登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
式中,ϕ为通用变量,分别代表速度分量u、v、w,湍流动能k,湍流动能耗散率ε,焓h,可燃性气体质量分数Yfu等。
1.2 物理模型
本文换电站模型根据已投入运行的某综合能源站内使用的一组并列式预制舱换电站为依据,建立了1∶1实际尺寸的三维仿真物理模型。并列式预制舱换电站由两个并行排放的换电舱以及一个换电站控制室组成,每个换电舱具有两处开孔薄弱部位,分别为0.5 m×0.5 m的排气扇以及0.5 m×3.1 m的百叶窗。换电站以及薄弱部位坐标与示意图分别如表1、图1所示。
表1换电站建筑、关键部位尺寸及位置Table 1The size and location of the building and key parts of the power exchange station
图1换电站结构示意图Fig. 1Power exchange station structure diagram
1.3 参数设置
(1)网格划分为同时保证流体计算速度与结果准确性,将仿真计算区域划分为核心区域与非核心区域。以发生燃爆事故的换电舱为核心区域,燃爆舱以外为非核心区域,核心区域网格加密处理,非核心区域网格进行拉伸,并进行了网格无关性验证,0.25 m网格与0.5 m网格计算结果大致相同,结果如表2所示。
表2不同网格尺寸下爆炸超压计算结果Table 2Calculation results of explosion overpressure under different grid sizes
网格尺寸为0.25 m拉伸系数为1.2,最大网格尺寸为0.5 m,区域内共设置网格1255040个,网格设置参数如表3所示。
表3不同网格区域的参数设置Table 3Parameter settings for different grid areas
(2)初始条件与边界条件本文选取的换电站实际运行工况为常温常压,且正常工作下不开启通风设施,因此初始条件设置为环境温度20 ℃、初始风速0 m/s、初始压力101.325 kPa。对于爆炸模拟,边界条件通常为EULER[14]。爆炸模拟初始条件与边界条件如表4所示。
表4初始条件与边界条件设置Table 4Initial and boundary condition settings
(3)爆炸气云电池燃爆事故后果与电池荷电状态呈正比,当SOC达到100%状态时电池燃爆危险性最大[15-16],因此对100%SOC状态下的280 Ah方形磷酸铁锂电池进行了热滥用产气实验,电池热失控产生的气体主要为二氧化碳、一氧化碳、氢气、乙烯以及甲烷。取主要可燃气体进行归一化处理,作为可燃气云组分,可燃气云气体组成如表5所示。试验测得单个电芯热失控时可燃气体的产量为6 L/Ah,换电站单个电池包电量为12960 Ah,因此单个电池包热失控即可产生充满整个换电站的当量气云。为模拟最坏事故场景,将气云填满燃爆换电舱。
表5可燃气云组分及各组分体积分数Table 5Combustible gas cloud components and their volume proportions
(4)泄压板由于舱体存在开孔的薄弱结构,具有较弱的抗冲击能力,因此本文在预制舱百叶窗、换气扇处设置泄压板,以模拟两处薄弱结构承受一定强度冲击波后破坏打开的过程与影响。根据文献[9,17]中相关参数的设置,将百叶窗与换气扇的开启压力均设置为3 kPa,泄压板类型设置为Popout。泄爆装置通过设置泄压板的形式实现,其泄压板类型也设置为Popout。(5)点火时间本文中均以点火时刻为起始时刻,火源为持续时间0 s的瞬时火源。
2 并列式预制舱换电站爆炸过程模拟与分析
爆炸产生的冲击波是爆炸事故中最主要的伤害形式,需要研究换电站现有结构下爆炸事故冲击波的传播过程,以此分析现有结构下换电站燃爆事故的危险性与影响范围。换电站燃爆事故点火源位置为(1.8,3.5,1.5)。
图2为冲击波传播中超压分布变化。由图2可知,爆炸发生后,冲击波迅速从点火源处沿y轴方向扩散;0.07 s时冲击波突破百叶窗与排风扇,在自由空间内传播,0.162 s时舱外超压迅速衰减,0.311 s时舱内超压开始消退。受点火源位置以及换电舱结构的影响,冲击波在y方向上具有更多的加速空间与时间,加之换电舱百叶窗开口面积大于排风扇面积,因此冲击波主要从百叶窗处传至舱体外部,对y方向的影响也最大。
