登录注册
请使用微信扫一扫
关注公众号完成登录
摘要
柔性互联技术是解决高比例分布式电源(distributed generation,DG)配电网面临诸多问题的有效手段之一。提出了一种基于多层优化的配电网中压与低压柔性互联协调规划方法。首先,建立基于电力电子柔性互联设备(flexible interconnected devices,FID)的中低压柔性互联配电网潮流模型。然后,构建三层协调规划模型,上层以低压FID年运行成本及台区变压器负载率的年方差最小为目标,中层以中压FID年运行成本及从上级电网年购电成本最小为目标,分别决策低压和中压FID的安装位置与容量,下层以各场景的从上级电网购电成本最小为目标优化系统运行,并采用自适应粒子群优化和二阶锥规划相结合的混合算法求解。最后,采用含高比例DG的IEEE 33节点配电网进行算例分析,通过柔性互联规划系统的年综合运行成本降低了19.01%,台区变压器负载率的年方差减少了82.59%,验证了所提规划模型的有效性。
01 基于VSC的中低压柔性互联潮流模型
配电网柔性互联规划,首先须确定中低压柔性互联采用的基本结构。VSC具有双向功率流动和低成本的优势,能够实现潮流的四象限瞬时灵活控制,符合配电网柔性互联的需求。低压柔性互联常采用VSC作为低压FID,根据台区接入的DG特性及负荷需求,互联结构可采用公共直流母线集中配置和分段分散式配置,后者包括直流母线分段链式和直流母线分段环状2种结构,适用于互联台区的间距较远及供电可靠性要求较高的场景。中压柔性互联常以SOP作为中压FID,SOP具体实现方式之一是采用背靠背电压源型变流器(back to back voltage source converter,B2B VSC)。本文采用基于低压VSC的直流母线分段链式低压柔性互联结构,以及基于中压B2B VSC的中压柔性互联结构。
图1为一个中低压柔性互联配电网示意,配电网通过110 kV/10 kV变压器从上级电网取电,中压馈线和低压台区均接入DG,DG主要为风光发电;配电网含2条10 kV中压馈线,其末端节点通过中压B2B VSC进行柔性互联,中压B2B VSC正常运行下常采用PQ-UdcQ控制方式,实现对2条馈线之间传输功率的灵活控制;各低压台区通过10 kV/0.4 kV变压器从中压馈线取电,低压VSC和交流负荷接在0.4 kV交流母线上,低压台区DG和直流负荷接到低压VSC直流侧母线上;不允许低压台区倒送电给中压馈线,互联台区之间通过直流联络线相连,配合低压VSC进行台区间功率交换。
图1 中低压柔性互联配电网示意
Fig.1 Schematic diagram of distribution network with medium-voltage and low-voltage flexible interconnection
在此基础上,建立基于VSC的中低压柔性互联配电网潮流模型。
1)节点功率平衡方程为
式中:Pi(t)、Qi(t)分别为配电网节点i在t时刻的注入有功和无功功率,取中压B2B VSC 向电网节点注入功率为正方向;Ui(t)为节点i的电压幅值;δik(t)、Gik、Bik别为节点i、k的相位差及其连接线路电导和导纳,δik(t)=δi(t)–δk(t),δi(t)、δk(t)分别为节点i、k的相位;Nbus为节点数;PDGM,i(t)、QDGM,i(t),PVSCM,i(t)、QVSCM,i(t)分别为t时刻节点i的中压馈线风光消纳出力,中压B2B VSC注入有功和无功功率;PTH,i(t)、QTH,i(t)为t时刻台区i变压器高压侧有功和无功功率。
2)中压B2B VSC将配电网节点i和节点m进行中压柔性互联,互联功率方程为
式中:PVSCM,im(t)为t时刻中压B2B VSCi-m节点间传输损耗;AVSCM,i、AVSCM,m为节点i、m处变流器的损耗系数;SVSCM,i(t)、SVSCM,m(t)为t时刻节点i、m处变流器的视在功率。
