登录注册
请使用微信扫一扫
关注公众号完成登录
图1 基于火力电站改造的熔盐卡诺电池储能系统示意图
(1)充电过程:电力驱动热泵循环压缩机C1将工质压缩至高温高压状态,高温高压工质在热源换热器Hh和储电介质换热,工质温度降低,将工质热量传递给储电介质。之后中温循环工质经过回热器Hr和冷源换热器Hc出口的低温循环工质换热,温度进一步降低,接着低温高压的循环工质经过膨胀机T1做功变为低温低压状态。随后,循环工质进入冷源换热器Hc和冷源换热,温度升高,而后进入回热器Hr进一步升温,最后中温低压的工质进入压缩机C1进入下一次热力循环。经过上述热泵循环,将电能转化成储电介质的热能,实现电转热。
(2)放电过程:高温熔盐罐HT中泵出的高温熔盐分为两股,其中一股高温熔盐进入过热器SH和来自蒸发器EV的蒸汽进行换热,使得蒸汽达到所需的主蒸汽温度,此过程蒸汽温度升高,熔盐温度降低。随后高温高压的蒸汽进入高压缸HPT,冲击高压缸HPT内的转子叶片,推动轴承旋转,在高压缸HPT中将蒸汽的热能转换为转子的机械能;另一股高温熔盐进入再热器RH和高压缸HPT部分抽汽进行换热,使得蒸汽达到所需的再热蒸汽温度。此过程蒸汽温度升高,熔盐温度降低,再热后的部分高温抽汽进入中压缸IPT。随后在中压缸IPT和低压缸LPT中将蒸汽的热能转换为转子的机械能。换热后的两股中温熔盐合并为一股进入蒸发器EV和预热器PH进一步与低温蒸汽换热,温度较低的低温熔盐回到低温熔盐罐TH中进行下一次热力循环。最后,通过发电机将机械能转化为电能。上述放电过程中,高温熔盐用来驱动朗肯循环发电,实现热转电。
需要补充说明的是,实际应用中,充电过程也可以通过直接电加热熔盐来完成,本工作后续会具体分析变工况下的电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率的区别。此外,假如电站作为电力系统基础负荷,锅炉持续运行时,当电网处于谷电且锅炉不能适时地变负荷来满足供需平衡时,系统可通过适量抽取汽轮机中的蒸汽,并将高温蒸汽热量用来加热熔盐储电工质,减小汽轮机的输出功率,以达到调峰和储热的作用。而当电网处于峰电且锅炉负荷不能实时地变负荷来满足供需平衡时,可通过释放高温储罐中的热盐与锅炉共同作用,来增加汽轮机的输出功率。由于本工作重点讨论热泵循环的关键参数影响,因此下述分析中熔盐卡诺电池储能系统的锅炉均无负载,不参加储能过程。
1.2 储能系统数学模型
在建立能量分析过程中,本工作设立几点假设:
① 其中忽略换热器和管道的压降;
② 所有操作过程均达到稳定状态;
③ 压缩过程和膨胀过程均是绝热;
④ 放电过程中膨胀机的等熵效率和机械效率是恒定的。
1.2.1 储电部分
初始循环工质为氩气,无回热的热泵循环压比为12.4,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98;有回热的热泵循环压比为3,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98。压缩机出口温度均为589 ℃,冷源入口温度均为27 ℃,熔盐入口和出口温度分别为290 ℃和560 ℃。
压缩机出口压力、压缩机出口温度、压缩机耗功为:
2 模型验证与参数分析
2.1 系统建模与验证
本工作在Aspen Plus平台中分别搭建了热泵、熔盐蒸发器和燃煤电厂等子系统,模拟获得系统的热力参数及性能。对于发电部分,研究对象是国产亚临界600 MW机组,型号为N600-16.7/537/537,机组回热采用“三高、四低、一除氧”。对于汽轮机部分,流程组分选择Water工质,物性方法选择STEAM-TA。为验证Aspen软件模拟火电厂热力性能的准确性,对三种典型工况(100%额定工况、75%额定工况和30%额定工况)进行了模拟,将三个工况下汽轮机的电功率、热耗率及热效率等热力指标与设计值进行了对比,见表1。结果表明,模拟值与电厂的汽轮机设计值具有高度的一致性,不同工况下的电功率、热耗率和热效率模拟值与设计值误差均低于0.1%。上述对比表明,本工作模型具有较高的准确性。
表1 典型工况下系统热力指标与模拟值对比