图2 换电站爆炸事故的超压分布
Fig. 2 Overpressure distribution of explosion accidents in power plants
图3展示了两个预制舱排风扇与百叶窗处的压力变化情况,由图3可知在发生爆炸后燃爆舱的排气扇与百叶窗受到远大于开启压力(3 kPa)的冲击,两处结构在0.1 s内均被完全破坏;由于排风扇距离点火源更近,因此排风扇在0.05 s左右先被破坏,在图2(b)中也可看出冲击波先从排风扇处传播至舱外;邻侧非燃爆舱的百叶窗会受到燃爆舱冲击波的影响,最大压力为2.3 kPa,低于百叶窗的开启压力,从图2中也可看出百叶窗未受到结构性破坏;邻侧非燃爆舱的排风扇几乎未受到燃爆舱冲击波的影响。
图3 预制舱薄弱部位泄压板的压力变化
Fig. 3 Pressure variation of the pressure relief plate at the weak part of the prefabricated cabin
因此,现行结构的换电站发生爆炸时,若舱体未发生结构性破坏,冲击波主要影响排气扇与百叶窗沿线处,由于冲击波主要从百叶窗处传播至舱外,换电站爆炸冲击波的最大影响距离在百叶窗沿线位置。考虑到综合能源站中存在较多钢结构构筑物,因而选取10.4 kPa作为换电站爆炸最大影响范围的判断阈值,建筑物在不同超压下的损坏程度[18]如表6所示。
图4展示了燃爆舱中心轴线处(x=1.8 m)yz截面的超压分布情况。换电站发生爆炸后,冲击波从百叶窗处传至舱外,沿y轴方向迅速传播,在0.205 s时冲击波传播至最大影响距离处,换电站爆炸产生的影响范围约为21 m。
图4燃爆舱中心轴线处 (x=1.8 m)yz截面的超压分布Fig. 4Overpressure distribution ofyzsection at the central axis of the explosion chamber (x=1.8 m)
3 并列式预制舱换电站泄爆效果模拟与分析
3.1 泄爆装置开启压力对泄爆效果影响的模拟研究
泄爆装置的开启压力是影响装置泄爆效果的关键因素。泄爆装置开启压力设置过小容易因误动作造成泄压装置意外开启,开启压力设置过大则存在响应慢、泄爆效果差等问题,明确开启压力对换电舱安全至关重要。本文模拟了不同泄爆装置开启压力对换电舱内燃爆压力与泄爆效果的影响规律。模拟设置了舱体顶部开启面积为1 m×1 m,中心点位置(1.8,6.5,3.2)的泄爆装置,泄压装置开启压力分别为10 kPa、20 kPa、30 kPa、60 kPa、90 kPa、120 kPa、150 kPa。点火源位于燃爆舱前端,位置坐标(1.8,3.5,1.5)。
图5为不同开启压力下泄爆装置压力变化与开启时间,图6为不同开启压力下换电舱燃爆产生的最大压力与泄爆率。由图5可知,在泄压装置开启压力分别为10 kPa、20 kPa、30 kPa、60 kPa、90 kPa、120 kPa、150 kPa时,装置的开启时间分别为爆炸发生后0.278 s、0.283 s、0.290 s、0.302 s、0.324 s、0.345 s、0.372 s。泄爆装置的响应时间与开启压力近似呈线性相关,开启压力越小泄爆装置越容易受冲击波影响而发生响应,即开启时间越早。
图5不同开启压力泄爆装置的压力变化与开启时间Fig. 5Pressure changes and opening time of explosion relief devices with different opening pressures
图6 不同开启压力下换电舱燃爆的最大压力与泄爆率
Fig. 6 The maximum explosion pressure and venting rate of the container under different opening pressures