3)低压柔性互联功率方程。
低压VSC将低压台区划分为交流区域和直流区域,其中交流区域功率方程为
式中:PTL,i(t)、ΔPT0,i、ΔPTk,i分别为t时刻低压台区i变压器低压侧有功功率、空载和额定负载有功损耗;βi(t)为低压台区变压器负载率;PAI,i(t)、PAO,i(t)、PDI,i(t)、PDO,i(t)分别为流入和流出台区i变压器的低压VSC交流、直流端口有功功率,t时刻下PAI,i(t)、PAO,i(t)其一为0,PDI,i(t)、PDO,i(t)其一为0;PAL,i(t)为低压台区i的交流负荷有功功率;SVSCL,i(t)为低压VSC的视在功率;QAI,i(t)为台区i流入低压VSC交流端口的无功功率;AVSCL,i为低压VSC的损耗系数。
直流区域功率方程为
式中:Ωi为与低压台区i互联的台区集合;PDGL,i(t)为t时刻低压台区i的风光消纳出力;PDL,i(t)为台区i的直流负荷功率;PDL,ij(t)为互联台区i、j的直流联络线有功功率,PDL,ij(t)>0表示台区i向互联台区j输送有功功率,反之,表示互联台区j向台区i输送有功功率;ADL,ij为直流联络线的功率传输损耗系数。
02 中低压柔性互联协调规划模型
配电网中低压柔性互联规划的目的是通过FID进行中压馈线间及低压台区间的功率交互,实现分布式能源跨中压馈线和低压台区消纳,以及低压台区重载变压器的负载转移,进而实现配电网经济优化与安全运行。
由中低压柔性互联配电网潮流模型可知,中压互联与低压互联的潮流具有耦合特征;此外,低压柔性互联装置的安装位置与安装容量规划问题主要受低压台区间距、有无接入DG,及负荷和台区变压器容量大小的影响。由此,本文将中压互联与低压互联进行协调规划,并考虑到规划与运行的联合优化,采用分层的思想,构建配电网中低压柔性互联三层协调规划模型框架如图2所示,其中,上层模型用于实现低压柔性互联的优化规划,目标函数为低压互联装置年运行成本及低压台区变压器负载率的年方差最小;中层模型用于实现中压柔性互联的优化规划,目标函数为中压互联装置年运行成本及从上级电网年购电成本最小;下层模型以每个场景的从上级电网购电成本最小为目标,实现中低压柔性互联配电网系统的运行优化。
图2 中低压柔性互联三层规划模型框架
Fig.2 Framework of medium-voltage and low-voltage flexible interconnection tri-level planning model
2.1 上层规划模型
上层模型以低压柔性互联设备年运行成本及低压台区变压器负载率的年方差最小为目标,进行低压柔性互联的安装位置及低压VSC安装容量的规划,将其转化为最小化函数为
式中:Fup为上层目标函数;ξ1、ξ2为子优化目标的系数;FFIDL为低压柔性互联设备年运行成本,包括投资成本等年值和年运行维护成本;DVLR为低压台区变压器负载率的年方差。
基于低压VSC的直流母线分段链式低压柔性互联结构下,低压柔性互联装置包括低压VSC和直流联络线,考虑到直流联络线的电压等级低且长度较短,其维护成本作忽略处理,则有
式中:Ω1为低压台区可联组合集合;xn表示Ω1中第n个组合的台区是否互联,xn=1表示该组合的台区互联,xn=0表示不互联;Ω2为低压台区可联集合;SVSCLI,i为Ω2中台区i低压VSC的安装容量;Ln为第n个组合的台区间直流联络线长度;λVSCL、ωVSCL分别为低压VSC的单位容量的投资成本和年运行维护费用;уVSCL、уL分别为低压VSC和直流联络线的使用年限;ρL为直流联络线的单位长度投资成本;d为贴现率。
低压台区变压器负载率的年方差为
式中:STH,i(t)为t时段台区i变压器高压侧视在功率,由下层返回;CT,i为低压台区i变压器的额定容量;NT为低压台区变压器个数;πd为一年中典型日d包含的天数;D为典型日集合;T为典型日的所有时段集合。
