登录注册
请使用微信扫一扫
关注公众号完成登录
图1 基于火力电站改造的熔盐卡诺电池储能系统示意图
(1)充电过程:电力驱动热泵循环压缩机C1将工质压缩至高温高压状态,高温高压工质在热源换热器Hh和储电介质换热,工质温度降低,将工质热量传递给储电介质。之后中温循环工质经过回热器Hr和冷源换热器Hc出口的低温循环工质换热,温度进一步降低,接着低温高压的循环工质经过膨胀机T1做功变为低温低压状态。随后,循环工质进入冷源换热器Hc和冷源换热,温度升高,而后进入回热器Hr进一步升温,最后中温低压的工质进入压缩机C1进入下一次热力循环。经过上述热泵循环,将电能转化成储电介质的热能,实现电转热。
(2)放电过程:高温熔盐罐HT中泵出的高温熔盐分为两股,其中一股高温熔盐进入过热器SH和来自蒸发器EV的蒸汽进行换热,使得蒸汽达到所需的主蒸汽温度,此过程蒸汽温度升高,熔盐温度降低。随后高温高压的蒸汽进入高压缸HPT,冲击高压缸HPT内的转子叶片,推动轴承旋转,在高压缸HPT中将蒸汽的热能转换为转子的机械能;另一股高温熔盐进入再热器RH和高压缸HPT部分抽汽进行换热,使得蒸汽达到所需的再热蒸汽温度。此过程蒸汽温度升高,熔盐温度降低,再热后的部分高温抽汽进入中压缸IPT。随后在中压缸IPT和低压缸LPT中将蒸汽的热能转换为转子的机械能。换热后的两股中温熔盐合并为一股进入蒸发器EV和预热器PH进一步与低温蒸汽换热,温度较低的低温熔盐回到低温熔盐罐TH中进行下一次热力循环。最后,通过发电机将机械能转化为电能。上述放电过程中,高温熔盐用来驱动朗肯循环发电,实现热转电。
需要补充说明的是,实际应用中,充电过程也可以通过直接电加热熔盐来完成,本工作后续会具体分析变工况下的电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率的区别。此外,假如电站作为电力系统基础负荷,锅炉持续运行时,当电网处于谷电且锅炉不能适时地变负荷来满足供需平衡时,系统可通过适量抽取汽轮机中的蒸汽,并将高温蒸汽热量用来加热熔盐储电工质,减小汽轮机的输出功率,以达到调峰和储热的作用。而当电网处于峰电且锅炉负荷不能实时地变负荷来满足供需平衡时,可通过释放高温储罐中的热盐与锅炉共同作用,来增加汽轮机的输出功率。由于本工作重点讨论热泵循环的关键参数影响,因此下述分析中熔盐卡诺电池储能系统的锅炉均无负载,不参加储能过程。
1.2 储能系统数学模型
在建立能量分析过程中,本工作设立几点假设:
① 其中忽略换热器和管道的压降;
② 所有操作过程均达到稳定状态;
③ 压缩过程和膨胀过程均是绝热;
④ 放电过程中膨胀机的等熵效率和机械效率是恒定的。
1.2.1 储电部分
初始循环工质为氩气,无回热的热泵循环压比为12.4,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98;有回热的热泵循环压比为3,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98。压缩机出口温度均为589 ℃,冷源入口温度均为27 ℃,熔盐入口和出口温度分别为290 ℃和560 ℃。
压缩机出口压力、压缩机出口温度、压缩机耗功为:
2 模型验证与参数分析
2.1 系统建模与验证
本工作在Aspen Plus平台中分别搭建了热泵、熔盐蒸发器和燃煤电厂等子系统,模拟获得系统的热力参数及性能。对于发电部分,研究对象是国产亚临界600 MW机组,型号为N600-16.7/537/537,机组回热采用“三高、四低、一除氧”。对于汽轮机部分,流程组分选择Water工质,物性方法选择STEAM-TA。为验证Aspen软件模拟火电厂热力性能的准确性,对三种典型工况(100%额定工况、75%额定工况和30%额定工况)进行了模拟,将三个工况下汽轮机的电功率、热耗率及热效率等热力指标与设计值进行了对比,见表1。结果表明,模拟值与电厂的汽轮机设计值具有高度的一致性,不同工况下的电功率、热耗率和热效率模拟值与设计值误差均低于0.1%。上述对比表明,本工作模型具有较高的准确性。