泄爆装置的泄爆效率受装置开启时间影响,开启时间越早则更多未参与爆炸的可燃气体扩散至舱体外,从而降低参与整个爆炸过程的气体量,产生更好的泄爆效果。由图6可知,在不设置泄爆装置条件下,可产生的最大爆炸超压为357 kPa,泄压装置可以有效降低爆炸压力水平。不同开启压力下,燃爆最大压力分别为122 kPa、123 kPa、124 kPa、132 kPa、140 kPa、150 kPa、161 kPa,泄爆率分别为66%、65.5%、65%、63%、60%、58%、55%。泄爆装置的泄爆效果与装置开启压力近似呈线性相关,开启压力越小则泄爆效果越明显。但由于爆炸产生的压力远大于泄爆装置开启压力,加之冲击波传播速度快,泄爆装置的开启时间非常短,因此装置开启压力的改变对响应速度以及泄爆效果影响较低,开启压力降低93%,泄爆装置响应速度与泄爆效果仅分别提高25%、11%。
3.2 泄爆装置与点火源相对位置对泄爆效果影响的模拟研究
换电舱内存在大量的输电线路与用电设备,产生点火源的位置具有不确定性,泄爆装置与点火源相对位置对燃爆事故发展过程、爆炸冲击波强度有较大影响。因此本文研究了不同泄爆装置与点火源相对距离下的泄爆效果,模拟设置了舱体顶部开启压力3 kPa,开启面积1 m×1 m的泄爆装置,通过改变点火源位置来设置不同泄爆装置与点火源的相对距离,相对距离为点火源到泄压装置中心点的距离。点火源设置位置如表7所示。
表7点火源与泄爆装置的位置设置Table 7Location setting of ignition source and explosion relief device
图7为泄爆装置与点火源不同相对距离下燃爆舱内的最大压力与泄爆率。由图7可知泄爆装置与点火源的相对距离对泄爆装置的泄爆效果影响较大,泄爆装置与点火源的相对距离越小,泄爆装置的泄爆效果越好。相对距离为4 m时燃爆最大压力为161 kPa,泄爆率为55%,相对距离为0 m时燃爆最大压力为36 kPa,泄爆率为90%,燃爆最大压力下降78%,泄爆率提升35%。但泄爆率的提升幅度随着泄爆装置与点火源相对距离的缩小而降低,泄爆装置与点火源相对距离由4 m缩小至3 m时泄爆率提升16%,泄爆装置与点火源相对距离由1 m缩小至0 m时泄爆率仅提升3%。
图7 不同相对距离下换电舱燃爆的最大压力与泄爆率
Fig. 7 The maximum explosion pressure and venting rate of the container under different relative distances
当泄爆装置距离点火源越近时,爆炸产生的冲击波以及未点燃的可燃气体可以更快地从泄爆装置传播至舱外,舱内冲击波加速距离短且参与爆炸的可燃气体减少,泄爆装置泄爆效果提升。由于舱体内点火源具有不确定性,在对舱体设置泄爆装置时,可采取分散式布局并在易产生火源的位置布置泄爆装置,降低可能存在的点火源到泄爆装置的相对距离以达到最佳泄爆效果。
3.3 泄爆装置位置对泄爆效果影响的模拟研究
目前对于预制舱泄压孔位置的设置具有多种方式,包括预制舱前后部、侧部、上部等位置,本文通过仿真模拟研究了泄爆装置的位置对泄爆效果的影响,并确定泄爆装置的最佳设置位置。模拟中分别在舱体前部、侧部、上部设置了开启压力为3 kPa以及开启面积1 m×1 m的泄爆装置。泄爆装置设置位置如表8所示。
表8 点火源与泄爆装置的位置设置
Table 8 Location setting of ignition source and explosion relief device
图8为不同泄爆装置位置下换电舱燃爆产生的最大压力。由图8可知,当泄爆装置设置在后部时,燃爆最大压力为43 kPa,泄爆率为88%;当泄爆装置设置在侧部时,燃爆最大压力为126 kPa,泄爆率为65%;当泄爆装置设置在上部时,燃爆最大压力为161 kPa,泄爆率为55%。泄爆率由高到低为后部、侧部与顶部。
图8 不同泄爆装置位置下换电舱燃爆的最大压力
Fig. 8 The maximum explosion pressure of the container at different positions of explosion relief devices
受预制舱结构影响,燃爆产生的火焰波加速距离在x、y、z三个方向上存在差异。因为在y方向上具有更长的加速距离,前驱冲击波具有更大的传播速度并推动更多的未燃气体沿y方向运动,加之后部的泄爆装置垂直于火焰与冲击波运动方向,使得火焰波与未燃气体更快地泄放至舱外,产生最佳泄爆效果。
4 结论
