登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
作者:韩瑞 廖志荣 于博旭 徐超 巨星
单位:华北电力大学能源动力与机械工程学院
引用:韩瑞, 廖志荣, 于博旭, 等. 面向火电厂改造的熔盐卡诺电池储能系统仿真研究[J]. 储能科学与技术, 2023, 12(12): 3605-3615.
DOI:10.19799/j.cnki.2095-4239.2023.0547
本文亮点:1.重点分析了热泵参数对热泵性能系数(COP)和熔盐卡诺电池储能系统往返效率(RTE)的影响 2.分析并比较了采用直接电加热和利用热泵循环加热熔盐两种不同电转热形式的变工况系统效率。
(文章来源 微信公众号:储能科学与技术 ID:esst2012)
摘 要 熔盐卡诺电池储能系统将火电厂与储能技术耦合,是实现机组灵活改造的有效途径。该系统可采用新能源场站弃电或者电网低谷电直接或者通过热泵循环间接加热熔盐,将电能转化为高温热能存储,而后高温熔盐和锅炉共同作为热源来驱动汽轮机发电,从而达到减少煤炭使用甚至替代锅炉的目的。为探究部件参数变化对火电厂改造的熔盐卡诺电池储能系统的效率影响规律,本工作首先在Aspen Plus平台中搭建了热泵循环、熔盐蒸发器以及典型600 MW亚临界燃煤机组等模块构成的熔盐卡诺电池储能系统热力学模型。其次,分析了热泵的循环工质、有/无回热以及部件关键参数对热泵制热效率及系统储能特性的影响规律。最后,比较了直接电加热和利用热泵循环加热熔盐的两种不同电转热形式的储能系统变工况效率。研究结果表明,有回热系统的热泵制热系数和储能系统往返效率均高于无回热系统;对于有回热系统,氩气作为热泵循环工质的回热器热负荷最低,然而氮气作为热泵循环工质时,储能系统的往返效率最高。在冷源温度67 ℃、等熵效率0.9和机械效率1.0时,储能系统额定工况的往返效率可达61.46%。此外,在额定工况下,采用热泵的储能系统相比于直接电加热的系统往返效率提高了45.16%。本研究可为火电厂改造的熔盐卡诺电池储能系统的设计和分析提供理论指导。
关键词 卡诺电池;火电厂改造;系统效率;熔盐储热;数值模拟
随着化石能源的逐步枯竭以及环境问题的日益严重,传统火力发电为主的能源供应体系正逐步过渡到以风能和太阳能等清洁能源为主的新体系。为了缓解可再生能源高比例纳入电网对电力系统的稳定运行造成的冲击,火电机组需灵活地变负荷来满足供需平衡。耦合储能技术的火电机组改造是实现机组灵活调峰的一种主要解决方案,其中,德国DLR学者提出可将火电机组改造成熔盐卡诺电池(Carnot battery)的形式引起了国内外学者的广泛关注。
卡诺电池,又名热泵储电技术,由电转热(P2H)、储电(TES)和热转电(H2P)三部分组成。面向火电厂改造的熔盐卡诺电池储能系统,即保留原有的发电循环作为热转电部分,新增电加热/逆布雷顿循环等作为电转热部分,同时引入低成本的熔盐储热作为大规模储电部分。因改造的熔盐卡诺电池储能系统利用了现有的燃煤电厂,故减少了工程的前期投资成本,这种极具潜力的储能系统有望成为大规模电力存储的新型储能系统,促进电力系统对可再生能源发电的规模化消纳。
国内外对熔盐卡诺电池的研究主要涉及不同集成系统的构建及效率分析、系统经济可行性和调峰性能等方面。Vinnemeier等研究了以环境为热源,有回热热泵不同循环工质时的热泵性能,分析了热泵集成不同类型热电厂的系统效率以及热泵与电加热器串联的系统性能。Geyer等研究了电加热熔盐改造即将退役的煤电厂,分析了不同充放电时间、不同储热容量的改造成本和系统往返效率。Mahdi等集成了布雷顿循环热泵、聚光太阳能发电和光伏发电(PV-CSP)混合发电厂,分析比较了不同循环工质对系统的影响,最后分析了不同集成模式下的热泵性能和系统往返效率。Wang等将熔融盐蓄热系统集成到燃煤电厂,提出抽取主蒸汽或再热蒸汽储存热量和循环蒸汽返回低压汽轮机或冷凝器的四种集成模式,并分析了四种集成模式的调峰性能。赫广迅等基于300 MW等级亚临界参数燃煤电站向储能电站转型的应用场景,搭建了超高温热泵及熔盐储换热系统,并系统性研究了循环压力区间和低温热源温度对超高温热泵制热系数的影响。