表1 典型工况下系统热力指标与模拟值对比
对于熔盐蒸发器系统,换热器用HeatX模块进行搭建,换热器熔盐侧物性选择WILSON,汽水侧选择STEAM-TA。熔盐蒸发器中熔盐侧和汽水侧的温度和流量等参数见表2。此模型和文献[21]关系吻合。
表2熔盐蒸发器热力参数
对于热泵系统,循环工质选用氩气、储热介质选择太阳盐(60% NaNO3-40% KNO3),另一侧介质选用甲醇的无回热的模型与文献[22]进行对比验证,结果见表3。结果表明,热泵模型具有较高的准确性。
表3热泵参数对比
2.2 热泵参数影响分析
由于热泵的设计对充电和整个储能系统的往返效率起着决定性的作用。因此,本节分析有回热和无回热的热泵构型及热泵参数对热泵制热系数和整个储能系统效率的影响规律。本工作首先分析不同热泵循环工质的影响并确定合适的循环工质;而后分析热泵热源入口温度的影响,确定熔盐进出口温度,进而确定热泵制热量。在此基础上分析热泵循环中压缩机/膨胀机的等熵效率/机械效率、冷源入口温度、压缩机入口温度和热泵工质流量的影响规律。为了控制变量的原则,在各变量的参数分析过程中,系统其他固定变量的取值汇总如表4所示。
表4热泵参数中变量和固定变量的取值汇总表
2.2.1 循环工质
由于循环工质的物理性质不同,工质的选取会直接影响热泵的制热系数和整个储能系统效率。本研究选取了氩气、氮气和二氧化碳等3种代表性气体作为热泵系统中的循环工质。计算过程中,系统有回热且锅炉无负载,压缩机的压比为3,压缩机出口温度为589 ℃,冷源入口温度均为27 ℃,热源换热器Hh熔盐侧进出口温度分别为290 ℃和560 ℃。表5给出了3种热泵循环的工质流量、COP、回热器热负荷Qr及储能系统RTE的模拟结果。结果表明,氩气、氮气和二氧化碳作为循环工质时,热泵COP分别为1.299、1.306和1.296,储能系统RTE分别为56.73%、57.03%和56.60%,结果区别并不明显。
表5不同工质类型对热泵COP和储能系统RTE的影响
然而,三者的压缩机入口温度分别为261.5 ℃、350 ℃和432 ℃,回热器热负荷Qr分别为883.02 MW、1508.07 MW和2552.38 MW。氮气可以看作双原子理想气体,比热容比为1.40;氩气作为单原子气体,比热容比为1.66。根据式(7)可得,当冷股入口温度一定时,出口温度越低,焓值越低,热负荷越低,所以氩气作为热泵循环工质时回热器热负荷Qr最低。在参考文献[10]及本工作研究结果后,本工作后续分析中热泵系统的循环工质选择氩气。
2.2.2 热源入口温度
当熔盐出口温度一定时,为了维持能量平衡,熔盐入口温度的变化会导致循环工质侧出口温度、热源换热器制热量Qh以及膨胀机T1做功量Wt变化,从而会导致热泵的制热系数和整个储能系统效率的变化。图2依次为无回热和有回热时熔盐入口温度对热泵COP的影响。从图2可以看出,热泵COP随着熔盐入口温度的升高而降低。由图2(a)和(b)可得,熔盐入口温度从285 ℃升高到320 ℃时,无回热系统循环净功W0从896.75 MW减少到820.25 MW,热泵COP下降了0.05。有回热系统的热源回热器热负荷Qh从1097.22 MW大幅减少到959.15 MW,循环净功从820.25 MW减少到773.49 MW,热泵COP下降了0.1。可以看出,熔盐入口温度对有回热系统的热泵COP影响波动更大。熔盐入口温度的变化会影响熔盐蒸发器模块中蒸汽的出口温度的变化,导致汽轮机效率的变化。考虑到本工作所用的二元硝酸盐的工作温度,后续研究中Hh熔盐侧进、出口温度分别为290 ℃和560 ℃。
图2 熔盐入口温度T0对热泵COP的影响(a) 无回热;(b) 有回热
2.2.3 压缩机/膨胀机等熵效率