本工作参照某综合能源站内换电站建立了并列式预制舱换电站三维仿真模型,以磷酸铁锂电池模块热失控产生的气体作为可燃气体,通过CFD模拟,揭示了某并列式预制舱换电站爆炸冲击波的传播与影响,并分析了不同泄爆装置的作用效果,给出了泄爆装置的相关建议。结果表明:
(1)现有换电站结构下,电池热失控引发的可燃气云爆炸最坏事故场景的最大燃爆压力可达357 kPa,燃爆事故发生后0.1 s内舱体薄弱部位均被破坏,冲击波从百叶窗与排气扇处迅速传播至舱外,爆炸冲击波最大影响范围位于燃爆舱百叶窗后方约21 m处,冲击波对并列式换电站邻侧换电舱影响不大;综合能源站平面布局应充分考虑换电站燃爆事故影响,避免换电站薄弱部位与油气氢设施布置在同侧,降低多米诺事故可能性。
(2)通过泄爆装置,爆炸产生的火焰波与未被点燃的可燃气体迅速泄放至燃爆舱外,减少参与爆炸反应的气体总量,大幅降低换电舱内燃爆事故冲击波超压,通过设置泄爆装置最大爆炸压力可降低90%。
(3)泄爆装置的泄爆效果受泄爆装置开启压力、设置位置以及开启方向影响。泄爆装置开启压力越小、与点火源相对距离越近,泄爆效果越好;泄爆装置设置在换电站后部时具有最佳泄爆效果,泄爆率由高到低为后部、侧部与顶部;泄爆装置应采取分散式布局并在易点火位置布置,且尽可能降低开启压力以提高泄爆效果。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网讯:3月31日,浙江温州市发改委、温州市住建委、以及温州市消防救援支队联合印发《温州市用户侧电化学储能电站消防技术导则》(试行)、《温州市微型预制舱式电化学储能电站消防技术导则》(试行)。这也是全国首部地市级用户侧储能消防技术导则。据温州市发改委负责人称,作为全国用户侧储能
文丨北极星储能网北极星储能网讯:3月28日,新风光1GWh储能直流侧、1GWh储能电芯以及储能工业空调、储能消防系统、储能水冷系统等框采开标,共计33家企业入围中标候选人!详细名单见下文。其中储能直流侧系统方面,10家企业入围一标段1GWh,整体报价范围为0.3685~0.4296元/Wh,平均报价为0.3931元/Wh。
在莫斯兰丁储能系统发生火灾之后,加利福尼亚州政府以及地方政府迅速采取行动,通过提议新法案或通过立法以加强对电池储能系统运营管控。2025年1月16日下午,在加利福尼亚州蒙特利县运营的莫斯兰丁储能系统发生火灾,导致当地1200至1500名居民紧急疏散。蒙特雷县政府在此次火灾次日举行的新闻发布会表
2025开局DeepSeek大火,这个被誉为“国运级的科技革命”席卷各大行业。如果当下赶不上人工智能AI的顺风车,也许储能也难撑到下一个春天。电力市场深化改革,储能迎新挑战在AI技术席卷全球的浪潮下,储能行业迎来了前所未有的机遇与挑战。随着电力市场的深化改革,以及浙江、江苏、四川多地“绿电直供”
储能电站主要有直流侧集装箱,交流侧PCS及变压器等设备,布置间距是指在储能系统中,直流侧电池集装箱相互之间,电池箱和PCS升压箱之间,水平和垂直间隔距离。安全间距需要考虑多个因素,包括电池类型、电池容量、电池数量、充放电速率、环境温度等。这个安全间距的确定需要根据具体的电池类型来确定,
作者:张文婧肖伟伊亚辉钱利勤单位:长江大学机械工程学院引用:张文婧,肖伟,伊亚辉,等.锂离子电池安全改性策略研究进展[J].储能科学与技术,2025,14(1):104-123.DOI:10.19799/j.cnki.2095-4239.2024.0579本文亮点:1.根据锂离子电池热失控机制,总结了在电池部件集流体上最具有创新性的改进方法:将集
文丨北京城市管理委员会北极星储能网讯:3月12日,北京市地方标准《电力储能系统建设运行规范》公开征求意见,该文件于2021年首次发布,本次为第一次修订。本文件由北京市城市管理委员会提出并归口,由北京市城市管理委员会组织实施。规定了电力储能系统的设计、施工、验收、运行维护及退役和应急处置
北极星储能网讯:3月10日,由应急管理部天津消防研究所等单位承担的推荐性行业标准《电化学储能系统火灾抑制试验方法》公开征求意见。本标准适用于额定容量不小于100kWh的预制舱式磷酸铁锂电池储能系统火灾抑制试验方法。额定容量小于100kWh的电池储能系统可参照执行。本标准不适用于三元体系的锂离子