对于熔盐蒸发器系统,换热器用HeatX模块进行搭建,换热器熔盐侧物性选择WILSON,汽水侧选择STEAM-TA。熔盐蒸发器中熔盐侧和汽水侧的温度和流量等参数见表2。此模型和文献[21]关系吻合。
表2熔盐蒸发器热力参数
对于热泵系统,循环工质选用氩气、储热介质选择太阳盐(60% NaNO3-40% KNO3),另一侧介质选用甲醇的无回热的模型与文献[22]进行对比验证,结果见表3。结果表明,热泵模型具有较高的准确性。
表3热泵参数对比
2.2 热泵参数影响分析
由于热泵的设计对充电和整个储能系统的往返效率起着决定性的作用。因此,本节分析有回热和无回热的热泵构型及热泵参数对热泵制热系数和整个储能系统效率的影响规律。本工作首先分析不同热泵循环工质的影响并确定合适的循环工质;而后分析热泵热源入口温度的影响,确定熔盐进出口温度,进而确定热泵制热量。在此基础上分析热泵循环中压缩机/膨胀机的等熵效率/机械效率、冷源入口温度、压缩机入口温度和热泵工质流量的影响规律。为了控制变量的原则,在各变量的参数分析过程中,系统其他固定变量的取值汇总如表4所示。
表4热泵参数中变量和固定变量的取值汇总表
2.2.1 循环工质
由于循环工质的物理性质不同,工质的选取会直接影响热泵的制热系数和整个储能系统效率。本研究选取了氩气、氮气和二氧化碳等3种代表性气体作为热泵系统中的循环工质。计算过程中,系统有回热且锅炉无负载,压缩机的压比为3,压缩机出口温度为589 ℃,冷源入口温度均为27 ℃,热源换热器Hh熔盐侧进出口温度分别为290 ℃和560 ℃。表5给出了3种热泵循环的工质流量、COP、回热器热负荷Qr及储能系统RTE的模拟结果。结果表明,氩气、氮气和二氧化碳作为循环工质时,热泵COP分别为1.299、1.306和1.296,储能系统RTE分别为56.73%、57.03%和56.60%,结果区别并不明显。
表5不同工质类型对热泵COP和储能系统RTE的影响
然而,三者的压缩机入口温度分别为261.5 ℃、350 ℃和432 ℃,回热器热负荷Qr分别为883.02 MW、1508.07 MW和2552.38 MW。氮气可以看作双原子理想气体,比热容比为1.40;氩气作为单原子气体,比热容比为1.66。根据式(7)可得,当冷股入口温度一定时,出口温度越低,焓值越低,热负荷越低,所以氩气作为热泵循环工质时回热器热负荷Qr最低。在参考文献[10]及本工作研究结果后,本工作后续分析中热泵系统的循环工质选择氩气。
2.2.2 热源入口温度
当熔盐出口温度一定时,为了维持能量平衡,熔盐入口温度的变化会导致循环工质侧出口温度、热源换热器制热量Qh以及膨胀机T1做功量Wt变化,从而会导致热泵的制热系数和整个储能系统效率的变化。图2依次为无回热和有回热时熔盐入口温度对热泵COP的影响。从图2可以看出,热泵COP随着熔盐入口温度的升高而降低。由图2(a)和(b)可得,熔盐入口温度从285 ℃升高到320 ℃时,无回热系统循环净功W0从896.75 MW减少到820.25 MW,热泵COP下降了0.05。有回热系统的热源回热器热负荷Qh从1097.22 MW大幅减少到959.15 MW,循环净功从820.25 MW减少到773.49 MW,热泵COP下降了0.1。可以看出,熔盐入口温度对有回热系统的热泵COP影响波动更大。熔盐入口温度的变化会影响熔盐蒸发器模块中蒸汽的出口温度的变化,导致汽轮机效率的变化。考虑到本工作所用的二元硝酸盐的工作温度,后续研究中Hh熔盐侧进、出口温度分别为290 ℃和560 ℃。
图2 熔盐入口温度T0对热泵COP的影响(a) 无回热;(b) 有回热
2.2.3 压缩机/膨胀机等熵效率