实际压缩机和膨胀机工作时一般多为多变过程,随着压缩/膨胀过程的等熵效率的变化,压缩机C1的功耗Wcomp和膨胀机T1的做功Wtur也在发生变化,从而会导致热泵系统的COP和整个系统往返效率的变化。图3依次给出了无回热和有回热时压缩机/膨胀机等熵效率的变化对热泵COP和储能系统RTE的影响。由图3(a)和(b)可得,热泵的COP随着等熵效率的升高而迅速升高,基本呈线性关系。当压缩机等熵效率为0.90,膨胀机等熵效率由0.86增大到0.90时,无回热热泵COP从1.15提高到了1.21,有回热热泵COP从1.30提高到1.37;而当膨胀机等熵效率为0.90,压缩机等熵效率由0.86提高到0.90时,无回热热泵COP从1.16提高到了1.21,有回热热泵COP从1.27提高到了1.37。因此可得,无回热时膨胀机的等熵效率对热泵COP的影响大于压缩机;有回热时则是压缩机等熵效率的影响更大。由图3(c)可得,随着等熵效率从0.86提高到0.90,无回热和有回热储能系统RTE分别从47.89%、54.23%提高到52.93%、57.93%。这表明等熵效率的变化对无回热的储能系统RTE的影响更大。
图3 压缩机/膨胀机等熵效率ηl对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.4 压缩机/膨胀机机械效率
轴承摩擦、空气阻力等导致压缩机/膨胀机机械效率下降会直接影响热泵储热过程中输入/输出的轴功和储能过程的功量,从而影响整个储能系统的往返效率。图4依次给出了无回热和有回热时压缩机/膨胀机机械效率的变化对热泵COP和储能系统RTE的影响。由图4(a)和(b)可得,热泵的COP随着机械效率的升高而升高。当压缩机机械效率为1.00,膨胀机机械效率从0.95增加到1.00时,无回热热泵COP从1.14提高到了1.21,有回热热泵COP从1.30提高到1.37。而当膨胀机机械效率为1.00,压缩机机械效率由0.95提高到1.00时,无回热热泵COP从1.08提高到了1.21,有回热热泵COP从1.23提高到了1.37。因此可得,无/有回热压缩机的机械效率对热泵COP的影响均大于膨胀机。由图4(c)可得,随着机械效率从0.95提高到1.00,无回热和有回热系统RTE分别从44.79%、52.61%提高到52.93%、57.93%。这表明机械效率的变化对无回热的储能系统RTE的影响更大。
图4 压缩机/膨胀机机械效率ηm对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.5 冷源入口温度
冷源入口温度的变化会对冷源换热器热负荷Qc以及循环工质出口温度有一定影响,会影响压缩机/膨胀机的耗功/做功量,进而影响整个储能系统的往返效率。图5依次给出了无回热和有回热时冷源入口温度的变化对热泵COP和储能系统RTE的影响。由图5(a)和(b)可得,热泵的COP随着冷源入口温度的升高而升高。无回热时,冷源入口温度从17 ℃提高到67 ℃,循环工质的温度也随之升高,不再需要很大的压比即可达到所需的温度,压缩机压比从13.5降到了9.12。有回热时,为了控制变量,保证压缩机出口温度不变,当冷源温度从17 ℃提高到67 ℃,回热器不再需要很高的热负荷即可达到压缩机入口所需的温度,回热器负荷从921.67 MW降到了734.87 MW。由图5(c)可得,随着冷源入口温度从17 ℃提高到67 ℃,无回热和有回热系统RTE分别从52.18%、57.03%提高到56.73%、61.46%。这表明适当地提高冷源的入口温度可以提高热泵COP和储能系统的RTE。
图5 冷源入口温度T1对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.6 压缩机入口温度
压缩机入口温度改变会导致压缩机耗功变化,同时回热器出口循环工质的温度也会随之变化,导致膨胀机做功和净功发生改变,从而影响整个储能系统的往返效率。图6为有回热时热泵压缩机入口温度对热泵COP和RTE的影响。由图6可得,热泵的COP和储能系统的RTE随着热泵循环工质流量的增加而降低。当压缩机入口温度从261.5 ℃升高到298 ℃,循环净功W0从811.75 MW增加到867 MW,热泵COP从1.37下降到了1.24,储能系统RTE从57.92%下降到了54.23%。由此可知,当热泵压缩机压比一定时,在满足制热量的范围内,适时地降低热泵压缩机入口温度,可以提高热泵COP和储能系统的RTE。