北极星储能网讯:据韩国全罗南消防局3月9日消息,当天下午2点07分,接到报告称,位于康津洞的光伏储能设施发生火灾。消防部门启动了第一阶段的响应,动员了18辆消防车和43名人员灭火。主要火势已得到控制,其余火势正在被扑灭。一名消防员因肩部和背部烧伤被送往医院,无生命危险。经确定,500多平方米
为进一步提升我市电化学储能项目安全监管工作水平,2月27日至28日,珠海市发展和改革局党组成员、副局长黄碧青同志带领能源安全监管科相关负责同志、市能源安全专家、市应急安全协会负责人赴广州市发展改革委、佛山市发展改革局及南方电网储能公司开展专题调研,重点调研学习了电化学储能安全监管机制
2025年2月9日,国家发改委联合国家能源局正式取消了持续8年的新能源配储强制要求,上网电量全面进入电力市场。政策解绑后,风光电站初始投资成本将显著降低,伴随2025年煤碳达峰的时间节点,新增用能需求会大幅依赖新能源装机实现,叠加近年来绿电装机快速增长现状,增量项目将对电网产生巨量冲击。新
据外媒报道,英国约有2.5GW电池储能系统在T-1和T-4容量市场(CM)的拍卖中中标,同时这些储能项目融资总额达约10亿英镑,其中包括Zenobē、Constantine和Quinbrook等公司融资。在T-1和T-4的容量市场拍卖中,总计2.5GW电池储能系统中标。英国国家能源系统运营商(NESO)公布了未来一年(T-1)和未来四年
北极星储能网获悉,4月1日晚间,海博思创发布公告,公司于近日完成了工商变更登记和备案手续,并取得了由北京市海淀区市场监督管理局换发的《营业执照》,变更后的相关工商登记信息如下:名称:北京海博思创科技股份有限公司统一社会信用代码:9111010858587583XQ类型:股份有限公司(港澳台投资、上市
3月29日,南网科技发布2024年度报告。公司实现营业收入30.14亿元,较上年同期增长18.77%;归属于上市公司股东的净利润为3.65亿元,较上年同期增长29.79%;归属于上市公司股东的扣除非经常性损益的净利润为3.45亿元,较上年同期增长30.6%,公司主营业务持续健康稳定发展。南网科技表示,报告期内公司经
随着新能源装机量的井喷式增长,储能电站正从配角走向能源革命的核心舞台。据CESA储能应用分会产业数据库不完全统计,2024年新型储能新增装机达42.46GW/109.58GWh,功率规模同比增长99.17%,容量规模同比增长129.56%。但与之相伴的,是后市场运维压力呈指数级攀升。当储能系统复杂度超过传统火电的3倍
日前,独立电力运营商ClearwayEnergy公司表示,该公司已经完成融资,开始在美国犹他州建设其320MW/1280MWh的Honeycomb电池储能组合。该组合由四个电池储能系统组成,分别与ClearwayEnergy公司运营的太阳能发电场配套。每个电池储能系统的装机容量为80MW,储能容量320MWh,将采用特斯Megapacks电池储能
在河西走廊的新能源核心区,一座占地60亩的巨型“电力银行”拔地而起——临泽天海100MW/400MWh共享储能电站。项目配备110千伏升压站及2公里输出线路,通过32个储能单元昼夜校准新能源与电网的共振频率,破解风光电波动性难题,成为甘肃省构建新型电力系统的标杆工程。与此同时,天合智慧云平台实时追踪
据外媒报道,日前,总部位于英国的开发商HarmonyEnergy公司波兰分公司表示,该公司已经向法国能源开发商EDFRenewablesPolska公司出售了计划在波兰部署的200MW/400MWh电池储能系统。HarmonyEnergy公司的波兰分公司没有透露该项目更多细节,只透露了其规模。该公司表示,此次出售是在仲量联行的协助下完
在近期举行的2025年欧洲储能峰会上,调研机构WoodMackenzie公司分析师KevinShang和AnnaDarmani接受了行业媒体采访,深入剖析了欧洲电池行业市场格局。FreyrBattery公司计划在挪威莫伊拉纳建设电池生产工厂他们探讨了电池供应链持续变化以及欧洲客户对储能电池供应商和系统集成商日益严格的要求。讨论的
对比2024年、2025年政府工作报告,从去年全国两会提出“降低2.5%左右”到今年“降低3%左右”,单位国内生产总值能耗预期目标的变化彰显出我国加快经济社会发展全面绿色转型的决心和力度,也对各行各业产能优化升级提出新的要求。作为推动经济社会发展的重要引擎,能源行业的产能优化是涉及国家战略安全
