登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
硫化物被公认为目前最有潜力率先走向量产的技术路线之一,显然已经成为电池行业重要阵地之一。
而中科固能作为溧阳市政府主导、中科院物理所知识产权成果转化、聚焦硫系全固态电池技术产业化的唯一平台,其行业风向标地位不言而喻。
如何走向产业化,必然是其重要课题之一。本文从专利、论文以及官方信息等角度着手,探索中科固能如何解决硫化物全固态电池目前面临的一系列问题。
因为固态相较于液态来说,最大的变化就是电解质,所以本质上是解决固态电解质本身及其与其他材料的兼容性问题。
硫化物全固态电池问题主要来自三个维度:材料、界面和电芯。
材料层面,主要包含固态电解质本身的电化学稳定性以及其在空气中的稳定性;界面问题主要指固态电解质与正负极界面的兼容性,以及在离子迁移过程中固固界面、体积结构变化等问题;电芯层面,硫化物固态电池热稳定性,体积变化带来的性能衰减,量产、成本均是产业化难点。
01.
离子电导率
与液态电解质不同,固态电解质离子迁移能垒(化学反应中活化分子含有的能参加化学反应的最低限度的能量)高(是液体的10倍以上),故离子电导率低。
目前提升固态电池离子电导率的途径主要有四种:
总而言之,提高固态电池离子电导率,无非就是提升其本身的离子浓度,然后在其迁移过程中,降低锂离子在各体相、晶界、界面等各个位置的阻碍。
掺杂思路提高固态电解质离子电导率的机理主要有四种:
a)通过不同掺杂元素和掺杂含量调节Li+的离子占用率,使离子传导更快;
b)通过离子掺杂调节锂空位浓度,改变锂离子的迁移机制;
c)通过离子掺杂进行电荷补偿,使电解质中Li+含量增加,Li+迁移数增加;
d)异价离子掺杂引起的局部紊乱增强Li导电材料的离子导电性。
中科固能运用了其中两种机理(a+d)来提升离子电导率,一是通过Si4+离子掺杂Li6+xP1-xSixS5I (0≤x≤0.5)来增加Li+的含量,以促进Li+在亚结构中的扩散,二是在P5+位上的Si4+增加了I?/S2?位的无序性,改变了锂的亚结构,促进Li+迁移,导致离子电导率增加,活化能急剧降低。
02.
固固界面及锂枝晶问题
固态电解质与电极界面接触较差、负极侧锂枝晶生长的问题,以及硫化物固态电池工作期间需要几十到几百兆帕压强保持界面良好接触,均限制其性能的发挥及提升。
针对以上问题,目前中科固能给出的解决思路是引入新材料和新工艺,或者在原有材料上进行优化加工。
材料层面,中国科学院物理研究所、中科固能吴凡团队开发了一种新型室温液态锂负极材料3D LiSi@Li-Phen-Ether (3D LSLL),亲锂的Li-Phen-Ether充分浸润LiSi合金粉末并形成3D Li+/e-快速迁移路径,以此改善界面接触,抑制锂枝晶成核/生长,提升比容量和循环性能。
与此同时,吴凡团队还开发了一种兼具离子导电性和电子导电性的软碳(SC)-Li3N界面层,其原位锂化反应不仅能将SC锂化为具有良好电子/离子导电性的LiC6,还成功地将混合相Li3N转化为具有高离子导电性/离子扩散系数和锂金属稳定性的纯相β-Li3N。混合导电界面层有利于Li+在界面上的快速传输,并诱导金属锂在其内部均匀沉积,这有效抑制了锂枝晶的形成,提升ASSLMBs性能。
新工艺上,中科固能提出一种固相钝化法,在锂金属固态电池上用人工构建的固态电解质界面(SEI)进行锂金属保护。
原位固相钝化示意图:(a)钝化膜的制备过程;(b)原位固相钝化过程
将制备好的钝化膜覆盖在锂金属表面,高温辊压使钝化剂分子与锂金属表面紧密接触并相互作用。在热压驱动下,钝化剂分子与锂原子发生固固键合反应。经过特定的处理时间后,钝化膜基底脱离,与锂金属反应,调节锂表面组分,使锂金属表面钝化,从而抑制枝晶的生长。
负极界面,除了锂枝晶生长问题,界面形貌演变、电解质分解和化学-机械衰退,均会导致高界面电阻和电池失效。
在正极界面,中科固能引入DOL原位聚合的凝胶界面层,实现正极磷酸铁锂及其研发的3D LSLL负极硫化物固态电池在0.5 MPa外部压力、室温环境、2C倍率条件下实现超300次循环。
针对界面问题,中科固能还通过三元正极材料表面硫化、硫化物固态电解质+液态锂负极等方式解决。
03.