上层规划模型的约束条件为
式中:SVSCLm,i为台区i低压VSC的最大可安装容量;SVSCLI为单位低压VSC安装容量,即低压VSC最小可优化安装容量;mVSCL,i为非负整数。
2.2 中层规划模型
中层模型在由上层模型给定低压柔性互联的安装位置及低压VSC安装容量下,以中压互联装置年运行成本与从上级电网年购电成本之和最小为目标,得到最优的中压柔性互联装置的安装位置与容量。该模型的目标函数为
式中:Fmed为中层目标函数;FFIDM为中压柔性互联设备年运行成本;Fbuy为向上级电网年购电成本,包括低压台区年购电成本和网损。
中压柔性互联设备年运行成本由中压B2B VSC的投资成本等年值和年运行维护成本构成,为
式中:Ω3为中压柔性互联装置可选安装位置集合;SVSCMI,i表示Ω3的中压柔性互联装置i的安装容量,取值为0时认为该位置不需要安装中压B2B VSC,在确定容量的同时也确定了安装位置;λVSCM、ωVSCM分别为中压B2B VSC的单位容量投资成本和年运行维护费用;уVSCM为中压B2B VSC的使用年限。
式中:PTHd,i(t)、PDGd,i(t)、PVSCMd,i(t)、Pd,l(t)、Qd,l(t)分别为典型日d下t时段的低压台区i变压器高压侧有功功率、节点i的中压馈线风光消纳出力、中压B2B VSC注入有功功率、第l条线路有功和无功功率;NDA为低压台区个数,本文设置NDA=NT;Rl为第l条线路电阻,Ue为配电网额定电压;L为线路集合;f(t)为分时购电价格;Δt为经济运行优化周期。
中层规划模型的约束条件为
式中:SVSCMm,i为中压B2B VSC i的最大可安装容量;SVSCMI为单位中压B2B VSC安装容量,即安装中压B2B VSC最小可优化安装容量;mVSCM,i为非负整数。
2.3 下层规划模型
下层模型最小化典型日下每个经济运行优化周期的从上级电网购电成本,以优化系统运行状态。该模型的目标函数为
式中:FOP为下层目标函数。
下层模型的约束条件包括中低压柔性互联配电网潮流平衡约束(式(1)~(4))、中低压柔性互联运行约束、风光消纳出力约束、节点电压与线路安全约束。
低压柔性互联运行约束为
式中:PDLm为直流联络线允许的最大传输有功功率;βz为变压器的重载系数,正常运行下一般取 0.7~0.8。
中压柔性互联运行约束为
式中:μ为中压B2B VSC无功功率限制系数。
风光消纳出力约束为
式中:PDGMm,i为t时刻节点i的中压馈线风光发电最大出力;PDGLm,i(t)为t时刻低压台区i的风光发电最大出力。
节点电压与线路潮流安全约束为
式中: Umin、Umax分别为节点电压幅值的最小值和最大值,本文分别取0.95 p.u.和1.05 p.u.;Iij,max为线路ij电流幅值的上限。
03 规划模型求解
本文提出的配电网中低压柔性互联三层协调规划模型属于大规模混合整数非线性规划问题,考虑到模型的中层目标函数包含下层的运行优化目标函数,为了提高模型的求解效率与收敛性,本文将中层模型和下层模型转化为单层模型,目标函数为式(18),约束条件为式(1)~(4)、式(12)~(17)。进而将三层规划模型的求解转化为双层求解,采用APSO和SOCP相结合的混合算法进行求解。
采用APSO算法求解上层规划模型,目的是确定低压柔性互联的安装位置及低压VSC安装容量。本文APSO算法中惯性权重、个体学习因子和群体学习因子采用式(19)形式动态变化。
式中:ωk、c1k、c2k分别为第k次迭代的惯性权重、个体和群体学习因子;ωmax、ωmin为惯性权重的最大值和最小值;c1max、c1min,c2max、c2min分别为个体和群体学习因子的最大值和最小值;kmax为最大迭代次数。
采用SOCP求解由中层模型和下层模型转化后的单层模型,二阶锥等效变换和线性化处理参见文献[26]。此外,为减少规划计算的复杂度,基于低压台区之间的距离和台区有、无接入DG及其负荷和变压器容量大小,确定低压台区可联组合集合;并根据中压柔性互联装置主要安装于传统联络开关处,确定中压柔性互联装置可选安装位置集合。
