滥用产气实验,电池热失控产生的气体主要为二氧化碳、一氧化碳、氢气、乙烯以及甲烷。取主要可燃气体进行归一化处理,作为可燃气云组分,可燃气云气体组成如表5所示。试验测得单个电芯热失控时可燃气体的产量为6 L/Ah,换电站单个电池包电量为12960 Ah,因此单个电池包热失控即可产生充满整个换电站的当量气云。为模拟最坏事故场景,将气云填满燃爆换电舱。
表5可燃气云组分及各组分体积分数Table 5Combustible gas cloud components and their volume proportions
(4)泄压板由于舱体存在开孔的薄弱结构,具有较弱的抗冲击能力,因此本文在预制舱百叶窗、换气扇处设置泄压板,以模拟两处薄弱结构承受一定强度冲击波后破坏打开的过程与影响。根据文献[9,17]中相关参数的设置,将百叶窗与换气扇的开启压力均设置为3 kPa,泄压板类型设置为Popout。泄爆装置通过设置泄压板的形式实现,其泄压板类型也设置为Popout。(5)点火时间本文中均以点火时刻为起始时刻,火源为持续时间0 s的瞬时火源。
2 并列式预制舱换电站爆炸过程模拟与分析
爆炸产生的冲击波是爆炸事故中最主要的伤害形式,需要研究换电站现有结构下爆炸事故冲击波的传播过程,以此分析现有结构下换电站燃爆事故的危险性与影响范围。换电站燃爆事故点火源位置为(1.8,3.5,1.5)。
图2为冲击波传播中超压分布变化。由图2可知,爆炸发生后,冲击波迅速从点火源处沿y轴方向扩散;0.07 s时冲击波突破百叶窗与排风扇,在自由空间内传播,0.162 s时舱外超压迅速衰减,0.311 s时舱内超压开始消退。受点火源位置以及换电舱结构的影响,冲击波在y方向上具有更多的加速空间与时间,加之换电舱百叶窗开口面积大于排风扇面积,因此冲击波主要从百叶窗处传至舱体外部,对y方向的影响也最大。
图2 换电站爆炸事故的超压分布
Fig. 2 Overpressure distribution of explosion accidents in power plants
图3展示了两个预制舱排风扇与百叶窗处的压力变化情况,由图3可知在发生爆炸后燃爆舱的排气扇与百叶窗受到远大于开启压力(3 kPa)的冲击,两处结构在0.1 s内均被完全破坏;由于排风扇距离点火源更近,因此排风扇在0.05 s左右先被破坏,在图2(b)中也可看出冲击波先从排风扇处传播至舱外;邻侧非燃爆舱的百叶窗会受到燃爆舱冲击波的影响,最大压力为2.3 kPa,低于百叶窗的开启压力,从图2中也可看出百叶窗未受到结构性破坏;邻侧非燃爆舱的排风扇几乎未受到燃爆舱冲击波的影响。
图3 预制舱薄弱部位泄压板的压力变化
Fig. 3 Pressure variation of the pressure relief plate at the weak part of the prefabricated cabin
因此,现行结构的换电站发生爆炸时,若舱体未发生结构性破坏,冲击波主要影响排气扇与百叶窗沿线处,由于冲击波主要从百叶窗处传播至舱外,换电站爆炸冲击波的最大影响距离在百叶窗沿线位置。考虑到综合能源站中存在较多钢结构构筑物,因而选取10.4 kPa作为换电站爆炸最大影响范围的判断阈值,建筑物在不同超压下的损坏程度[18]如表6所示。
图4展示了燃爆舱中心轴线处(x=1.8 m)yz截面的超压分布情况。换电站发生爆炸后,冲击波从百叶窗处传至舱外,沿y轴方向迅速传播,在0.205 s时冲击波传播至最大影响距离处,换电站爆炸产生的影响范围约为21 m。
图4燃爆舱中心轴线处 (x=1.8 m)yz截面的超压分布Fig. 4Overpressure distribution ofyzsection at the central axis of the explosion chamber (x=1.8 m)