实际压缩机和膨胀机工作时一般多为多变过程,随着压缩/膨胀过程的等熵效率的变化,压缩机C1的功耗Wcomp和膨胀机T1的做功Wtur也在发生变化,从而会导致热泵系统的COP和整个系统往返效率的变化。图3依次给出了无回热和有回热时压缩机/膨胀机等熵效率的变化对热泵COP和储能系统RTE的影响。由图3(a)和(b)可得,热泵的COP随着等熵效率的升高而迅速升高,基本呈线性关系。当压缩机等熵效率为0.90,膨胀机等熵效率由0.86增大到0.90时,无回热热泵COP从1.15提高到了1.21,有回热热泵COP从1.30提高到1.37;而当膨胀机等熵效率为0.90,压缩机等熵效率由0.86提高到0.90时,无回热热泵COP从1.16提高到了1.21,有回热热泵COP从1.27提高到了1.37。因此可得,无回热时膨胀机的等熵效率对热泵COP的影响大于压缩机;有回热时则是压缩机等熵效率的影响更大。由图3(c)可得,随着等熵效率从0.86提高到0.90,无回热和有回热储能系统RTE分别从47.89%、54.23%提高到52.93%、57.93%。这表明等熵效率的变化对无回热的储能系统RTE的影响更大。
图3 压缩机/膨胀机等熵效率ηl对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.4 压缩机/膨胀机机械效率
轴承摩擦、空气阻力等导致压缩机/膨胀机机械效率下降会直接影响热泵储热过程中输入/输出的轴功和储能过程的功量,从而影响整个储能系统的往返效率。图4依次给出了无回热和有回热时压缩机/膨胀机机械效率的变化对热泵COP和储能系统RTE的影响。由图4(a)和(b)可得,热泵的COP随着机械效率的升高而升高。当压缩机机械效率为1.00,膨胀机机械效率从0.95增加到1.00时,无回热热泵COP从1.14提高到了1.21,有回热热泵COP从1.30提高到1.37。而当膨胀机机械效率为1.00,压缩机机械效率由0.95提高到1.00时,无回热热泵COP从1.08提高到了1.21,有回热热泵COP从1.23提高到了1.37。因此可得,无/有回热压缩机的机械效率对热泵COP的影响均大于膨胀机。由图4(c)可得,随着机械效率从0.95提高到1.00,无回热和有回热系统RTE分别从44.79%、52.61%提高到52.93%、57.93%。这表明机械效率的变化对无回热的储能系统RTE的影响更大。
图4 压缩机/膨胀机机械效率ηm对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.5 冷源入口温度
冷源入口温度的变化会对冷源换热器热负荷Qc以及循环工质出口温度有一定影响,会影响压缩机/膨胀机的耗功/做功量,进而影响整个储能系统的往返效率。图5依次给出了无回热和有回热时冷源入口温度的变化对热泵COP和储能系统RTE的影响。由图5(a)和(b)可得,热泵的COP随着冷源入口温度的升高而升高。无回热时,冷源入口温度从17 ℃提高到67 ℃,循环工质的温度也随之升高,不再需要很大的压比即可达到所需的温度,压缩机压比从13.5降到了9.12。有回热时,为了控制变量,保证压缩机出口温度不变,当冷源温度从17 ℃提高到67 ℃,回热器不再需要很高的热负荷即可达到压缩机入口所需的温度,回热器负荷从921.67 MW降到了734.87 MW。由图5(c)可得,随着冷源入口温度从17 ℃提高到67 ℃,无回热和有回热系统RTE分别从52.18%、57.03%提高到56.73%、61.46%。这表明适当地提高冷源的入口温度可以提高热泵COP和储能系统的RTE。
图5 冷源入口温度T1对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.6 压缩机入口温度
压缩机入口温度改变会导致压缩机耗功变化,同时回热器出口循环工质的温度也会随之变化,导致膨胀机做功和净功发生改变,从而影响整个储能系统的往返效率。图6为有回热时热泵压缩机入口温度对热泵COP和RTE的影响。由图6可得,热泵的COP和储能系统的RTE随着热泵循环工质流量的增加而降低。当压缩机入口温度从261.5 ℃升高到298 ℃,循环净功W0从811.75 MW增加到867 MW,热泵COP从1.37下降到了1.24,储能系统RTE从57.92%下降到了54.23%。由此可知,当热泵压缩机压比一定时,在满足制热量的范围内,适时地降低热泵压缩机入口温度,可以提高热泵COP和储能系统的RTE。
图6 压缩机入口温度T2对热泵COP和储能系统RTE的影响