规划模型求解的流程如图3所示,上层求解步骤如下。
图3 规划模型求解的流程
Fig.3 Flowchart for solving the planning model
1)获取配电网网络参数及风光荷参数,确定低压台区可联组合集合及中压柔性互联装置可选安装位置集合;
2)初始化自适应粒子群算法参数,产生初始粒子低压柔性互联的安装位置及互联装置安装容量集;
3)调用下层求解,得到传递过来的台区变压器高压侧视在功率,计算粒子适应度函数;
4)更新当前迭代的全局最优解、惯性权重和学习因子、种群的位置和速度,如果达到设置的最大迭代次数则结束,否则判断全局最优解是否收敛,第k轮迭代收敛判断条件为
如果收敛则结束,并输出低压柔性互联的安装位置与安装容量及中压柔性互联装置的安装位置与容量,否则返回步骤3)。
下层求解为:输入上层传递过来的低压柔性互联的安装位置及互联装置安装容量,采用SOCP求解由中层模型和下层模型转化后的单层模型,产生中压柔性互联装置的安装位置与容量方案,并将计算得到的台区变压器高压侧视在功率传递给上层。
04 算例分析
4.1 算例系统
在配置为Intel Core i7-9700CPU、32.00 GB内存的个人计算机上,采用软件Matlab R2022b编制本文所提配电网中低压柔性互联协调规划模型求解的程序,APSO算法中设置种群规模为100,最大迭代次数为80,惯性权重的最大值和最小值分别为0.9和0.4,个体和群体学习因子的最大值与最小值分别为2和1;SOCP调用Yalmip工具箱和Gurobi 9.5.2商业求解器。
设置含DG的IEEE 33节点配电网算例系统,其拓扑结构如图4所示,中压馈线、低压台区的电压等级分别为10 kV和0.4 kV,中压馈线接入风力发电和光伏发电的位置如图4所示,其有功容量分别为400 kW和600 kW,低压台区接入的光伏发电、交直流负荷和变压器参数如表1所示。中压风光接入容量、低压台区光伏接入容量分别占台区变压器额定容量的49.06%、22.04%,说明本配电网算例系统含分布式电源占比高。对算例系统进行中低压柔性互联规划时,低压柔性互联采用基于低压VSC的直流母线分段链式互联结构,中压柔性互联设备采用中压B2B VSC,待选安装位置为4条联络线TS1~TS4,全年聚类为4个典型日,各典型日包含的天数分别为90天、120天、130天和25天,典型日1的风光荷时序曲线如图5所示,其他参数设置如表2所示。
图4 含分布式电源的IEEE33节点配电网算例
Fig.4 IEEE-33 node distribution network example with distributed generation
表1 低压台区参数
Table 1 Parameters of low-voltage station area
图5 典型日1的风/光/荷时序曲线
Fig.5 Time series curves of wind turbine, PV and load in a typical day 1
4.2 中低压柔性互联规划结果
1)首先,确定低压台区可联组合集合和中压柔性互联装置可选安装位置集合。将重载台区与光伏出力过剩台区进行配对,再结合台区距离,将其他重载台区与普通台区、其他光伏出力过剩台区与普通台区配对,得到低压台区可联组合集合为{(3,24)、(4,5)、(5,6)、(7,8)、(8,9)、(8,29)、(13,31)、(14,15)、(15,16)、(17,18)、(18,33)、(20,21)、(21,22)、(23,24)、(24,25)、(26,27)、(27,28)、(31,32)}。中压柔性互联装置可选安装位置集合为4条联络线{12-22、8-20、25-29、18-33},对应TS1~TS4。