3 并列式预制舱换电站泄爆效果模拟与分析
3.1 泄爆装置开启压力对泄爆效果影响的模拟研究
泄爆装置的开启压力是影响装置泄爆效果的关键因素。泄爆装置开启压力设置过小容易因误动作造成泄压装置意外开启,开启压力设置过大则存在响应慢、泄爆效果差等问题,明确开启压力对换电舱安全至关重要。本文模拟了不同泄爆装置开启压力对换电舱内燃爆压力与泄爆效果的影响规律。模拟设置了舱体顶部开启面积为1 m×1 m,中心点位置(1.8,6.5,3.2)的泄爆装置,泄压装置开启压力分别为10 kPa、20 kPa、30 kPa、60 kPa、90 kPa、120 kPa、150 kPa。点火源位于燃爆舱前端,位置坐标(1.8,3.5,1.5)。
图5为不同开启压力下泄爆装置压力变化与开启时间,图6为不同开启压力下换电舱燃爆产生的最大压力与泄爆率。由图5可知,在泄压装置开启压力分别为10 kPa、20 kPa、30 kPa、60 kPa、90 kPa、120 kPa、150 kPa时,装置的开启时间分别为爆炸发生后0.278 s、0.283 s、0.290 s、0.302 s、0.324 s、0.345 s、0.372 s。泄爆装置的响应时间与开启压力近似呈线性相关,开启压力越小泄爆装置越容易受冲击波影响而发生响应,即开启时间越早。
图5不同开启压力泄爆装置的压力变化与开启时间Fig. 5Pressure changes and opening time of explosion relief devices with different opening pressures
图6 不同开启压力下换电舱燃爆的最大压力与泄爆率
Fig. 6 The maximum explosion pressure and venting rate of the container under different opening pressures
泄爆装置的泄爆效率受装置开启时间影响,开启时间越早则更多未参与爆炸的可燃气体扩散至舱体外,从而降低参与整个爆炸过程的气体量,产生更好的泄爆效果。由图6可知,在不设置泄爆装置条件下,可产生的最大爆炸超压为357 kPa,泄压装置可以有效降低爆炸压力水平。不同开启压力下,燃爆最大压力分别为122 kPa、123 kPa、124 kPa、132 kPa、140 kPa、150 kPa、161 kPa,泄爆率分别为66%、65.5%、65%、63%、60%、58%、55%。泄爆装置的泄爆效果与装置开启压力近似呈线性相关,开启压力越小则泄爆效果越明显。但由于爆炸产生的压力远大于泄爆装置开启压力,加之冲击波传播速度快,泄爆装置的开启时间非常短,因此装置开启压力的改变对响应速度以及泄爆效果影响较低,开启压力降低93%,泄爆装置响应速度与泄爆效果仅分别提高25%、11%。
3.2 泄爆装置与点火源相对位置对泄爆效果影响的模拟研究
换电舱内存在大量的输电线路与用电设备,产生点火源的位置具有不确定性,泄爆装置与点火源相对位置对燃爆事故发展过程、爆炸冲击波强度有较大影响。因此本文研究了不同泄爆装置与点火源相对距离下的泄爆效果,模拟设置了舱体顶部开启压力3 kPa,开启面积1 m×1 m的泄爆装置,通过改变点火源位置来设置不同泄爆装置与点火源的相对距离,相对距离为点火源到泄压装置中心点的距离。点火源设置位置如表7所示。
表7点火源与泄爆装置的位置设置Table 7Location setting of ignition source and explosion relief device