上述文献表明,火电厂改造熔盐卡诺电池储能系统的研究主要集中于不同储能系统效率比较、系统成本分析和调峰性能三个方面,而对热泵参数变化下的系统性能分析不深入且不全面。对此,本工作在Aspen Plus平台中搭建了含电转热、储电、热转电三个子系统的熔盐卡诺电池。在验证模型之后,着重分析循环工质、热源入口温度、压缩机/膨胀机的等熵效率和机械效率以及冷源入口温度等热泵参数对热泵性能系数(COP)的影响和熔盐卡诺电池储能系统往返效率(RTE)的影响,最后分析并比较了直接电加热和利用热泵循环加热熔盐两种不同电转热形式的储能系统变工况效率。本研究可为面向火电厂改造的熔盐卡诺电池储能系统的设计和分析提供理论依据。
1 储能系统物理及数学模型
1.1 熔盐卡诺电池储能系统
如图1所示,该系统主要由充电、储电、放电三部分组成。充电部分所需要的电力可来源于太阳能/风能等新能源场站的弃电或电网的低谷电,通过由压缩机C1、膨胀机T1、冷源换热器Hc、回热器Hr和热源换热器Hh组成的热泵循环将电能高效地转化为工质的热能;储电部分中低温熔盐储热工质经过Hh被加热成高温熔盐,并存储在高温熔盐罐HT中,实现规模化储电;电转热部分则由典型的600 MW亚临界朗肯循环火电厂构成。详细的系统储/释电流程及原理介绍如下。
图1 基于火力电站改造的熔盐卡诺电池储能系统示意图
(1)充电过程:电力驱动热泵循环压缩机C1将工质压缩至高温高压状态,高温高压工质在热源换热器Hh和储电介质换热,工质温度降低,将工质热量传递给储电介质。之后中温循环工质经过回热器Hr和冷源换热器Hc出口的低温循环工质换热,温度进一步降低,接着低温高压的循环工质经过膨胀机T1做功变为低温低压状态。随后,循环工质进入冷源换热器Hc和冷源换热,温度升高,而后进入回热器Hr进一步升温,最后中温低压的工质进入压缩机C1进入下一次热力循环。经过上述热泵循环,将电能转化成储电介质的热能,实现电转热。
(2)放电过程:高温熔盐罐HT中泵出的高温熔盐分为两股,其中一股高温熔盐进入过热器SH和来自蒸发器EV的蒸汽进行换热,使得蒸汽达到所需的主蒸汽温度,此过程蒸汽温度升高,熔盐温度降低。随后高温高压的蒸汽进入高压缸HPT,冲击高压缸HPT内的转子叶片,推动轴承旋转,在高压缸HPT中将蒸汽的热能转换为转子的机械能;另一股高温熔盐进入再热器RH和高压缸HPT部分抽汽进行换热,使得蒸汽达到所需的再热蒸汽温度。此过程蒸汽温度升高,熔盐温度降低,再热后的部分高温抽汽进入中压缸IPT。随后在中压缸IPT和低压缸LPT中将蒸汽的热能转换为转子的机械能。换热后的两股中温熔盐合并为一股进入蒸发器EV和预热器PH进一步与低温蒸汽换热,温度较低的低温熔盐回到低温熔盐罐TH中进行下一次热力循环。最后,通过发电机将机械能转化为电能。上述放电过程中,高温熔盐用来驱动朗肯循环发电,实现热转电。
需要补充说明的是,实际应用中,充电过程也可以通过直接电加热熔盐来完成,本工作后续会具体分析变工况下的电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率的区别。此外,假如电站作为电力系统基础负荷,锅炉持续运行时,当电网处于谷电且锅炉不能适时地变负荷来满足供需平衡时,系统可通过适量抽取汽轮机中的蒸汽,并将高温蒸汽热量用来加热熔盐储电工质,减小汽轮机的输出功率,以达到调峰和储热的作用。而当电网处于峰电且锅炉负荷不能实时地变负荷来满足供需平衡时,可通过释放高温储罐中的热盐与锅炉共同作用,来增加汽轮机的输出功率。由于本工作重点讨论热泵循环的关键参数影响,因此下述分析中熔盐卡诺电池储能系统的锅炉均无负载,不参加储能过程。
1.2 储能系统数学模型
在建立能量分析过程中,本工作设立几点假设:
① 其中忽略换热器和管道的压降;
② 所有操作过程均达到稳定状态;
③ 压缩过程和膨胀过程均是绝热;
④ 放电过程中膨胀机的等熵效率和机械效率是恒定的。
1.2.1 储电部分
初始循环工质为氩气,无回热的热泵循环压比为12.4,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98;有回热的热泵循环压比为3,压缩机与膨胀机的等熵效率为0.88、机械效率为0.98。压缩机出口温度均为589 ℃,冷源入口温度均为27 ℃,熔盐入口和出口温度分别为290 ℃和560 ℃。
压缩机出口压力、压缩机出口温度、压缩机耗功为:
2 模型验证与参数分析
2.1 系统建模与验证
本工作在Aspen Plus平台中分别搭建了热泵、熔盐蒸发器和燃煤电厂等子系统,模拟获得系统的热力参数及性能。对于发电部分,研究对象是国产亚临界600 MW机组,型号为N600-16.7/537/537,机组回热采用“三高、四低、一除氧”。对于汽轮机部分,流程组分选择Water工质,物性方法选择STEAM-TA。为验证Aspen软件模拟火电厂热力性能的准确性,对三种典型工况(100%额定工况、75%额定工况和30%额定工况)进行了模拟,将三个工况下汽轮机的电功率、热耗率及热效率等热力指标与设计值进行了对比,见表1。结果表明,模拟值与电厂的汽轮机设计值具有高度的一致性,不同工况下的电功率、热耗率和热效率模拟值与设计值误差均低于0.1%。上述对比表明,本工作模型具有较高的准确性。
表1 典型工况下系统热力指标与模拟值对比
对于熔盐蒸发器系统,换热器用HeatX模块进行搭建,换热器熔盐侧物性选择WILSON,汽水侧选择STEAM-TA。熔盐蒸发器中熔盐侧和汽水侧的温度和流量等参数见表2。此模型和文献[21]关系吻合。
表2熔盐蒸发器热力参数
对于热泵系统,循环工质选用氩气、储热介质选择太阳盐(60% NaNO3-40% KNO3),另一侧介质选用甲醇的无回热的模型与文献[22]进行对比验证,结果见表3。结果表明,热泵模型具有较高的准确性。
表3热泵参数对比
2.2 热泵参数影响分析
由于热泵的设计对充电和整个储能系统的往返效率起着决定性的作用。因此,本节分析有回热和无回热的热泵构型及热泵参数对热泵制热系数和整个储能系统效率的影响规律。本工作首先分析不同热泵循环工质的影响并确定合适的循环工质;而后分析热泵热源入口温度的影响,确定熔盐进出口温度,进而确定热泵制热量。在此基础上分析热泵循环中压缩机/膨胀机的等熵效率/机械效率、冷源入口温度、压缩机入口温度和热泵工质流量的影响规律。为了控制变量的原则,在各变量的参数分析过程中,系统其他固定变量的取值汇总如表4所示。
表4热泵参数中变量和固定变量的取值汇总表
2.2.1 循环工质
由于循环工质的物理性质不同,工质的选取会直接影响热泵的制热系数和整个储能系统效率。本研究选取了氩气、氮气和二氧化碳等3种代表性气体作为热泵系统中的循环工质。计算过程中,系统有回热且锅炉无负载,压缩机的压比为3,压缩机出口温度为589 ℃,冷源入口温度均为27 ℃,热源换热器Hh熔盐侧进出口温度分别为290 ℃和560 ℃。表5给出了3种热泵循环的工质流量、COP、回热器热负荷Qr及储能系统RTE的模拟结果。结果表明,氩气、氮气和二氧化碳作为循环工质时,热泵COP分别为1.299、1.306和1.296,储能系统RTE分别为56.73%、57.03%和56.60%,结果区别并不明显。
表5不同工质类型对热泵COP和储能系统RTE的影响
然而,三者的压缩机入口温度分别为261.5 ℃、350 ℃和432 ℃,回热器热负荷Qr分别为883.02 MW、1508.07 MW和2552.38 MW。氮气可以看作双原子理想气体,比热容比为1.40;氩气作为单原子气体,比热容比为1.66。根据式(7)可得,当冷股入口温度一定时,出口温度越低,焓值越低,热负荷越低,所以氩气作为热泵循环工质时回热器热负荷Qr最低。在参考文献[10]及本工作研究结果后,本工作后续分析中热泵系统的循环工质选择氩气。
2.2.2 热源入口温度
当熔盐出口温度一定时,为了维持能量平衡,熔盐入口温度的变化会导致循环工质侧出口温度、热源换热器制热量Qh以及膨胀机T1做功量Wt变化,从而会导致热泵的制热系数和整个储能系统效率的变化。图2依次为无回热和有回热时熔盐入口温度对热泵COP的影响。从图2可以看出,热泵COP随着熔盐入口温度的升高而降低。由图2(a)和(b)可得,熔盐入口温度从285 ℃升高到320 ℃时,无回热系统循环净功W0从896.75 MW减少到820.25 MW,热泵COP下降了0.05。有回热系统的热源回热器热负荷Qh从1097.22 MW大幅减少到959.15 MW,循环净功从820.25 MW减少到773.49 MW,热泵COP下降了0.1。可以看出,熔盐入口温度对有回热系统的热泵COP影响波动更大。熔盐入口温度的变化会影响熔盐蒸发器模块中蒸汽的出口温度的变化,导致汽轮机效率的变化。考虑到本工作所用的二元硝酸盐的工作温度,后续研究中Hh熔盐侧进、出口温度分别为290 ℃和560 ℃。