2)采用本文所提规划模型及求解方法,得到算例系统的中低压柔性互联规划结果。低压台区互联组合集合为{(3,24)、(4,5)、(5,6)、(8,9)、(13,31)、(14,15)、(17,18)、(18,33)、(20,21)、(23,24)、(26,27)、(31,32)},台区低压VSC安装容量结果如表3所示。中压柔性互联装置B2B VSC的安装位置为联络线TS1、TS3,安装容量分别为700 kV·A和200 kV·A。由规划结果可知,互联台区及除互联台区外接入光伏发电的台区,均安装了低压VSC,以提供互联台区之间功率交换的功能,及为没有互联台区的光伏发电供能交流负载,减小台区变压器负载率及提高低压台区的光伏发电消纳率;互联中压馈线末端节点之间安装了中压B2B VSC,进行不同中压馈线间的功率传输,以减少网损和提高中压馈线的风光发电消纳率。
表2 参数设置
Table 2 Parameters setting
表3 台区低压VSC安装容量及变压器负载率
Table 3 The low-voltage VSC installation capacity and transformer load rate in substation areas
3)中低压柔性互联规划及其优化运行下,得到低压柔性互联设备年运行成本为5.72万元,低压台区变压器负载率的年方差为48.26,中压互联装置年运行成本与向上级电网年购电成本之和为568.72万元,中压和低压接入的风光发电消纳率分别为99.98%和99.75%。典型日1下12:00的台区变压器负载率如表3所示,典型日1下互联台区26-27的直流联络线有功功率PDL,26-27、台区27变压器负载率、联络线25-29的中压B2B VSC的PVSCM,25(t)、PVSCM,29(t)如图6所示。
图6 柔性互联设备传输功率及台区变压器负载率
Fig.6 Transmission power of FID and transformer load rate in the substation area
由表3可知,各台区变压器负载率的大小非常接近。由图6可知,台区26通过直流联络线向台区27输送有功功率,台区27变压器负载率未超过0.8且波动小,联络线25-29的中压B2B VSC从不同中压馈线的节点29和节点25分别吸取和注入功率。表明了中低压柔性互联及其优化运行能均衡低压台区变压器负载率,减少系统网损及提高风光放电消纳率。上述中低压柔性互联规划结果及分析,验证了本文所提配电网中低压柔性互联协调规划模型的有效性。
4.3 不同规划方案下的结果
设置不同的规划方案,方案1:无柔性互联规划;方案2:仅进行中压柔性互联规划;方案3:仅进行低压柔性互联规划;方案4:本文提出的中低压柔性互联规划。其中,方案1对含有光伏发电及直流负荷的台区配置低压VSC,只有运行优化目标;方案2和方案3均建立双层规划模型,下层均为运行优化目标,上层分别以中压互联装置年运行成本及向上级电网年购电成本最小为目标函数、低压柔性互联设备年运行成本及低压台区变压器负载率的年方差最小为目标函数。得到算例系统4种不同规划方案下的结果如表4所示,其中,RAL、RAM分别表示低压台区和中压馈线接入风光发电的消纳率,方案1与方案4下典型日1的台区20、21变压器负载率对比结果如图7所示。
表4 4种不同规划方案下的结果
Table 4 The planning results with 4 different planning schemes
图7 方案1、4下台区20、21变压器负载率对比
Fig.7 Comparison of transformer load rate in substation area 20 and 21 under scheme 1 and 4