图7为泄爆装置与点火源不同相对距离下燃爆舱内的最大压力与泄爆率。由图7可知泄爆装置与点火源的相对距离对泄爆装置的泄爆效果影响较大,泄爆装置与点火源的相对距离越小,泄爆装置的泄爆效果越好。相对距离为4 m时燃爆最大压力为161 kPa,泄爆率为55%,相对距离为0 m时燃爆最大压力为36 kPa,泄爆率为90%,燃爆最大压力下降78%,泄爆率提升35%。但泄爆率的提升幅度随着泄爆装置与点火源相对距离的缩小而降低,泄爆装置与点火源相对距离由4 m缩小至3 m时泄爆率提升16%,泄爆装置与点火源相对距离由1 m缩小至0 m时泄爆率仅提升3%。
图7 不同相对距离下换电舱燃爆的最大压力与泄爆率
Fig. 7 The maximum explosion pressure and venting rate of the container under different relative distances
当泄爆装置距离点火源越近时,爆炸产生的冲击波以及未点燃的可燃气体可以更快地从泄爆装置传播至舱外,舱内冲击波加速距离短且参与爆炸的可燃气体减少,泄爆装置泄爆效果提升。由于舱体内点火源具有不确定性,在对舱体设置泄爆装置时,可采取分散式布局并在易产生火源的位置布置泄爆装置,降低可能存在的点火源到泄爆装置的相对距离以达到最佳泄爆效果。
3.3 泄爆装置位置对泄爆效果影响的模拟研究
目前对于预制舱泄压孔位置的设置具有多种方式,包括预制舱前后部、侧部、上部等位置,本文通过仿真模拟研究了泄爆装置的位置对泄爆效果的影响,并确定泄爆装置的最佳设置位置。模拟中分别在舱体前部、侧部、上部设置了开启压力为3 kPa以及开启面积1 m×1 m的泄爆装置。泄爆装置设置位置如表8所示。
表8 点火源与泄爆装置的位置设置
Table 8 Location setting of ignition source and explosion relief device
图8为不同泄爆装置位置下换电舱燃爆产生的最大压力。由图8可知,当泄爆装置设置在后部时,燃爆最大压力为43 kPa,泄爆率为88%;当泄爆装置设置在侧部时,燃爆最大压力为126 kPa,泄爆率为65%;当泄爆装置设置在上部时,燃爆最大压力为161 kPa,泄爆率为55%。泄爆率由高到低为后部、侧部与顶部。
图8 不同泄爆装置位置下换电舱燃爆的最大压力
Fig. 8 The maximum explosion pressure of the container at different positions of explosion relief devices
受预制舱结构影响,燃爆产生的火焰波加速距离在x、y、z三个方向上存在差异。因为在y方向上具有更长的加速距离,前驱冲击波具有更大的传播速度并推动更多的未燃气体沿y方向运动,加之后部的泄爆装置垂直于火焰与冲击波运动方向,使得火焰波与未燃气体更快地泄放至舱外,产生最佳泄爆效果。
4 结论
本工作参照某综合能源站内换电站建立了并列式预制舱换电站三维仿真模型,以磷酸铁锂电池模块热失控产生的气体作为可燃气体,通过CFD模拟,揭示了某并列式预制舱换电站爆炸冲击波的传播与影响,并分析了不同泄爆装置的作用效果,给出了泄爆装置的相关建议。结果表明:
(1)现有换电站结构下,电池热失控引发的可燃气云爆炸最坏事故场景的最大燃爆压力可达357 kPa,燃爆事故发生后0.1 s内舱体薄弱部位均被破坏,冲击波从百叶窗与排气扇处迅速传播至舱外,爆炸冲击波最大影响范围位于燃爆舱百叶窗后方约21 m处,冲击波对并列式换电站邻侧换电舱影响不大;综合能源站平面布局应充分考虑换电站燃爆事故影响,避免换电站薄弱部位与油气氢设施布置在同侧,降低多米诺事故可能性。
(2)通过泄爆装置,爆炸产生的火焰波与未被点燃的可燃气体迅速泄放至燃爆舱外,减少参与爆炸反应的气体总量,大幅降低换电舱内燃爆事故冲击波超压,通过设置泄爆装置最大爆炸压力可降低90%。