图2 熔盐入口温度T0对热泵COP的影响(a) 无回热;(b) 有回热
2.2.3 压缩机/膨胀机等熵效率
实际压缩机和膨胀机工作时一般多为多变过程,随着压缩/膨胀过程的等熵效率的变化,压缩机C1的功耗Wcomp和膨胀机T1的做功Wtur也在发生变化,从而会导致热泵系统的COP和整个系统往返效率的变化。图3依次给出了无回热和有回热时压缩机/膨胀机等熵效率的变化对热泵COP和储能系统RTE的影响。由图3(a)和(b)可得,热泵的COP随着等熵效率的升高而迅速升高,基本呈线性关系。当压缩机等熵效率为0.90,膨胀机等熵效率由0.86增大到0.90时,无回热热泵COP从1.15提高到了1.21,有回热热泵COP从1.30提高到1.37;而当膨胀机等熵效率为0.90,压缩机等熵效率由0.86提高到0.90时,无回热热泵COP从1.16提高到了1.21,有回热热泵COP从1.27提高到了1.37。因此可得,无回热时膨胀机的等熵效率对热泵COP的影响大于压缩机;有回热时则是压缩机等熵效率的影响更大。由图3(c)可得,随着等熵效率从0.86提高到0.90,无回热和有回热储能系统RTE分别从47.89%、54.23%提高到52.93%、57.93%。这表明等熵效率的变化对无回热的储能系统RTE的影响更大。
图3 压缩机/膨胀机等熵效率ηl对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.4 压缩机/膨胀机机械效率
轴承摩擦、空气阻力等导致压缩机/膨胀机机械效率下降会直接影响热泵储热过程中输入/输出的轴功和储能过程的功量,从而影响整个储能系统的往返效率。图4依次给出了无回热和有回热时压缩机/膨胀机机械效率的变化对热泵COP和储能系统RTE的影响。由图4(a)和(b)可得,热泵的COP随着机械效率的升高而升高。当压缩机机械效率为1.00,膨胀机机械效率从0.95增加到1.00时,无回热热泵COP从1.14提高到了1.21,有回热热泵COP从1.30提高到1.37。而当膨胀机机械效率为1.00,压缩机机械效率由0.95提高到1.00时,无回热热泵COP从1.08提高到了1.21,有回热热泵COP从1.23提高到了1.37。因此可得,无/有回热压缩机的机械效率对热泵COP的影响均大于膨胀机。由图4(c)可得,随着机械效率从0.95提高到1.00,无回热和有回热系统RTE分别从44.79%、52.61%提高到52.93%、57.93%。这表明机械效率的变化对无回热的储能系统RTE的影响更大。
图4 压缩机/膨胀机机械效率ηm对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.5 冷源入口温度
冷源入口温度的变化会对冷源换热器热负荷Qc以及循环工质出口温度有一定影响,会影响压缩机/膨胀机的耗功/做功量,进而影响整个储能系统的往返效率。图5依次给出了无回热和有回热时冷源入口温度的变化对热泵COP和储能系统RTE的影响。由图5(a)和(b)可得,热泵的COP随着冷源入口温度的升高而升高。无回热时,冷源入口温度从17 ℃提高到67 ℃,循环工质的温度也随之升高,不再需要很大的压比即可达到所需的温度,压缩机压比从13.5降到了9.12。有回热时,为了控制变量,保证压缩机出口温度不变,当冷源温度从17 ℃提高到67 ℃,回热器不再需要很高的热负荷即可达到压缩机入口所需的温度,回热器负荷从921.67 MW降到了734.87 MW。由图5(c)可得,随着冷源入口温度从17 ℃提高到67 ℃,无回热和有回热系统RTE分别从52.18%、57.03%提高到56.73%、61.46%。这表明适当地提高冷源的入口温度可以提高热泵COP和储能系统的RTE。
图5 冷源入口温度T1对热泵COP和系统RTE的影响(a) 无回热;(b) 有回热;(c) 往返效率
2.2.6 压缩机入口温度