图6 压缩机入口温度T2对热泵COP和储能系统RTE的影响
2.2.7 循环工质流量
循环工质流量的变化会导致压缩机/膨胀机的耗功/做功量的变化,进而影响整个储能系统的往返效率。图7为有回热时热泵循环工质流量对热泵COP和RTE的影响。由图7可得,当循环工质流量从6800 kg/s提高到7225 kg/s,热泵系统的循环净功W0从811.75 MW增加到845.75 MW,热泵COP从1.37降低到1.27,储能系统RTE从57.92%降低到55.59%。由此可知,在满足制热需求的同时,适当地减小热泵的循环工质流量,可提高热泵COP和储能系统的RTE,甚至可以提高系统的经济性。
图7 循环工质流量m0对热泵COP和系统RTE的影响
2.3 电加热/热泵储能系统对比
图8为锅炉无负载时,汽轮机额定工况(100% THA)、75%额定工况(75% THA)和30%额定工况(30% THA)三种工况下直接采用电加热熔盐和利用热泵循环加热熔盐的两种不同卡诺电池储能系统的效率和同等工况下原燃煤电厂的效率对比。其中,燃煤电厂的锅炉热效率为0.91,电加热效率为0.97,热泵COP为1.41。由图8可得,汽轮机100% THA时,电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率分别可达到42.34%和61.46%;汽轮机75% THA时,电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率分别为40.89%和59.31%;汽轮机30% THA时,电加热熔盐储能系统和利用热泵循环加热熔盐储能系统效率分别为37.56%和54.49%。不同工况下利用热泵循环加热熔盐卡诺电池储能系统效率最高,其次是电加热熔盐卡诺电池储能系统,由于电加热的效率高于锅炉的效率,所以原燃煤电厂效率最低。因此可得,热泵循环加热熔盐卡诺电池储能系统在燃煤电厂改造成储能电站方面有着极大的发展潜力。
图8 燃煤电厂(CFPP)、电加热储能系统(EH)、热泵储能系统(HP)效率对比
3 结论
本工作搭建了面向火电站改造的熔盐卡诺电池储能系统,模拟了储能系统的热力学分析模型,探究了热泵部件参数对熔盐卡诺电池储能系统的影响规律,并对比了不同工况下利用热泵循环加热熔盐和电加热熔盐卡诺电池储能系统的效率。本工作的主要结论如下:
(1)储能系统电转热部分的热泵循环工质采用氮气时,热泵制热系数和储能系统效率最高,分别为1.306和57.03%;采用氩气时,热泵制热系数较高,回热器热负荷最低,分别为1.299和883.02 MW;而采用二氧化碳时,热泵制热系数和储能系统效率最低,分别为1.296和56.90%。当氩气循环工质流量为6800 kg/s,等熵效率为0.9,机械效率为1.0,冷源温度为67 ℃时,热泵制热系数为1.41,储能系统效率达到61.46%。
(2)提高等熵效率、机械效率和冷源入口温度有助于增大热泵制热系数和储能系统效率,而增加循环工质流量和压缩机入口温度则会降低热泵制热系数和储能系统效率。其中,压缩机/膨胀机的机械效率对系统的热泵制热系数和储能系统效率影响最大,冷源入口温度、热源入口温度和压缩机/膨胀机的等熵效率的影响次之,循环工质流量、压缩机入口温度影响较小,在制热量一定的前提下循环种类的影响最小。
(3)在额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.16%;在75%额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.05%;在30%额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.07%。
符号说明
符号 —— 符号说明
CFPP —— 燃煤电厂
COP —— 热泵制热效率
CT —— 冷却塔
EH —— 电加热
EV —— 蒸发器
G —— 发电机
H2P —— 电转热
h —— 焓值,kJ/kg
Hc —— 冷源换热器