(3)泄爆装置的泄爆效果受泄爆装置开启压力、设置位置以及开启方向影响。泄爆装置开启压力越小、与点火源相对距离越近,泄爆效果越好;泄爆装置设置在换电站后部时具有最佳泄爆效果,泄爆率由高到低为后部、侧部与顶部;泄爆装置应采取分散式布局并在易点火位置布置,且尽可能降低开启压力以提高泄爆效果。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
回首储能行业刚被抽离政策拐杖之初,整个市场不乏犹疑、焦虑的声音。一方面,以低质产品进行低价竞争得以存活的储能企业陆续黯然离场;另一方面,储能在趋向市场化后更加聚焦价值重构,储能企业也在兼顾安全、效率与成本中愈发“求真”,迸发活力。价值导向下,直面储能安全2024年工信部发布的强制性国
6月25日,TV南德意志集团(TV南德)向海辰储能颁发基于IEC62443-4-1标准的工业信息安全TVSDMark认证证书。这一认证标志着海辰储能自主研发的BMS平台系统在网络安全性与全球合规性方面达到国际领先水平,进一步夯实公司在全球储能市场的竞争力。颁证仪式值得注意的是,公司近期还通过了ULSolutions基于I
2025开年以来,国家发改委与能源局连发两道政策“组合拳”,深刻改写储能行业的发展逻辑。2月出台的“136号文”明确不得将储能配置作为新能源项目核准的前置条件,终结了持续8年的“强制配储”模式,4月落地的“394号文”明确要求2025年底前基本实现电力现货市场全覆盖。即将到来的电力市场格局变化,
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
自2024年5月,连续几次复燃,火灾最终足足持续了16天之久的美国加州圣地亚哥市OtayMesa(奥泰梅萨)Gateway储能电站(锂电池)火灾事故后,2025年美国MossLanding储能电站两次起火以及德国、英国储能项目火灾事故,再次将储能安全问题推向风口浪尖。截至2025年1月,全球储能事故发生超过100起,储能系
被业界称为“史上最严电池安全令”的《电动汽车用动力蓄电池安全要求》(GB38031-2025)近日发布,并将于2026年7月实施。新国标首次将动力电池热失控后“不起火不爆炸”纳入强制标准,一场关乎“安全”的技术竞赛已经展开。标准全面升级!热失控后“不起火不爆炸”日前,工业和信息化部组织制定的强制
【中国,上海,2025年6月12日】华为数字能源和德国莱茵TV集团(以下简称“TV莱茵”)于上海SNEC展会期间,联合重磅发布《工商业储能C2C双链安全白皮书》,旨在通过双方在储能安全设计、安全标准方面的探索研究和协同创新成果,提升工商业储能的安全水平和标准,为行业可持续发展奠定坚实基础。同时,倡
从引发行业巨震的136号文,到后来的394号文、411号文,除了“强制配储”政策的退出,政策的有形之手与市场的无形之手,始终在协力重塑中国电力市场格局,同时也深刻影响了新能源储能市场的“底层逻辑”。当行业由“政策驱动”迈向“价值驱动”之时。2025年6月12日,在SNEC2025展会现场,阳光电源举办主
北极星储能网讯:2025年6月11-13日,SNECPV+第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心盛大举行。美的集团旗下能源业务品牌美的能源(美的能源是科陆电子、合康新能、美的楼宇科技、库卡等品牌的联合体)首次亮相并发布“储能+热泵+AI”三维驱动的能源战略。作为美
北极星储能网讯:2025年6月16日上午8时32分许,韩国庆尚北道浦项市南区大松面东国制钢浦项工厂的62MWh储能电站突发火灾,在经过约28小时后,火势得到初步控制。起火建筑为两层钢结构(面积约1125平方米),内部安装8392个电池模块。消防部门接到报告后,于16日上午10点04分发布第一阶段响应,紧急调动