继前段时间波兰推出总预算超过40亿兹罗提(约10亿美元)储能投资支持计划后,波兰国有发电集团PGE再放大招,宣布投入约180亿兹罗提(约47亿美元)加码储能赛道。这一战略性投资将显著提升波兰能源系统的稳定性。根据规划,到2035年,PGE将通过新建储能设施实现10GWh的容量扩张,届时集团总储能容量将达
北极星储能网获悉,近日,内蒙古化德县第一批电网侧独立新型储能电站示范项目40MW/160MWh电化学储能系统设备已获批准采购,项目业主为国水集团化德风电有限公司,招标人为三峡物资招标管理有限公司,招标代理机构为三峡国际招标有限责任公司。采购资金来自项目业主自有资金和自筹资金。据悉,本项目40M
北极星储能网获悉,4月2日,德业股份发布全资子公司签署项目投资协议的公告,公告显示,本次投资项目名称为宁波德业科技股份有限公司之全资子公司宁波德业储能科技有限公司(以下简称“德业储能”)与慈溪滨海经济开发区管理委员会签署《投资协议书》,在慈溪滨海经济开发区投资建设年产16GWh工商储生
文丨新能安
北极星储能网讯:近日,全国各地2025年4月代理购电价格陆续公布。共有17个省市最大峰谷电价差超过了0.6元/kWh,其中电价差较大的区域分别为广东的1.2828元/kWh,其次上海、湖南、四川、河北、浙江都超过1元/kWh,值得注意的是南方区域贵州、海南已经进入了前列。此外,与去年同期相比,河北、内蒙古的
三月底,工商业储能市场价格战硝烟再起。短短十天内,弘正储能报出“0.486元/Wh”、长园能源给出“0.478元/Wh”的价格,两度刷新了今年一月份博时储能打出的“0.499元/Wh”储能系统最低价。要知道,不到一年前,工商储每瓦时价格还维持在0.8元以上。去年六月,明美新能源以0.72元/Wh创下当时业内新低价
2025年3月28日,金风科技全资子公司北京金风零碳能源有限公司,在常州金坛制造基地成功举办“2025金风零碳工商业储能首次战略合作伙伴交流大会”。行业专家、合作企业代表及新能源领域专业人士齐聚一堂,共同围绕工商业储能的发展蓝图与合作契机展开深度研讨。在全球能源转型加速的背景下,工商业储能
当下,工商业储能因具有明显的市场化特性,被视为是更具发展潜力的细分赛道。随着绿色低碳转型深入推进和储能成本快速下降,储能开始步入各类工商业用户、广泛应用于各种场景。不过,这种广泛应用反而成了储能的迷雾森林,令很多企业迷失方向。可开发区域高度集中,众多参与者纷纷涌入、致使竞争压力与
工商业储能已经不再是一款产品打天下时期了。2023年,工商业储能市场刚开始爆发的时候,面对多元化场景,如何设计一款适用性强的标品是工商业储能企业的“统一命题”,“随大流”是一个风险更低的市场策略,因此,大多数企业的产品无论是外观还是参数基本上趋同。与此同时,产品高度“同质化”,也成为
近日,正泰电源与土耳其一家能源与工程企业正式签署合作协议,双方将围绕工商业储能展开深度合作。依据协议,正泰电源将为该企业的工厂提供125kW/261kWh工商业储能系统,将采用并网与离网双模式运行,不仅能够优化用电成本、减少电网波动对生产的影响,还可通过智能调控实现电力供需的动态平衡,来提升
迈入2025年,新能源产业由“规模扩张”迈入“价值运营”时代,尤其是分布式新能源应用领域,呈现出蓬勃发展且格局多元的态势。其中,分布式光伏配储成为重要增量市场,工商业光储、光储充一体化诉求持续增加。市场的蓬勃背后,是分布式光储对于电站信息化、精细化管理运营的需求。在此背景下,国能日新
3月20日,以“开启储能‘智驾’时代”为主题的弘正储能数字化系统COSMOS2.0发布暨2025智储生态大会在上海盛大启幕。本次发布会由弘正储能(上海)能源科技有限公司主办,中关村储能产业技术联盟、中国能源报共同支持,来自政界、学界、产业界及资本领域的近千位嘉宾,共同见证了弘正储能新一代数字化储
2025年,全球能源转型进入深水区。一方面,国内工商业储能领域价格战愈演愈烈。近日,弘正储能爆出0.486元/Wh阶梯价格、科陆电子推出“1亿元补贴2500台”,此领域的卡位战、淘汰赛仍将持续激化。在价格内卷的同时,500kWh左右的工商业储能新品正在加速出炉,同时AI在工商业储能的运用也正在打开新的空
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!