Hh —— 热源换热器
Hr —— 回热器
HP —— 热泵
HPT —— 高压缸
Hj —— 第j级加热器
IPT —— 中压缸
LPT —— 低压缸
m —— 质量流量,kg/s
MSEV —— 熔盐蒸发器
P2H —— 热转电
PH —— 预热器
Q —— 热量,kW
RH —— 再热器
RTE —— 往返效率,%
SH —— 过热器
TES —— 储热
T —— 温度,K
W —— 功,kW
W0 —— 净功,kW
ηm —— 机械效率,%
ηl —— 等熵效率
—— 压比
下角标
in —— 入口
out —— 出口
comp —— 压缩
tur —— 膨胀
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
5月7日-9日,2025年欧洲智慧能源展览会(TheSmarterEEurope2025)将在德国慕尼黑新国际展览中心盛大开幕。作为欧洲最大的能源行业展览联盟,展会汇集了全球能源领域的领先企业、专家和创新者,共同探讨能源行业的最新趋势、技术和政策。作为新能源领域的佼佼者,德赛电池将携新一代超长寿命储能系统、
近期,多座储能电站获最新进展,北极星储能网特将2025年4月21日-2025年4月25日期间发布的储能项目动态整理如下:新疆莎车20万千瓦/80万千瓦时构网型储能电站并网投运4月18日,新疆莎车20万千瓦/80万千瓦时储能电站在完成“构网型”改造后,成功并网投运。作为大型光伏配套项目,原储能电站采用传统的“
北极星储能网获悉,4月25日,高澜股份发布终止投资建设全场景热管理研发与储能高端制造项目的公告。公告显示,高澜股份分别于2023年1月10日、2023年2月7日召开第四届董事会第二十四次会议和2023年第一次临时股东大会,审议通过了《关于投资建设全场景热管理研发与储能高端制造项目的议案》。同意公司与
4月23日,中国与阿塞拜疆签署《中华人民共和国和阿塞拜疆共和国关于建立全面战略伙伴关系的联合声明》。《声明》显示,双方愿继续加强政府间经贸合作委员会机制协调指导作用,决定成立投资合作工作组,加强两国贸易、投资、绿色能源、数字经济等领域合作,推动双边经贸领域合作高质量发展。双方致力于
4月23日,中国与阿塞拜疆签署《中华人民共和国和阿塞拜疆共和国关于建立全面战略伙伴关系的联合声明》。《声明》显示,双方愿继续加强政府间经贸合作委员会机制协调指导作用,决定成立投资合作工作组,加强两国贸易、投资、绿色能源、数字经济等领域合作,推动双边经贸领域合作高质量发展。双方致力于
在全球科技飞速发展的背景下,能源领域也在向着数字化、智能化迈进。海博思创在近期举办的智储技术发布会上,推出了智储解决方案技术平台,并创新性提出“三态互联”架构——以电网为基础、AI为中枢、储能为载体——构建储能全链条价值闭环,为行业提供多元化应用场景下的价值提升。在发布会上,海博思
北极星储能网获悉,嘉善县千窑工业发展有限公司发布2025年干窑储能系统安装一期项目预中标公示,嘉兴智清优能科技有限公司以372万元预中标。
4月15日,乌兰察布兴和县铁合金绿色供电项目(一期)正式开工,该项目是乌兰察布市首个绿电使用比例达到60%新建铁合金项目配套新能源工程,对推动铁合金项目实现绿色化、低成本发展具有重要作用。据了解,该项目由上海电力旗下内蒙古乌兰察布风元新能源有限公司进行建设,建设规模为48.45万千瓦,其中
近日,国际权威机构PVTech发布了2025年第一季度全球电池储能系统制造商可融资性评级报告。天合储能凭借优异系统集成解决方案、稳健的财务表现、全球化市场领导力以及超高的可融资性,在本次评级中实现跃升,也被提名“欧洲主要市场供应商”,巩固了其作为全球领先储能系统集成商的行业地位。PVTech可融
日前,美国清洁能源协会声称,一项对2012年以来美国发生大规模电池储能系统火灾事故的第三方审查发现,这些火灾均未导致污染物浓度达到引发公众健康担忧或需要进一步处理程度。2025年1月16日,莫斯兰汀电池储能系统发生火灾与此同时,美国清洁能源协会还发布了电池储能系统安全蓝图。建议电池储能系统