6月26日,中国能建首席专家,数科集团党委书记、董事长,工程研究院党委书记、院长万明忠与国网吉林省电力公司党委书记、董事长周敬东进行座谈,双方围绕新型电力系统、压缩空气储能绿色电站、数字化等方面展开深入交流,并达成广泛共识。万明忠代表数科集团,对国网吉林省电力公司长期以来给予的支持
在去中心化能源的发展趋势里,阳台光储正成为一个新的机会点。当大家还在关注大型储能电站和传统家用储能时,阳台光储凭借“即插即用”的设计、模块化扩展能力以及电商直销模式,迅速打开了公寓住户这一巨大市场。它不只是一个“小型电厂”或“大号充电宝”,而是在政策放宽、高电价压力和消费电子思路
随着电力市场化改革纵深推进,山东2025年分时电价政策(尖峰、高峰、平段、低谷、深谷五段式)完成关键性调整#x2014;冬季储能“两充两放”运行策略正式落地,工商业储能的经济性显著提升。然而,不同购电模式下储能的收益逻辑和风险差异显著。下面,电工时代从代理购电与零售购电两种模式切入,分析山
北极星储能网获悉,2025年6月13日,中国证监会国际司发布关于双登集团境外发行上市及境内未上市股份“全流通”备案通知书(国合函[2025]1001号),通过了在香港联交所上市备案申请。双登集团,成立于2011年,是一家专注于大数据与通信领域的储能电池及储能系统综合解决方案提供商,在全球通信及数据中
根据深交所发行上市审核信息,麦田能源股份有限公司(麦田能源)创业板IPO已获受理。据了解,麦田能源是逆变器及储能系统制造商,主要业务是户用储能及光伏并网逆变器。财务数据显示,2022年—2024年公司实现营业收入分别为24.86亿元、29.00亿元、33.92亿元,实现净利润分别为1.99亿元、1.49亿元、2.67
北极星储能网讯:近日,中能建储能科技(武汉)有限公司5MWh液冷储能系统产品顺利通过CE、CB和UL9540A认证,取得TV莱茵国际权威认证证书。德国TV莱茵大中华区电力电子产品服务总经理董斌、中储科技储能装备研究院副院长左彬等双方代表出席颁证仪式。此次获证的5MWh集装箱式液冷储能系统,在技术和性能
北极星储能网获悉,储能技术成本持续下降,导致印度储能开发商之间的竞争也更加激烈。近日,印度拉贾斯坦邦总规模2GWh的两笔储能集采开标,此次预计总投资为200亿卢比。这两笔开标报价接连创造了印度储能报价历史新低,低于印度此前所有大规模储能招标的价格。印度拉贾斯坦邦电力监管委员会(RERC)已
6月25日17时45分,随着最后一组涉网性能测试数据在监控大屏上稳定跳动、精准达标,由东方设计服务公司总设计、总承包的四川华电三江新区100兆瓦/200兆瓦时电化学储能电站项目正式完成全站所有试验项目的测试验收,成为四川省内首个通过全部涉网试验并具备商业投运条件的独立储能电站。此次试验覆盖储能
在激昂的礼炮声与“储势待发、能耀全球”的标语映衬下,林洋储能向海外市场进军的号角再次嘹亮吹响。6月25日,林洋储能蒙古国12.5MW/50.15MWh储能项目储能设备正式启程发货!隆重的发货仪式于启东储能系统总部生产基地举行,林洋储能总经理杨俊超、常务副总经理江宜高、副总经理王砚明、彭进峰等相关领
6月26日,皖能于田县20万千瓦80万千瓦时独立新型储能项目中标候选人公示。第一中标候选人为中国电力工程顾问集团西北电力设计院有限公司、中国能源建设集团西北电力建设甘肃工程有限公司联合体,投标报价45475.2742万元,折合单价0.568元/Wh;第二中标候选人为中国电建集团江西省电力设计院有限公司、
北极星储能网讯:国家电投子公司新源智储能源发展(北京)有限公司发布2025年第9批采购,项目名称为新疆哈密100MW/400MWh新能源配储项目110MWh电池舱设备采购。项目资金来源已落实。采购内容为整套储能系统总容量55MW/110MWh。本标段供货及服务范围包括但不限于以下范围:本工程储能电池及附属设备的设