空气稳定性
硫化物电解质暴露在空气中,会产生有毒气体H2S、电解质结构破坏、电化学性能衰减,所以其在空气中的稳定性很差。在其合成、储存、运输和后处理过程中严重依赖惰性气体或者干燥室,会大幅提升相应成本。
中科固能开发空气稳定的硫化物电解质的主要方式是,应用H2S吸收剂、元素替代、新材料设计、表面工程和硫化物-聚合物复合电解质。
目前行业在推的干法技术,在制膜的过程中会避开有机、极性溶剂,只需要少量的粘合剂,能从根源上切断其与溶剂发生反应产生有毒气体的风险,与此同时,干法技术节省溶剂、溶剂蒸发、回收和干燥设备等,一定程度上会降低部分成本。这也是中科固能目前在重点布局的技术,来解决硫化物电解质制备过程中空气稳定性的问题。
针对此问题,中科院团队还提出一种策略,以空气稳定的氧化物为原料,在空气环境中一步气相法合成硫化物电解质,制备过程中维持其空气稳定性。相较于传统的固液相合成法在制备硫化物电解质中过渡依赖手套箱氩气氛保护、产率低、原料高昂等特点。
一步气相法主要是以气化的CS2为硫化剂,对低成本且空气稳定的氧化物原料进行硫化,优化后的硫化物电解质(LSAS,与水不发生反应,只是吸收H2O分子形成含13个结晶水的水合物)离子电导率大幅提升,并且具备良好的空气稳定性。制备过程无需手套箱,可以从管式炉中获得大量硫化物电解质,在空气环境中合成一系列空气稳定的硫化物电解质。
参考专利(部分专利为中科院物理所其他人员或成果)及相关如下:
1、Pushun Lu, Lilu Li, Shuo Wang, Jieru Xu, Jian Peng, Wenlin Yan, Qiuchen Wang, Hong Li, Liquan Chen, Fan Wu*. Superior all-solid-state batteries enabled by gas-phase synthesized sulfide electrolyte with ultra-high moisture stability and ionic conductivity. Adv. Mater. 2021, DOI: 10.1002/adma.202100921
2、Hard-carbon-stabilized Li-Sianodesfor high-performance all-solid-statei-Lion batteries,Nature Energy (IF=67.439)
3、Air Stability of Solid-State Sulfide Batteries and Electrolytes
4、Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity,Journal of Materials Chemistry A
5、Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions,Chinese Physics B
6、Jiacheng Wang, Liquan Chen, Hong Li, and Fan Wu*. Anode Interfacial Issues in Solid-State Li Batteries: Mechanistic Understanding and Mitigating Strategies
7、Low-pressure dendrite-free sulfide solid-state battery with 3DLiSi@Li-Phen-Ether anode
8、Dendrite-Free All-Solid-State Lithium-Metal Battery By In-situ Phase Transformation of Soft Carbon-Li3N Interface Layer
9、Wide-temperature, Long-cycling, and High-loading Pyrite All-solid-state Batteries Enabled by Argyrodite Thioarsenate Superionic Conductor
10、Superior Low-Temperature All-Solid-StateBattery Enabled by High-lonic-Conductivityand Low-Energy-Barrier interface
11、Dendrite-free lithium-metal all-solid-state batteries by solid-phase passivation
12、Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode
13、Anode Interfacial Issues in Solid-State Li Batteries: Mechanistic Understanding and Mitigating Strategies