压缩机入口温度改变会导致压缩机耗功变化,同时回热器出口循环工质的温度也会随之变化,导致膨胀机做功和净功发生改变,从而影响整个储能系统的往返效率。图6为有回热时热泵压缩机入口温度对热泵COP和RTE的影响。由图6可得,热泵的COP和储能系统的RTE随着热泵循环工质流量的增加而降低。当压缩机入口温度从261.5 ℃升高到298 ℃,循环净功W0从811.75 MW增加到867 MW,热泵COP从1.37下降到了1.24,储能系统RTE从57.92%下降到了54.23%。由此可知,当热泵压缩机压比一定时,在满足制热量的范围内,适时地降低热泵压缩机入口温度,可以提高热泵COP和储能系统的RTE。
图6 压缩机入口温度T2对热泵COP和储能系统RTE的影响
2.2.7 循环工质流量
循环工质流量的变化会导致压缩机/膨胀机的耗功/做功量的变化,进而影响整个储能系统的往返效率。图7为有回热时热泵循环工质流量对热泵COP和RTE的影响。由图7可得,当循环工质流量从6800 kg/s提高到7225 kg/s,热泵系统的循环净功W0从811.75 MW增加到845.75 MW,热泵COP从1.37降低到1.27,储能系统RTE从57.92%降低到55.59%。由此可知,在满足制热需求的同时,适当地减小热泵的循环工质流量,可提高热泵COP和储能系统的RTE,甚至可以提高系统的经济性。
图7 循环工质流量m0对热泵COP和系统RTE的影响
2.3 电加热/热泵储能系统对比
图8为锅炉无负载时,汽轮机额定工况(100% THA)、75%额定工况(75% THA)和30%额定工况(30% THA)三种工况下直接采用电加热熔盐和利用热泵循环加热熔盐的两种不同卡诺电池储能系统的效率和同等工况下原燃煤电厂的效率对比。其中,燃煤电厂的锅炉热效率为0.91,电加热效率为0.97,热泵COP为1.41。由图8可得,汽轮机100% THA时,电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率分别可达到42.34%和61.46%;汽轮机75% THA时,电加热熔盐卡诺电池储能系统和利用热泵循环加热熔盐卡诺电池储能系统效率分别为40.89%和59.31%;汽轮机30% THA时,电加热熔盐储能系统和利用热泵循环加热熔盐储能系统效率分别为37.56%和54.49%。不同工况下利用热泵循环加热熔盐卡诺电池储能系统效率最高,其次是电加热熔盐卡诺电池储能系统,由于电加热的效率高于锅炉的效率,所以原燃煤电厂效率最低。因此可得,热泵循环加热熔盐卡诺电池储能系统在燃煤电厂改造成储能电站方面有着极大的发展潜力。
图8 燃煤电厂(CFPP)、电加热储能系统(EH)、热泵储能系统(HP)效率对比
3 结论
本工作搭建了面向火电站改造的熔盐卡诺电池储能系统,模拟了储能系统的热力学分析模型,探究了热泵部件参数对熔盐卡诺电池储能系统的影响规律,并对比了不同工况下利用热泵循环加热熔盐和电加热熔盐卡诺电池储能系统的效率。本工作的主要结论如下:
(1)储能系统电转热部分的热泵循环工质采用氮气时,热泵制热系数和储能系统效率最高,分别为1.306和57.03%;采用氩气时,热泵制热系数较高,回热器热负荷最低,分别为1.299和883.02 MW;而采用二氧化碳时,热泵制热系数和储能系统效率最低,分别为1.296和56.90%。当氩气循环工质流量为6800 kg/s,等熵效率为0.9,机械效率为1.0,冷源温度为67 ℃时,热泵制热系数为1.41,储能系统效率达到61.46%。
(2)提高等熵效率、机械效率和冷源入口温度有助于增大热泵制热系数和储能系统效率,而增加循环工质流量和压缩机入口温度则会降低热泵制热系数和储能系统效率。其中,压缩机/膨胀机的机械效率对系统的热泵制热系数和储能系统效率影响最大,冷源入口温度、热源入口温度和压缩机/膨胀机的等熵效率的影响次之,循环工质流量、压缩机入口温度影响较小,在制热量一定的前提下循环种类的影响最小。
(3)在额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.16%;在75%额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.05%;在30%额定工况下,利用热泵循环加热熔盐比电加热熔盐的卡诺电池储能系统效率提高了45.07%。
符号说明
符号 —— 符号说明
CFPP —— 燃煤电厂
COP —— 热泵制热效率