随着电力市场化改革纵深推进,山东2025年分时电价政策(尖峰、高峰、平段、低谷、深谷五段式)完成关键性调整#x2014;冬季储能“两充两放”运行策略正式落地,工商业储能的经济性显著提升。然而,不同购电模式下储能的收益逻辑和风险差异显著。下面,电工时代从代理购电与零售购电两种模式切入,分析山
北极星储能网获悉,6月25日消息,中节能太阳能股份有限公司发布投资者关系活动记录表,提到中节能太阳能目前储能主要为光伏电站配套储能,合计规模约1500MWh,涵盖磷酸铁锂、全钒液流以及超级电容储能类型,后续公司也将推进工商业储能的开拓及实施。
北极星储能网获悉,6月26日消息,国家发展改革委6月份新闻发布会,国家发展改革委政策研究室副主任李超表示,夏季是全年用电负荷高峰,能源保供的关键在于电,预计今年迎峰度夏期间,全国最高用电负荷同比将增加约1亿千瓦。针对这一情况,国家发展改革委已会同有关方面聚焦电力保供,采取系列措施、提
北极星储能网讯:6月24日,江西省发展改革委发布进一步完善分时电价机制有关事项。提到,除了冬季之外,其他月份都将新增2小时午间深谷电价。深谷浮动比例由原平段下浮60%扩大到70%,全年高峰、平段、低谷浮动比例统一调整为1.6:1:0.4。上网环节线损费用、输配电价、系统运行费用、政府性基金及附加不
回首储能行业刚被抽离政策拐杖之初,整个市场不乏犹疑、焦虑的声音。一方面,以低质产品进行低价竞争得以存活的储能企业陆续黯然离场;另一方面,储能在趋向市场化后更加聚焦价值重构,储能企业也在兼顾安全、效率与成本中愈发“求真”,迸发活力。价值导向下,直面储能安全2024年工信部发布的强制性国
在能源转型加速推进的关键阶段,行业格局正经历深刻重塑。随着136号文等政策的深入实施,光伏收益模式迎来从依赖固定补贴转向市场化交易电价的根本性变革,这导致上网电价波动加剧、消纳空间受限,传统储能的峰谷套利空间大幅收窄。面对电价不确定性、限电压力及负荷侧精细化管理的迫切需求,工商业用
时光奔涌向前,2025年已悄然过半。这半年,科林电气以“智慧能源创新者”之姿,在全球能源变革中破浪前行,交出一份亮眼答卷。订单攻坚,市场拓展的“科林速度”国内市场持续深耕:▶科林电气在南方电网2024年配网设备招标中斩获3.69亿元大单;▶在数据中心、储能等战略领域深入布局并取得显著成果。海
当一块价值万元的精密电路板因0.1秒的电网波动沦为废品,制造业的“能源焦虑”正从成本问题升级为关乎工艺存亡的核心命题。在这条近乎零容错的高精度赛道上,电能质量已经不再是后台配角,而是主导产品良率与产线稳定的关键要素。在深圳一家跻身PCB百强榜单的企业制造基地里,华昱欣针对其“高精度+高
电化学储能系统在电力系统中的应用场景大致可以分为5类,分别是源侧、网侧(主网)、台区(配网)、工商业以及户用储能。在这些场景中,储能有不同的接入位置,根据市场主体与电网公司的产权分界点来区分,可以把源侧、工商业以及户用都放置于表后的区域,可称为表后大小储,因为这些接入场景中,除了
2025开年以来,国家发改委与能源局连发两道政策“组合拳”,深刻改写储能行业的发展逻辑。2月出台的“136号文”明确不得将储能配置作为新能源项目核准的前置条件,终结了持续8年的“强制配储”模式,4月落地的“394号文”明确要求2025年底前基本实现电力现货市场全覆盖。即将到来的电力市场格局变化,
近日,由Intertek天祥集团(以下简称Intertek)与思格新能源联合筹备的《工商业储能全方位安全防护解决方案白皮书》(以下简称白皮书)正式对外发布。随着全球能源转型的加速,工商业储能作为提高能源利用效率、优化电力供需的关键手段,市场规模迅速增长。据统计,2024年全球工商业储能新增装机约为12
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!