14、Thermal Stability between Sulfide Solid Electrolytes and Oxide Cathode
15、Superior all-solid-state batteries enabled by gas-phase synthesized sulfide electrolyte with ultra-high moisture stability and ionic conductivity
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,11月18日,多辆满载新型固态电池关键设备的集装箱卡车抵达位于安徽芜湖经开区的安徽安瓦新能源科技有限公司,标志着芜湖市将有属于自己的GWh新型固态电池生产线。新型固态电池全面冲刺量产。安徽安瓦新能源科技有限公司由奇瑞汽车控股,是安徽省首批智能网联汽车优势企业,承担了安
北极星储能网获悉,亿纬锂能11月14日在互动平台表示,公司在固态电池领域已进行技术布局,并做了相关产业规划。公司计划于2026年取得工艺突破,推出高功率、高环境内耐受性和绝对安全的全固态电池,主要用于混合动力领域;于2028年实现技术突破,推出400Wh/Kg高比能全固态电池。公司在飞行汽车、无人机
北极星储能网获悉,有投资者在投资者互动平台提问先导智能:请问公司在固态电池生产设备行业地位如何?先导智能在互动平台表示,在固态电池领域,公司是拥有完全自主知识产权的全固态电池整线解决方案服务商,已成功打通全固态电池量产的全线工艺环节,实现了从整线解决方案到各工段的关键设备覆盖。20
北极星储能网获悉,有投资者在投资者互动平台提问欣旺达:贵公司的固态电池,有最新的进展没?欣旺达(300207.SZ)11月14日在投资者互动平台表示,欣旺达已经通过负极使用锂金属进一步将固态电池能量密度提升至500Wh/kg,目前已经有实验室原型样品。预计2027年完成能量密度大于700Wh/kg全固态电池实验
北极星储能网获悉,11月11日,长安汽车披露投资者关系活动记录表,公布了一些关于固态电池的最新进展和后续发展规划。长安汽车表示,11月7日下午,长安汽车联合太蓝新能源正式发布无隔膜固态锂电池技术,这是行业内首次实现“去掉隔膜”,在显著增强电芯的本征安全的前提下,颠覆了无限堆砌保护措施的
北极星储能网获悉,广汽集团11月8日在投资者互动平台再次明确公司固态电池预计装车时间。广汽集团表示,广汽集团于2024年4月12日广汽科技日活动发布了全固态动力电池技术,已初步打通全固态电池全流程制造工艺,取得车规级高安全大容量全固态动力电池量产的关键技术突破,并具有超高能量密度、超高安全
北极星储能网获悉,2024年11月7日,太蓝新能源与长安汽车联合举办无隔膜固态锂电池技术发布会。在技术发布环节,太蓝新能源董事长CTO高翔博士发布了无隔膜固态锂电池技术。太蓝首推锂电池“减材制造”理念,带来行业范式革命。并且提出了其4-3-2-1技术路线:在锂离子电池四大主材基础上,第一步,减掉
北极星储能网获悉,据晚点Auto11月6日报道,宁德时代在今年增加了对全固态电池的研发投入,已将全固态电池研发团队扩充至超1000人。宁德时代目前主攻硫化物路线,在近期已进入20Ah样品试制阶段。据悉,宁德时代目前的方案能将三元锂电池的能量密度做到500Wh/kg,比现有电池提升40%以上,但充电速度和循
锂电池的生产和迭代,离不开先进锂电设备的支持。为了不断提升锂电池的质量和性能,同时实现电池工厂的“零碳”制造,锂电设备解决方案必须“先行一步”。近年来,我国锂电设备领域持续创新升级,不仅为我国连续多年实现动力电池装机量全球第一,提供了有力的保障;同时,相关设备企业也为锂电企业研发
近期,三家企业披露硫化物全固态电池相关进展。10月25日,中科固能硫化物全固态电解质生产基地项目开工仪式在江苏溧阳正式举行。该项目总投资1亿元,预计12月下旬建成完工并试线投产。固定设备投资数千万元,占地面积超40000㎡,产品涵盖硫化物固态电解质、硫化物固态电解质膜等,预计2025-2026年具备
北极星储能网获悉,10月26日下午,2024全固态电池产业发展创新大会在江西于都举行。与此同时,江西于都500MWH全固态电池量产线正式投产暨全固态电池产品发布。据了解,江西屹锂新能源发展有限公司年产500兆瓦时硫化物全固态电池项目由上海屹锂新能源科技有限公司投资建设。上海屹锂新能源科技有限公司
北极星储能网获悉,盟固利11月18日在互动平台表示,公司LATP型固态电解质已在固态电池头部企业处完成材料认证,正在进行供应商导入工作。据了解,盟固利主要从事新能源电池正极材料的研发、生产和销售,主要产品包括钴酸锂、三元正极材料及前瞻材料。其中在前瞻材料方面,盟固利主要推进包括富锂锰基、
固态电解质是固态电池量产过程中最大的不确定性。高工锂电注意到,当前多家固态电解质企业的产能规划达到千吨甚至万吨级别。按照单GWh固态电池对应700-1000吨固态电解质看,以上产能若全部落地,已可支持数GWh的固态电池制备。不仅如此,固态电解质所对应的更高附加值产品,包括固态电解质涂覆隔膜、(