CT —— 冷却塔
EH —— 电加热
EV —— 蒸发器
G —— 发电机
H2P —— 电转热
h —— 焓值,kJ/kg
Hc —— 冷源换热器
Hh —— 热源换热器
Hr —— 回热器
HP —— 热泵
HPT —— 高压缸
Hj —— 第j级加热器
IPT —— 中压缸
LPT —— 低压缸
m —— 质量流量,kg/s
MSEV —— 熔盐蒸发器
P2H —— 热转电
PH —— 预热器
Q —— 热量,kW
RH —— 再热器
RTE —— 往返效率,%
SH —— 过热器
TES —— 储热
T —— 温度,K
W —— 功,kW
W0 —— 净功,kW
ηm —— 机械效率,%
ηl —— 等熵效率
—— 压比
下角标
in —— 入口
out —— 出口
comp —— 压缩
tur —— 膨胀
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,据国家知识产权局,12月6日,中车株洲电力机车有限公司申请一项名为“钠电池储能系统故障诊断方法、设备及存储介质”的专利,公开号CN119087242A,申请日期为2024年10月。专利摘要显示,本申请公开了一种钠电池储能系统故障诊断方法、设备及存储介质,涉及数据处理技术领域,所述方
北极星储能网获悉,12月5日,安徽省工业和信息化厅发布关于公布安徽省首台套重大技术装备名单(2024第三批)的通知。其中,阳光电源股份有限公司的10MWh“交直流一体”全液冷储能系统PowerTitan2.0等四项产品评定为国际先进,安徽锐能科技有限公司的锂电池PACK系统智能生产线等118项产品被评为国内先进
12月3日18时18分,中广核丰宁满族自治县20万千瓦光伏复合示范项目升压站一次带电成功。该项目位于河北省承德市丰宁满族自治县,平均海拔1100米,总投资约11亿元,采用“林光互补”的复合模式,共建设74个光伏发电组、38.48万块光伏板、1座220千伏升压站,配套30兆瓦/120兆瓦时磷酸铁锂电池储能系统。该
北极星储能网获悉,12月9日,龙源电力集团共享储能技术(北京)有限公司第四批储能电站储能液冷电池系统框架采购中标候选人公示。海辰储能、鹏辉能源、昆宇电源预中标3个标段共1.5GWh储能液冷电池系统采购。中标候选人报价区间为0.41-0.456元/Wh,平均报价0.438元/Wh。项目均采用液冷冷却技术,电池系
北极星氢能网获悉,12月6日,广东省市场监督管理局发布关于征求广东省地方标准《液氢储能系统的液氢储存装置技术要求(送审稿)》意见的公告详情如下:广东省市场监督管理局关于征求广东省地方标准《液氢储能系统的液氢储存装置技术要求(送审稿)》意见的公告根据《广东省市场监督管理局关于批准下达2
日前,可再生能源开发商SquadronEnergy公司表示,该公司计划在澳大利亚新南威尔士州部署一个持续时间为8小时的150MW/1200MWh电池储能系统,并将与一个300MW风力发电场配套部署。拟建的Conargo风力发电场位于Deniliquin东北45公里,Conargo东北10公里,在新南威尔士州西南可再生能源区(REZ)内建设。这
据外媒报道,日前,澳大利亚新南威尔士州政府批准了能源开发商和零售商EnergyAustralia公司计划部署一个500MW/2000MWh电池储能系统申请。这个耗资约10亿澳元(约合6.5亿美元)持续4小时的电池储能系统,将建在新南威尔士州首府悉尼西北部MountPiper燃煤发电厂附近的一块土地上。EnergyAustralia公司于2
刚进入12月,瑞浦兰钧和阳光电源又接连拿下海外储能大单!据北极星储能网不完全统计,11月以来,宁德时代、阳光电源、楚能新能源、瑞浦兰钧等中国企业,已不再满足国内市场,竞相“出海”,积极布局海外市场,共拿下超56.5GWh的储能订单。近期中国企业出海订单大盘点12月6日,阳光电源宣布与菲律宾上市
随着全球能源转型的加速推进,储能成为了能源领域的新焦点,各地可再生能源目标或将保障全球中长期储能需求的增长。TrendForce集邦咨询预计,2025年全球储能市场将显著增长,其中亚欧保持高增,美洲增速放缓,中东非增长表现最为强劲,新兴市场也将开启新征程。储能市场在2025年会迎来怎样的发展趋势?