2.2.7 循环工质流量
循环工质流量的变化会导致压缩机/膨胀机的耗功/做功量的变化,进而影响整个储能系统的往返效率。图7为有回热时热泵循环工质流量对热泵COP和RTE的影响。由图7可得,当循环工质流量从6800 kg/s提高到7225 kg/s,热泵系统的循环净功W0从811.75 MW增加到845.75 MW,热泵COP从1.37降低到1.27,储能系统RTE从57.92%降低到55.59%。由此可知,在满足制热需求的同时,适当地减小热泵的循环工质流量,可提高热泵COP和储能系统的RTE,甚至可以提高系统的经济性。
图7 循环工质流量m0对热泵COP和系统RTE的影响
2.3 电加热/热泵储能系统对比
图8为锅炉无负载时,汽轮机额定工况(100% THA)、75%额定工况(75% THA)和30%额定工况(30% THA)三种工况下直接采用电加热熔盐和利用热泵循环加热熔盐的两种不同卡诺电池储能系统的效率和同等工况下原燃煤电厂的效率对比。其中,燃煤电厂的锅炉热效率为0.91,电加热效率为0.97,热泵COP为1.41。由图8可得,汽轮机100% THA时,电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率分别可达到42.34%和61.46%;汽轮机75% THA时,电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率分别为40.89%和59.31%;汽轮机30% THA时,电加热熔盐储能系统和利用热泵循环加热熔盐储能系统效率分别为37.56%和54.49%。不同工况下利用热泵循环加热熔盐卡诺电池储能系统效率最高,其次是电加热熔盐卡诺电池储能系统,由于电加热的效率高于锅炉的效率,所以原燃煤电厂效率最低。因此可得,热泵循环加热熔盐卡诺电池储能系统在燃煤电厂改造成储能电站方面有着极大的发展潜力。
图8 燃煤电厂(CFPP)、电加热储能系统(EH)、热泵储能系统(HP)效率对比
3 结论
本工作搭建了面向火电站改造的熔盐卡诺电池储能系统,模拟了储能系统的热力学分析模型,探究了热泵部件参数对熔盐卡诺电池储能系统的影响规律,并对比了不同工况下利用热泵循环加热熔盐和电加热熔盐卡诺电池储能系统的效率。本工作的主要结论如下:
(1)储能系统电转热部分的热泵循环工质采用氮气时,热泵制热系数和储能系统效率最高,分别为1.306和57.03%;采用氩气时,热泵制热系数较高,回热器热负荷最低,分别为1.299和883.02 MW;而采用二氧化碳时,热泵制热系数和储能系统效率最低,分别为1.296和56.90%。当氩气循环工质流量为6800 kg/s,等熵效率为0.9,机械效率为1.0,冷源温度为67 ℃时,热泵制热系数为1.41,储能系统效率达到61.46%。
(2)提高等熵效率、机械效率和冷源入口温度有助于增大热泵制热系数和储能系统效率,而增加循环工质流量和压缩机入口温度则会降低热泵制热系数和储能系统效率。其中,压缩机/膨胀机的机械效率对系统的热泵制热系数和储能系统效率影响最大,冷源入口温度、热源入口温度和压缩机/膨胀机的等熵效率的影响次之,循环工质流量、压缩机入口温度影响较小,在制热量一定的前提下循环种类的影响最小。
(3)在额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.16%;在75%额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.05%;在30%额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.07%。
符号说明
符号 —— 符号说明
CFPP —— 燃煤电厂
COP —— 热泵制热效率
CT —— 冷却塔
EH —— 电加热
EV —— 蒸发器
G —— 发电机
H2P —— 电转热
h —— 焓值,kJ/kg
Hc —— 冷源换热器
Hh —— 热源换热器
Hr —— 回热器
HP —— 热泵
HPT —— 高压缸
Hj —— 第j级加热器
IPT —— 中压缸