北极星电池网获悉,9月12日,有投资者向天赐材料提问其在固态电池领域研发进展,天赐材料表示,在固态电池领域主要集中在固态电解质的研究开发上,目前公司在硫化物、氧化物电解质上均有技术布局,氧化物及硫化物全固态电解质均处于中试阶段。天赐材料称,未来会在固态电解质开发上与下游电池客户保持
北极星储能网获悉,南都电源9月9日在投资者互动平台表示,南都固态电池能量密度可达350Wh/kg,循环寿命2000次,目前已通过热箱、短路等国标安全测试。电池采用自主研发的无机固态电解质,消除了液体有机电解质的安全隐患;通过氧化物电解质原位成膜组装技术和致密干法电极工艺,破解了限制固态电池产业
近期,我国在硫化物固态电解质领域的研发取得新进展。据市场消息,欧阳明高院士工作站(四川新能源汽车创新中心)在全固态电池中的关键材料——“硫化物电解质”的研发中取得阶段性进展。据介绍,该中心研发的纳米级“硫化物电解质”即将进入量产阶段,目前正在规划一条年产百吨级的中试线,预计在今年年
7月1日,记者从中国科学技术大学获悉,该校马骋教授开发了一种用于全固态电池的新型硫化物固态电解质,其原材料成本仅14.42美元每公斤,不到其它硫化物固态电解质原材料成本的8%。该成果近日发表在国际著名学术期刊《德国应用化学》(AngewandteChemieInternationalEdition)上。全固态电池有望克服锂离
北极星储能网获悉,联创股份6月4日在互动平台表示,公司与中山大学合作建立了“中山大学-联创碳中和技术研究院”,该研究院正在开发的项目是聚合物基固态电解质项目。目前该项目进展顺利,正在小试阶段,预计下半年安排中试。子公司华安新材作为PVDF的主要生产企业之一,目前给个别固态电池企业有小批
北极星电池网获悉,泰和科技5月27日在互动平台表示,公司有部分固态电池电解质的技术储备,目前暂时没有规模化生产。
北极星电池网获悉,据东峰集团消息,近日,公司与蓝廷新能源科技(浙江)有限公司(以下简称“蓝廷新能源”)签订《战略合作框架协议》,并就固态电池关键材料固态电解质及半固态复合隔膜的研发和生产达成合作。双方通过战略合作协议约定:1、合作双方互为上下游合作关系,一致同意建立稳定的长期业务
北极星储能网获悉,5月15日,星源材质在投资者互动平台表示,公司开发的固态电解质隔膜完全适用于半固态电池,能满足海内外多家电池头部企业和固态电池、半固态电池厂商客户的技术要求,得到了客户的认可并具备量产化条件。公司将对固态电池技术的发展保持密切的关注,积极进行开发固态电池技术相关项
北极星电池网获悉,9月12日,有投资者向天赐材料提问其在固态电池领域研发进展,天赐材料表示,在固态电池领域主要集中在固态电解质的研究开发上,目前公司在硫化物、氧化物电解质上均有技术布局,氧化物及硫化物全固态电解质均处于中试阶段。天赐材料称,未来会在固态电解质开发上与下游电池客户保持
近期,我国在硫化物固态电解质领域的研发取得新进展。据市场消息,欧阳明高院士工作站(四川新能源汽车创新中心)在全固态电池中的关键材料——“硫化物电解质”的研发中取得阶段性进展。据介绍,该中心研发的纳米级“硫化物电解质”即将进入量产阶段,目前正在规划一条年产百吨级的中试线,预计在今年年
7月1日,记者从中国科学技术大学获悉,该校马骋教授开发了一种用于全固态电池的新型硫化物固态电解质,其原材料成本仅14.42美元每公斤,不到其它硫化物固态电解质原材料成本的8%。该成果近日发表在国际著名学术期刊《德国应用化学》(AngewandteChemieInternationalEdition)上。全固态电池有望克服锂离
北极星储能网获悉,中国科学院青岛生物能源与过程研究所研究团队解决了硫化物全固态电池叠层工艺的行业痛点及瓶颈问题,打通了硫化物全固态电池的大型车载电池制作工艺的最后一道难关,在硫化物软包电池叠片技术上取得关键性突破。制备的多层叠片软包电池循环300次容量几乎不衰减,性能还在继续测试中
北极星电池网获悉,9月7日,中科固能硫化物全固态电解质生产基地项目在江苏溧阳签约,该项目建成后将成为世界范围内首条百吨级规模化制备硫化物固态电解质的生产线,为未来建成万吨级别硫化物固态电解质的制备提供经验基础及数据支撑,并同时在设备设计、工艺路线等方面取得世界领先地位的核心关键知识
全固态(硫化物)电池作为推动社会和人类进步的一项前沿科技,被日本科学界列入能够与5G、人工智能齐头并进的研究行列。它凭借其高安全性、高能量密度、耐高温、长寿命等优点,开创性的解决了传统有机电解液电池存在的寿命短、易燃、易爆等一系列问题,成为造福人类的一项颠覆性的突破技术。在新能源汽
发展高能量密度、长循环寿命、安全性高的的储能技术具有重大的社会与经济效益。相比于采用有机电解液的传统锂离子电池,无机固体电解质材料具有机械强度高,不含易燃成分,安全性能好,能量密度高等特点。其中,硫化物固体电解质因为具有较高的离子电导率与良好的柔性等优点,是全固态电池中极具前景的
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!