北极星储能网获悉,4月25日,国轩高科发布2024年度业绩报告。报告称,2024年,公司实现营业收入3,539,181.71万元,同比上升11.98%;实现营业利润128,344.97万元,同比上升31.58%;实现利润总额126,310.97万元,同比上升33.22%;实现净利润115,413.42万元,同比上升19.09%,其中,实现归属于母公司所有
柴达木盆地的戈壁“沙海”之中,光热电站、光伏厂区的数万面“定日镜”“光伏板”列成一望无际的“矩阵”追逐日光,“大容量熔盐储罐”“超级充电宝”“绿氢工厂”将吸收的太阳能高效利用、存储转化,数百兆瓦的光热储能发电项目正加速建设......中国“沙戈荒”地区主要位于新疆、内蒙古、青海、甘肃、
近日,东北电力科学研究院牵头开发的辽宁省首个聚合分布式灵活资源的虚拟电厂示范平台正式完成与辽宁省新型电力负荷管理系统的集成对接,实现分布式灵活资源的聚合管控。该平台目前已接入沈阳市和平区、沈河区、铁西区3个区的分布式资源,具备1.23万千瓦最大上调能力和0.48万千瓦最大下调能力。项目前
助力我国能源转型加快构建新一代煤电体系怀柔实验室灵活燃煤发电团队副总师徐进良为深入贯彻党中央、国务院有关决策部署,落实《加快构建新型电力系统行动方案(2024—2027年)》有关要求,夯实煤电兜底保障作用,积极推进煤电转型升级,国家发展和改革委员会、国家能源局制定了《新一代煤电升级专项行
“双碳”目标下,中国中煤上海大屯能源股份有限公司(以下简称“大屯公司”)以开拓“零碳电网”业务为抓手,在江苏徐州沛县北部奏响了一曲激昂的绿色发展乐章,为区域能源变革注入强大动力。2025年初,沛县北部的大屯供电区一片热火朝天,电网改造项目正如火如荼地推进。该公司所属大屯电热公司技术员
北极星储能网获悉,3月21日,物产环能在投资者互动平台表示,公司聚焦综合能源服务,推动绿色低碳生产方式。旗下熔盐储能(建设中)、光储充一体化低碳园区等示范项目着力打造零碳园区供能标杆、为工业领域低碳转型提供创新样板;公司自有年产2GWh储能产线顺利投产,依托“制造—开发—运营—服务”全
3月15日,由国家能源集团安徽公司建设新能源院研发设计的宿州电厂“火电+熔盐”储能项目主厂房最后一根钢梁吊装完成,这个国内最大规模的“火电+熔盐”储能项目主体建设完工标志着该项目正式进入设备调试阶段。熔盐储能到底是什么?它在火力发电厂又是如何发挥作用的呢?当熔盐遇上火电熔盐储能技术是
北极星储能网日前从国家能源集团获悉,河北公司龙山电厂建设的600兆瓦机组抽汽熔盐储能项目成功完成满容量顶峰试运,机组顶峰负荷稳定达到650兆瓦,各项参数表现正常。该项目以熔融盐作为蓄热介质,在电网低谷时段进行蓄能,在电网负荷高峰时段释放能量,从而提高电网稳定性。该项目投运后,龙山电厂火
据北极星储能网不完全统计,2025年1月共发布了94项有关储能的政策。国家层面16个,地方层面78个。地方政策中,新能源配储类7个,补贴类12个,电力市场类10个,电价类7个。另外,各地公布的重大项目清单中,涉及储能电站项目总计101个、总规模超14.3GW/29.9GWh。新能源配储类政策数量有所减少,广东、大
近日,全球在建、已建项目中功率最大的面向支撑新型能源体系建设的超高温热泵储能示范工程在浙江省湖州市西塞科学谷开工。湖州工业控制技术研究院西塞科学谷超高温、特高温热泵储能示范工程项目一期工程8MW/400℃超高温热泵储能示范工程项目浇灌第一方混凝土,标志着该项目施工安装工程正式启动。项目
北极星储能网获悉,近期,多座储能电站获最新进展,北极星储能网特将2025年2月10日-2025年2月14日期间发布的储能项目动态整理如下:云南楚雄200MW/400MWh共享储能电站项目开工2月7日,云南省南华县200MW/400MWh共享储能电站项目开工。项目由南华凌伟储能有限公司投资建设,项目位于云南省楚雄市南华县
北极星储能网获悉,2月13日,西子洁能在投资者关系活动中,介绍参与的国能河北龙山600MW火电机组“抽汽蓄能”熔盐储热灵活性调峰科技示范项目已于2024年12月28日投入试运行,该项目为全国首个采用新型储能技术的项目,具备提升深调能力、增加顶峰能力等多项性能指标。此外,2024年公司新增订单58.52亿