LPT —— 低压缸
m —— 质量流量,kg/s
MSEV —— 熔盐蒸发器
P2H —— 热转电
PH —— 预热器
Q —— 热量,kW
RH —— 再热器
RTE —— 往返效率,%
SH —— 过热器
TES —— 储热
T —— 温度,K
W —— 功,kW
W0 —— 净功,kW
ηm —— 机械效率,%
ηl —— 等熵效率
—— 压比
下角标
in —— 入口
out —— 出口
comp —— 压缩
tur —— 膨胀
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
7月15日,中能建储能科技(武汉)有限公司与领湃科技集团股份有限公司(以下简称“领湃科技”)战略合作签约仪式暨领湃科技独山子区30万千瓦源网荷储一体化项目270MWh储能系统交付仪式在武汉顺利举行。领湃科技董事长谭爱平与公司董事长赵勇出席仪式。赵勇对谭爱平一行的到来表示欢迎,并对公司概况、
日前,西班牙开发商和独立电力生产商(IPP)Zelestra公司宣布,该公司正在智利建设的Aurora太阳能+储能项目已经完成融资,该项目包括一个220MW太阳能发电场和一个1GWh电池储能系统。该项目获得了法国外贸银行(NatixisCIB)和法国巴黎银行(BNPParibas)提供的2.82亿美元融资,并获得智利BCI银行提供的
北极星太阳能光伏网获悉,7月9日,由西安西电新能源总承包建设的水发新动能西藏革吉县30MW光伏+储能项目成功实现并网发电。据悉,该项目总容量30MW,配套建设6MW/24MW·h储能系统,年均发电量7263.62万kW·h,相当于每年节约标准煤约2.18万吨,减少二氧化碳排放约5.99万吨,减少烟尘排放约1234.81kg,
近日,中国电建所属水电九局承建的云南省首个“橙光互补”示范项目#x2014;#x2014;云南玉溪新平漠沙13.5万千瓦农林光互补光伏发电项目正式并网发电,持续为云南省绿色能源发展注入强劲动力,助力当地实现经济效益和社会效益的良性循环。项目位于云南省玉溪市新平彝族傣族自治县漠沙镇境内,光伏场区总用
“关税风险分担”正成为美国储能系统购电协议新常态。7月16日,加州社区选择聚合商(CCA)AvaCommunityEnergy与EDPRenewables签署的两份电池储能系统购电协议(PPA),提交至Ava董事会会议审议。值得关注的是,鉴于投资税收抵免(ITC)激励可能逐步取消等政策风险,其中1份协议中纳入了分担项目成本所
北极星储能网讯:7月17日,天津基于增量配电网174MW/1034MWh长时储能电站项目铅炭电池储能系统采购发布。招标人为天津泰达综合能源服务有限公司,由国有控股的天津泰达电力有限公司全资持股。项目位于天津市滨海新区第六大街、欣泰街、泰华路和泰欣路之间,原天津顶园食品有限公司厂区位置,占地27899
7月16日,中国电力企业联合会电动交通与储能分会发布《电化学储能行业发展报告2025》(简称《报告》)。其中显示,2024年电化学储能运行效率与商业价值实现“双突破”,平均转换效率达88.75%。《报告》分析了9个省份独立储能运营模式,以江苏为例,“充放电价差+顶峰补贴+容量租赁+储能补贴”模式,50M
日本家庭能源转型迎来新选择!近日,固德威日本(GoodWeJapan)公司旗下户用混合型储能系统成功通过日本严苛的JET认证,取得认证编号MD-0077。这标志着固德威产品已完全满足日本市场(安全性、合规性和品质性能)最高标准要求,成为助力日本家庭实现能源智能化、安全性与独立性的可靠力量。权威认证,品
北极星储能网获悉,7月17日消息,近日,通用汽车与电池回收企业RedwoodMaterials达成合作,将为其提供新旧动力电池,后者则将这些电池重新用于储能系统。此前,通用汽车的动力电池已成功应用于Redwood位于内华达州斯帕克斯总部的12MW/63MWh微电网项目中,为附近拥有2000个GPU的数据中心供电。今年6月,