由表4可知:1)方案2相较于方案1,网损减少28.2万元,系统年综合运行成本(包括互联装置年运行成本和从上级电网年购电成本)减少57.79万元,降低了8.16%,中压馈线接入风光发电的消纳率提高了2.72个百分点,表明中压柔性互联能有效降低网损及提高分布式能源的消纳能力。2)方案3相较于方案1,台区变压器负载率的年方差减少195.16,系统年综合运行成本减少59.56万元,降低了8.41%,低压台区接入光伏发电的消纳率提高了16.58个百分点,表明低压柔性互联能显著均衡台区变压器负载率及提高分布式能源的消纳率,进而提高系统运行经济性。3)方案4相较于方案1,中低压互联装置年运行成本增加6.65万元,而系统年综合运行成本减少133.91万元,降低了19.01%,台区变压器负载率的年方差减少228.92,低压台区接入光伏发电和中压馈线接入风光发电的消纳率分别提高了19.94和6.6个百分点,表明中低压柔性互联能有效提高含高比例光伏发电配电网的运行经济性,及台区变压器负载率的均衡性。由图7可知,方案4相较于方案1,典型日1的电压台区20、21变压器负载率大小更接近,且峰谷差更小,减少了台区变压器重载、过载的风险。
上述4种不同方案下的规划结果及分析,验证了本文所提中低压柔性互联协调规划方法的有效性和优越性。
4.4 不同中低压柔性互联规划方法的结果
设置中低压柔性互联规划方法1为先规划低压柔性互联,再规划中压柔性互联。该规划方法先采用上层以低压柔性互联设备年运行成本及低压台区变压器负载率的年方差最小为目标函数,下层为运行优化目标进行低压柔性互联规划,再基于低压柔性互联后的配电网拓扑,采用上层中压互联装置年运行成本及向上级电网年购电成本最小为目标函数,下层为运行优化目标进行中压柔性互联规划。对算例系统采用规划方法1与本文提出的规划方法进行规划对比分析。
得到规划方法1下算例系统的中低压柔性互联规划结果。低压台区互联组合集合为{(3,24)、(4,5)、(5,6)、(7,8)、(8,9)、(8,29)、(13,31)、(14,15)、(18,33)、(20,21)、(24,25)、(26,27)、(31,32)},中压柔性互联装置B2B VSC的安装位置为联络线12-22和联络线25-29,安装容量分别为550 kV·A和100 kV·A。其中,低压VSC安装容量及其典型日1下12:00的台区变压器负载率如表5所示。得到低压、中压柔性互联设备年运行成本分别为9.92万元和3.51万元,低压台区变压器负载率的年方差为73.28,从上级电网年购电成本为605.92万元,网损为24.98万元,低压和中压接入的风光发电消纳率分别为95.91%和94.21%。
表5 中低压柔性互联规划方法1下的结果
Table 5 The planning results with medium-voltage and low-voltage flexible interconnection planning method 1
1)对比表5与表3,及2种规划方法下的低压台区变压器负载率的年方差可知,本文提出的规划方法相较于规划方法1,台区变压器负载率的年方差减少25.02,均衡性更好。这是由于规划方法1下第1步优化了低压台区变压器负载率,而第2步的中压柔性互联规划会改变低压台区变压器负载率,使得其均衡性变差。
2)本文提出的规划方法相较于规划方法1,中压B2B VSC的安装容量增加250 kV·A,中压B2B VSC年运行成本增加1.36万元,而网损减少4.69万元,系统年综合运行成本减少44.91万元,降低了7.25%。此外,低压台区接入光伏发电和中压馈线接入风光发电的消纳率分别提高了3.84和5.77个百分点。表明本文提出的中低柔性互联协调规划方法在满足系统运行约束的条件下,保证含高比例间歇性分布式电源配电网的低压台区调节,与系统调节、运行优化能力相匹配,实现了低压台区变压器负载率的均衡性最好,及配电公司综合运行成本最小化,提高了规划方案的经济性与可行性。
05 结论
本文针对中压馈线和低压台区接入高比例间歇性分布式电源的配电网柔性互联规划问题,提出了一种基于三层优化的中低压柔性互联协调规划方法,通过算例结果及分析得到主要结论如下。