北极星储能网获悉,4月23日,上海发改委印发《上海市2025年碳达峰碳中和及节能减排重点工作安排》,其中提出:深入推进工业通信业领域碳达峰,加快布局和培育绿色低碳新赛道产业发展,推动新型储能、绿色燃料等产业高质量发展。另外在附件重点工作任务上,还提出:充分发挥科技创新核心支撑作用,依托
近日,上海市发改委印发《上海市2025年碳达峰碳中和及节能减排重点工作安排》的通知,其中提出,加快吴泾等重点区域整体转型,推动漕泾综合能源二期等重大项目建设,推动化工产业集聚。实施落后产能调整项目450项。加快布局和培育绿色低碳新赛道产业发展,推动新型储能、绿色燃料等产业高质量发展。加
2025年4月10-12日,第十三届储能国际峰会及展览会(ESIE2025)在北京#xB7;首都国际会展中心盛大召开。本届峰会由中关村储能产业技术联盟、中国能源研究会、中国科学院工程热物理研究所主办,以“数智赋能产业变革,储能重塑能源格局”为主题,展览面积16万平米,近800家参展商,吸引近10万名国内外专业
4月22日,中国绿发天目湖先进储能技术研究院投资合作启动仪式在江苏省溧阳市举行。中国工程院院士陈立泉,中国绿发副总经理邵长忠,溧阳市委副书记、市长周永强,中科院物理所研究员、天目湖先进储能技术研究院创始人李泓,溧阳市委常委、溧阳高新区管委会主任朱威,南京绿发投资公司董事长马小刚等100
2025年4月10-12日,第十三届储能国际峰会及展览会(ESIE2025)在北京·首都国际会展中心盛大召开。本届峰会由中关村储能产业技术联盟、中国能源研究会、中国科学院工程热物理研究所主办,以“数智赋能产业变革,储能重塑能源格局”为主题,展览面积16万平米,近800家参展商,吸引近10万名国内外专业观
新电改十年历程中,“双碳”目标和体制改革双轮驱动电力领域新型经营主体完成从政策培育到市场化运营的范式转变。在建设新型电力系统背景下,高比例可再生能源并网引发的系统波动性矛盾与灵活性资源结构性短缺,催生了源网荷储协同调节的刚性需求;而全国统一电力市场体系的制度创新与多层次价格传导机
作为国家能源战略的核心载体,“西电东送”南通道工程历经三十余年发展,其战略定位已实现三重跨越:从传统能源输送转向低碳枢纽,从区域互补升级为国家能源网络整合,从国内资源配置延伸至国际能源合作;其功能从区域能源电力调配演进为服务“双碳”目标、推动全球能源电力治理系统性工程,成为支撑经
4月23日,上海发改委关于印发《上海市2025年碳达峰碳中和及节能减排重点工作安排》的通知。提出推动风光等可再生能源多元发展,全市光伏装机规模突破500万千瓦,金山一期海上风电力争建成并网。可再生能源电力占比持续提升,绿电交易规模力争超过70亿千瓦时。推进绿色燃料产能建设,前瞻谋划绿色燃料重
4月23日,上海市发展和改革委员会印发《上海市2025年碳达峰碳中和及节能减排重点工作安排》。文件提出,完成全市“十四五”能耗双控目标,各区、各行业、各重点区域夯实目标分解和推进机制,单位GDP能耗下降率按照完成“十四五”规划总目标设置年度目标。努力推进全市碳排放强度下降。主要污染物氮氧化
北极星储能网获悉,易成新能4月23日晚间发布公告称,公司拟收购公司控股股东中国平煤神马控股集团有限公司(简称“中国平煤神马”)所持有的河南平煤神马储能有限公司(简称“储能公司”)80%股权,收购完成后,由储能公司股东各方对其同比例增资12,500万元,其中,公司增资10,000万元,上海采日能源科
北极星储能网获悉,4月22日,宁德时代、广州广富绿电、广东黄河创投在四川芦山县洽谈投资项目合作事宜。双方围绕进一步深化企地合作、携手推动新型储能综合应用、加快推进电站项目建设等方面深入交换意见,并达成初步共识。县委副书记、县政府县长岑永杰,宁德时代华东区域生态发展总经理助理曾华山参
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!