北极星风力发电网获悉:7月17日,在澳大利亚风能大会期间,全球领先的绿色科技企业远景能源与澳大利亚可再生能源开发商FERAAustralia签署合作协议,宣布双方将在澳大利亚国家电力市场(NEM)联合开发大型混合可再生能源项目。这一合作标志着澳大利亚首个此类合作框架的达成,项目目标总装机容量达1GW风
7月9日,市场监管总局、工业和信息化部发布了关于印发《计量支撑产业新质生产力发展行动方案(2025—2030年)》的通知,其中提到,面向太阳能、风能、核能、氢能、海洋能、生物质能、地热能等领域,围绕关键核心技术装备自主化发展、能源生产储运基础设施建设、储能系统及相关装备研究及产业化等方向计
日前,国家能源局批准《压缩空气储能电站设计规范》等304项能源行业标准,涉及光伏标准6项:《户用光伏发电系统工程质量评价规范》、《光伏发电企业档案分类导则》、《光伏与熔盐储能一体化发电工程设计导则》、《索结构光伏支架技术规程》、《漂浮式光伏支撑系统技术规程》、《光伏发电站功率控制能力
近期,一批独立新型储能电站项目在内蒙古集中开工。6月26日,乌兰察布市察右中旗100万千瓦/600万千瓦时新型储能电站项目开工;6月28日,鄂尔多斯市谷山梁300万千瓦/1280万千瓦时储能电站项目群开工,呼伦贝尔市阿荣旗100万千瓦/400万千瓦时构网型储能电站项目开工;6月30日,乌兰察布旗下营105万千瓦/6
记者从内蒙古自治区能源局获悉,2025年上半年,内蒙古新开工建设独立新型储能电站34个,总装机规模达到1480万千瓦,全区新型储能电站建设步伐加快。近期,一批独立新型储能电站项目在内蒙古集中开工。6月26日,乌兰察布市察右中旗100万千瓦/600万千瓦时新型储能电站项目开工;6月28日,鄂尔多斯市谷山
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
6月28日,中电首航沙雅县储能有限公司发布阿克苏地区沙雅县30万千瓦熔盐储热+电化学(混合型)独立储能示范项目招标公告。本项目在阿克苏地区沙雅县建设100MW/800MWh压缩二氧化碳热泵熔盐储能+200MW/1200MWh电化学储能发电项目。本次招标范围为本项目内200MW/1200MWh电化学储能系统部分的全套设备,采
2025年4月,西班牙全国范围内意外停电,此后西班牙继续推动太阳能利用,实现永不枯竭的能源未来。在短短几个月内,西班牙批准了超过65吉瓦的太阳能项目,启动了新的氢能和电池储能试点项目,并增加了对全球聚变研究的支持。西班牙希望打造一个无需进口能源、无需靠天的发电、储能和维持能源的电网。对
近日,中国能建西北城建承建的新疆吐鲁番鄯善100兆瓦光热发电项目实现全容量并网。项目是新疆第二批大基地项目中首个实现全容量并网的标志性项目,项目位于新疆鄯善县七克台镇,占地面积约50万平方米,项目采用光热熔盐储能可再生能源发电技术。项目建成后,将充分利用吐鲁番光热资源优势,可有效降低
近日,中国电建EPC总承包的南非红石光热电站项目获得南非国家电网公司签发的商业运行证书,标志着项目正式进入商业运行阶段。该项目是撒哈拉以南非洲首个塔式熔盐光热电站,也是南非北开普省最大的投资项目。项目采用了先进的塔式熔盐储能技术,现场安装41260面定日镜,它们所组成的镜场和以247.55米高
为贯彻落实党中央、国务院关于科技创新的重大决策部署,近日,江苏省国信集团成功落地全国首批银行间市场科技创新债券。本次发债将“科技金融”“绿色金融”和“两新”等领域进行了创新结合,成为全国首单唯一绿色两新科技创新债券。此次债券发行规模5.3亿元,期限5年,由工商银行联合建设银行、中国银
近日,中国能建中电工程西北院总承包的国家首批“沙、戈、荒”项目三峡能源青海格尔木100MW光热项目带负荷连续稳定运行6小时实现全系统投运发电,为海西光伏光热基地构建“光伏#x2B;光热”一体化清洁能源体系提供了重要支撑项目位于青海省海西州格尔木市乌图美仁光伏光热基地,装机容量100兆瓦,采用塔
江苏国信扬州发电有限责任公司三期2×1000MW高效清洁燃煤发电扩建项目主体工程A、B标段施工招标公告一、招标条件江苏国信扬州发电有限责任公司三期2×1000MW高效清洁燃煤发电扩建项目主体工程A、B标段施工项目资金为自筹资金。招标人为江苏国信扬州发电有限责任公司。本项目已具备招标条件,现进行公开