12月8日,深圳亿兰科电气有限公司(以下简称“亿兰科”)储能变流器(PCS)产能扩增项目仪式正式启动。该增产区间位于现有公司运营中心楼下,计划2025年4月份投入运营。储能行业经过近几年狂飙式的发展,正在进入沉淀维稳的阶段。有行业人士预测,储能的重要性及需求量未来将不断提高,至少还有20倍增
近日,天合储能自主研发的“全新一代抗低温户用储能电池系统”,成功通过了日本电气安全环境研究所(JET)——JISC4441标准电池热蔓延测试,并成为海外品牌首家荣获该认证的电池研发和生产厂家。充分显示证明了天合储能产品的高度可靠性和安全性,同时也证明了天合多年深耕日本户用储能市场,研发认证
北极星储能网获悉,11月27日,国家发展改革委发布关于《拟纳入绿色技术推广目录(2024年版)的技术清单》。项目清单包括储能技术部分如下:1、技术名称:百兆瓦级先进压缩空气储能技术工艺技术内容:采用自主研发的先进压缩空气储能技术,突破了100~300MW级先进压缩空气储能全套核心技术,完成了国际
北极星储能网获悉,11月12日,西子洁能披露投资者关系管理信息活动记录表,对公司的发展方和储能项目发展情况等问题进行了回答。西子洁能表示,公司未来主要有三大战略发展方向。其中,新能源市场主要是依托熔盐储能核心技术,拓展其在光热发电、用户侧储能、火电灵活性改造、零碳园区等更多能源利用场
近日,南方电网公司供电服务区域首例熔盐储能项目在广东华能海门电厂顺利并网。这是南方区域投运的首个电厂侧熔盐储能项目,也是目前国内首次在百万千瓦级火电机组上集成熔盐储能技术,项目为新型电力系统建设提供了新的探索实践。在电力系统中,熔盐储能可以作为调峰手段,平衡电网负荷,提高电力系统
11月1日,浙江杭州市经济和信息化局就杨明霞代表在市十四届人大四次会议上提出的《关于促进我市光热储能发电产业发展的建议》进行答复,强调将明确对光热储能发电产业有关环节加大政策支持力度,围绕光热发电和熔盐储能等领域,鼓励加强关键核心技术攻关。除推动380万千瓦的抽蓄及超过70万千瓦的电化学
北极星储能网获悉,10月31日,江苏君汇控股集团有限公司新型储能(热)制造与应用综合项目在江苏盐城大丰签约。该项目拟在江苏大丰港经济开发区落地,预计总投资33亿元,涵盖新型熔盐储能装备研发中心和制造工厂以及全省首个GW级新型储能零碳供热项目。项目建成后将充分利用熔盐介质的稳定物理化学性能
北极星储能网获悉,11月2日,首航能源集团总投资23.95亿元30万千瓦新型储能项目在昌吉国家高新技术产业开发区开工奠基。项目占地150亩,总投资23.95亿,将建成规模达30万千瓦的独立新型储能电站,其中电化学储能部分预计于2025年11月份投产,低温热泵熔盐储热部分预计于2025年10月份投产,压缩二氧化碳
北极星储能网获悉,10月29日,兰芝重装发布公告,为抢抓光热熔盐储能市场发展机遇,做深做实储能领域业务,完善公司新能源产业布局,加快推进公司由传统能源装备制造向新能源装备制造转型升级步伐。10月29日,公司与大成科技、山西常晟签署了《投资合作协议》。三方拟共同出资1,000万元组建合资公司,
北极星储能网获悉,近日,由中国电建集团山东电建三公司承建的南非红石100兆瓦塔式熔盐光热电站项目首次并网成功,机组各项性能参数、指标优良,各系统运行稳定,标志着项目又一个重要里程碑节点顺利完成。据了解,该项目位于北开普省,是撒哈拉沙漠以南首个塔式熔盐光热电站,也是南非北开普省最大的
9月20日,由中国华能集团有限公司自主研发的全国首个火电机组调峰调频模块化熔盐储能项目在华能山东分公司德州电厂成功商运,标志着我国在耦合大规模储能、提升火电机组运行灵活性方面实现了新突破。该示范项目建设12个储热单元,总储热量为18万千瓦时,运行可选择直供汽和最大调峰运行两种模式,具备5
北极星储能网获悉,9月19日,上海市科学技术委员会关于发布上海市2024年度“探索者计划”(第二批)项目申报指南的通知。征集范围包括:新型高性能储能高温熔盐体系设计研究研究目标:针对高温储能熔盐体系设计周期长、效率低的问题,研究高通量AI辅助储能熔盐体系设计新方法并建立熔盐材料数字化研发