1)提出的低压与中压柔性互联的协调规划,考虑了其潮流的耦合特征及规划与运行的联合优化,低压和中压柔性互联规划主体共同参与规划决策过程,并构建分层规划模型,可降低模型的复杂度;且下层优化运行计及了中低压柔性互联配电网潮流及互联运行约束,能够保证最优规划结果下系统及其低压台区的安全运行。
2)提出的中低压柔性互联协调规划模型,考虑了低压柔性互联规划的特征,及低压柔性互联与中压柔性互联潮流关联的特性,将上层用于实现低压柔性互联的优化规划,考虑了低压台区变压器负载率的年方差最小,中层考虑了向上级电网年购电成本最小,用于实现中压柔性互联的优化规划,使得通过柔性互联方式,实现高比例分布式电源的跨中压馈线及低压台区间的消纳和功率互济,能够提升低压台区变压器负载率的均衡性和系统的运行经济性。
考虑电动汽车、新型储能、可调负荷大量接入下的高比例分布式电源配电网柔性互联规划将是下一步的研究重点。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月21日上午10时,随着“确认110千伏古木站10千伏农场Ⅰ线农场Ⅰ02开关1刀闸线路侧发电车已带上负荷”调度指令操作完毕,标志着南方电网广西柳州供电局成功应用10千伏中压发电车同期并网技术于计划停电检修作业中,全程未对周边用户造成用电影响,成功实现了线路施工“用户零感知”。据悉,按照以前的
“10千伏851八南线114号杆后故障,两秒内处置完毕,供电正常。”近日,山西省长治市上党区境内发生雷暴大风降雨天气,导致该区域内部分配网线路故障,当地电力部门提前通过为线路安装自适应智能型馈线自动化装置,实现线路故障“秒级”处置。这是山西省首批搭载了自适应智能型馈线自动化装置的配网线路
4月21日,国网宁波供电公司用能精算师专业服务团队走进宁波经济技术开发区热电公司开展能效诊断和碳资产核算专项服务行动。在热电公司中控室,团队专家通过企业生产调度管理平台调取历史运行数据,结合现场勘查情况,针对企业现有热力系统进行能效评估,并对输配电网络进行“全链条体检”。此前,国网
在加快建设新型能源体系的战略指引下,2024年国家发改委、国家能源局等部委出台了一系列关于加快构建新型电力系统的纲领性政策和建设新能源供给消纳体系、加强电网调峰储能、智能化调度、配电网高质量发展等各电力关键环节的指导意见,强调要深化电力体制改革,统筹发挥源网荷储各类调节资源作用,加快
4月21日,山东省2025年新能源高水平消纳行动方案发布。其中提到,加强网架建设。夯实500千伏省域主网架,加快弥河新建、海口扩建工程建设。加强220千伏市域主网架结构,力争年内尽早投产东营富国至裕民线路等工程。实施配电网高质量发展行动,加大农村电网改造力度。同时,优化调度运行。开展并网运行
截止4月22日,国家电网其各省网分公司等已有14家企业发布2025年招标计划。分别是国网江苏电力、国网宁夏电力、国网山西电力、国网重庆电力、国网河北电力、国网车网技术、国网吉林电力、国网浙江电力、国网黑龙江电力、中国电财、国网信通、国网特高压公司、国网综能、英大传媒集团。在这8家省网公司中
4月19日,国网北京市电力公司创新应用“电网一张图”配网停电研判场景,依托光明电力大模型,在北京通州试点开展“人工智能(AI)+电力”主动抢修服务,精准研判故障原因和影响范围,实现电力抢修服务由接诉即办向未诉先办转变,故障研判效率提高90%以上,抢修时间较过去平均节省20分钟。“电网一张图
北极星储能网获悉,近期,河南省发改委发布《河南省发展和改革委员会关于实施第八批源网荷储一体化项目的通知》。确定工业企业类35个、增量配电网类1个、其他类6个,共3类42个项目纳入第八批实施范围。规模总计420MW,光伏173.77MW,风电246.25MW。本批次项目光伏发电部分应自通知印发之日起6个月内开