在国家发展改革委、国家能源局联合印发《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》(136号文)叫停新能源强制配储后,对市场新增主力的独立储能而言,新能源发电企业为了满足并网要求而购买/租赁储能设施调峰能力的支出或将显著减少。因此,出台新型储能容量补偿机制已迫在眉睫。
7月11日,华北电网用电负荷达到3.26亿千瓦,创新高。当日19时26分,华北地区380座新型储能电站参与集中调用。华北电网新型储能放电电力达到2010万千瓦,山东电网新型储能放电电力达到804万千瓦,分别刷新全国区域级电网、省级电网新型储能放电电力纪录。本次新型储能集中调用支撑了华北电网晚峰保供需
7月16日,中国电力企业联合会电动交通与储能分会发布《电化学储能行业发展报告2025》(简称《报告》)。其中显示,2024年电化学储能运行效率与商业价值实现“双突破”,平均转换效率达88.75%。《报告》分析了9个省份独立储能运营模式,以江苏为例,“充放电价差+顶峰补贴+容量租赁+储能补贴”模式,50M
北极星储能网获悉,7月17日消息,浙江绍兴强化电力气象精准服务保障迎峰度夏安全运行,聚焦新型储能供给侧结构性改革,深度挖掘气象“数据要素×”潜能,联合电力部门研发日照时长和辐射强度预测产品,助力光伏发电资源最大化利用。近期,创新推出光伏资源优化互补预测专业气象服务,为电力部门提供次
北极星储能网讯:7月17日,国家能源局发布2024年度中国电力市场发展报告。报告提出,新型储能、虚拟电厂等新业态加速发展,为新型电力系统建设注入新动能。2024年,我国新型储能参与电力市场呈现“政策框架统一、区域差异化探索、技术多元化应用”的特征,通过参与电能量市场、辅助服务市场等多途径实
近期,国家连续发布《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》(发改价格〔2025〕136号文)(以下简称136号文)、《电力辅助服务市场基本规则》(发改能源规〔2025〕411号)、《关于全面加快电力现货市场建设工作的通知》(发改办体改〔2025〕394号)(以下简称394号文)等系列政
近日,大唐湖北50MW/100MWh钠离子新型储能电站科技创新示范项目在武汉成功通过验收。该项目于去年6月在熊口管理区建成投运,实现钠离子新型储能技术全球首次大规模商业化应用。其储能系统解决方案、关键核心技术装备均实现100%国产化,电能管理系统关键技术自主可控,有力摆脱了国外技术掣肘。该项目投
北极星售电网获悉,7月15日,广州市发展和改革委员会发布关于市十六届人大五次会议第20252856号建议答复的函。答复文件明确,中国人民银行、国家金融监管总局、中国证监会、国家外汇局、广东省人民政府联合印发的《关于金融支持广州南沙深化面向世界的粤港澳全面合作的意见》发布,意见第9条“创新服务
北极星储能网获悉,7月16日晚间,亨鑫科技发布公告,集团拟于中国山东省滨州市投资建设的800MW/1600MWh电网侧独立储能项目,已成功入选山东省能源局近日发布的2025年度新型储能入库项目公示名单。根据山东省能源局公示信息,该项目以800MW/1600MWh的规划容量成为本批次入选项目中单体规模最大的项目,
北极星储能网讯:7月15日,云南省能源局针对“云南省是否继续推进关于磷酸铁锂储能电站的开发投资建设”的问题进行了回复。回复如下:截至2025年6月底,全省投产并网新型储能498.7万千瓦,技术路线全部为磷酸铁锂,其中集中共享储能项目24个,装机455.5万千瓦。在建集中共享储能项目11个,装机230万千
经济学家萨缪尔森在其所著《经济学》一书中提到“当市场无法有效配置资源,即市场失灵时,政府需介入价格形成”。除了人为价格操纵、市场供需失衡等现象,价格无法全部通过市场形成也是市场失灵的表现,同样需要政府参与价格形成过程。对于政府在价格形成中的经济职能,当前存在许多不全面的观点。有的
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!