8月28日,中国华能自主研发的全国首个火电机组调峰调频模块化熔盐储能项目在华能德州电厂成功投入商业运行,填补了国内模块化熔盐储能技术辅助火电机组调峰调频的技术空白,标志着我国在熔盐储能领域的技术创新与装备研发取得新突破。该项目总储能容量180兆瓦时,可提升机组调峰能力30兆瓦。西安热工院
北极星储能网获悉,12月6日,四川内江发布《2024年新型储能产业新赛道项目资金拟支持项目名单》,对三个2024年新型储能产业新赛道项目资金拟支持项目名单予以公示,分别是:四川发展兴欣钒能源科技有限公司的年产6万立方米钒电解液生产基地项目、内江智慧新能源电力有限公司的100MW/400MWh全钒液流储能
北极星储能网获悉,12月9日,国家能源局发布关于十四届全国人大第二次会议第3240号建议的答复摘要。关于推动新型储能技术和产业发展,文件提出,国家能源局将加强新型储能试点示范项目跟踪,不断完善新型储能政策体系,推动各类储能技术创新和产业发展,引导新型储能科学配置和调度运用。并且,对于推
北极星储能网获悉,日前,安徽工信厅等六部门印发《安徽省先进光伏和新型储能产业创新能力提升行动方案(2024-2027年)》,其中提出:重点开展多元化电极材料、高储能密度、长寿命、高安全性等锂离子电池技术及产业化研发,加强钠离子电池储能、液流电池储能、氢储能等技术攻关,研发储备液态金属电池
12月6日,关于印发《安徽省先进光伏和新型储能“千百亿”企业培育行动方案(2024-2027年)》的通知皖工信电子函〔2024〕68号各市人民政府,省有关单位:为深入贯彻落实《中共安徽省委办公厅安徽省人民政府办公厅关于强化创新引领推动先进光伏和新型储能产业集群高质量发展的指导意见》精神,推动“千百
北极星储能网获悉,内蒙古乌海市乌达区发展和改革委员会发布乌海市金湖独立储能电站项目最新进展。据悉,项目计划投资4.4亿元,建设100MW/400MWh新型储能电站并配套建设110kV升压站1座,储能类型为磷酸铁锂(100%)。截至目前,已完成投资2.4亿元,已完成项目备案、环评、草地征占等手续,土地报批预计
12月6日,安徽发布《关于加快推进建筑光伏一体化建设实施方案(征求意见稿)》通知,其中指出,加大电网升级改造,推进新型储能建设,提升系统消纳能力,将建筑光伏发电纳入新能源消纳总体规模,服务并网接入。建设单位应根据本地区负荷水平、电力系统承载能力、消纳情况统筹项目实施。国网电力企业应
近日,广东华电储能有限公司(下称“广东华电储能”)完成天使轮融资。投资方包括南网越秀双碳股权投资基金(广州)合伙企业(有限合伙)(下称“南网基金”)、华电新能源集团股份有限公司、广东新型储能国家研究院有限公司。据了解,广东华电储能成立于2024年11月18日,注册资本1000万元人民币,经营
随着以新能源为主体的新型电力系统加快建设,新疆新型储能项目连续上新。12月初,位于伊犁河谷的可克达拉经济技术开发区400兆瓦/800兆瓦时电网侧共享储能电站项目启动,将有效提升当地电力系统调峰能力和源网荷储协同调度的灵活性,为企业用电提供强力支撑。根据国网新疆电力有限公司调度数据,截至11
12月4日,林州凤源储能有限公司发布林州凤源300MW/1000MWh独立共享新型储能项目(二次)公开招标公告,本项目位于河南省安阳市林州市,占地约143亩,拟建设200MW/400MWh磷酸铁锂电池储能系统,100MW/600MWh全钒液流电池储能系统,220KV升压站及送出线路同步建设。磷酸铁锂储能系统额定容量共包含若干套
北极星储能网获悉,11月27日,广东省湛江市遂溪县北坡镇招商活动暨遂溪县300MW/600MWh新型储能示范项目开工奠基仪式启动,项目投资额10.7亿元,由上海鼎亘实业发展有限公司投建,配套建设1座220kV升压站,新建2台220kV变压器,容量2x150MVA,建成后将成为广东省内装机容量最大、服务能力最强的储能电站
12月4日,中国能建党委书记、董事长宋海良在广州与广东能源集团党委书记、董事长张帆会谈。双方围绕进一步深化能源规划与区域协同、新能源、绿色氢氨醇、新型储能、数字化转型、海外业务等领域合作进行深入交流,并见证签署战略合作协议。宋海良对广东能源集团长期以来给予中国能建的关心、支持和帮助
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!