日前,河南发改委发布《关于实施第八批源网荷储一体化项目的通知》,明确第八批源网荷储一体化项目名单,规模总计420MW,光伏173.77MW,风电246.25MW。本次共42个项目纳入实施范围,其中,工业企业类35个、增量配电网类1个,其他类6个。本批次项目光伏发电部分应自通知印发之日起6个月内开工建设,风电
日前,河南发改委发布《关于实施第八批源网荷储一体化项目的通知》,明确第八批源网荷储一体化项目名单,规模总计420MW,光伏173.77MW,风电246.25MW。本次共42个项目纳入实施范围,其中,工业企业类35个、增量配电网类1个,其他类6个。本批次项目光伏发电部分应自通知印发之日起6个月内开工建设,风电
北极星储能网获悉,4月21日,杭州鑫蜂维网络科技有限公司同江苏同力日升机械股份有限公司就算电协同领域签订战略合作协议,秉承资源共享、互利共赢、长期稳定的合作原则,共同推进算力中心储能、新型零碳智算园区与人工智能算力技术创新业务的深度协同。通过算电协同有效提升智算数据中心的运营效率和
日前,交通运输部等十部门发布关于推动交通运输与能源融合发展的指导意见。其中提到,因地制宜推进港口航道清洁能源综合利用。结合港口码头、航道运河既有条件,在确保港口作业、船舶通航等安全前提下,依托港池、仓库、防波堤等,因地制宜推广海洋能、光伏、风电等新能源就地开发利用。鼓励集装箱枢纽
2025年一季度,南方电网经营区域新能源发展势头强劲,新增新能源装机规模约1882万千瓦,占新增电源装机的98%,同比增长约52%。从装机类型来看,新增光伏发电装机约1540万千瓦,其中集中式光伏约756万千瓦、分布式光伏约785万千瓦;新增风电装机约337万千瓦,包括海上风电约127万千瓦、陆上风电约209万千
4月25日,海尔新能源在青岛举行A轮融资签约仪式暨发展战略研讨会,获得国投创益、中国石油昆仑资本、普超资本、星航资本、恒旭资本等资方投资,本轮融资超7亿元。此次融资将助力海尔新能源发展成为数智化分布式智慧清洁能源解决方案服务商的引领者,持续以AI重塑分布式新能源行业格局,为全球家庭及工
4月18日,北极星太阳能光伏网发布一周要闻回顾(2025年4月21日-4月25日)。政策篇山东:推动虚拟电厂示范可在受限区新装分布式光伏4月17日,山东省发展改革委、山东省能源局、国家能源局山东监管办公室联合发布《关于推动虚拟电厂试验示范工作高质量发展的通知》,提出对符合条件的虚拟电厂试验示范项
4月24日,广西柳州市融安县人民政府发布柳州电网分布式光伏接入电网承载能力评估结果预警(2025年4月)。公示文件显示,4月,广西柳州市分布式光伏可开放容量合计为207.96MW。88个乡镇之中,仅4个乡镇承载力评估为绿色,红色等级的乡镇为34个,可接入分布式光伏容量均为0。其余50个乡镇为黄色。
北极星太阳能光伏网获悉,4月24日,华电潍坊昌邑东利渔村分布式光伏发电项目成功并网发电。据悉,该项目位于山东省昌邑市龙池镇东利渔村,交流测装机容量3.82MW,利用村主干道路及广场上方空间,打造出集生态、经济、社会效益于一体的分布式光伏发电样板工程。项目采用“全额上网”的方式,通过控制系
国家电投集团内蒙古公司白音华铝电公司成立于2016年,现有员工824名。白音华铝电公司40万吨高精铝板带项目配套2台35万千瓦机组,采用500千安预焙阳极电解槽技术,是国家电投集团目前唯一的500千安电解铝生产线。项目2023年12月16日全容量投产,打通了内蒙古公司在锡林郭勒盟白音华区域的“煤-电-铝”
北极星储能网获悉,4月24日,湖北能源发布2024年度财报,其中显示,其新能源业务、尤其独立储能和虚拟电厂实现了新突破。财报显示,湖北能源2024年实现营业收入200.31亿元,同比增长7.30%,净利润22.19亿元,同比增长18.10%。其中新能源装机容量增加、发电量增加,推动收入同比增加3.61亿元。报告期内
北极星储能网讯:4月22日,广东东莞市发展和改革局发布关于印发《东莞市推进分布式光伏高质量发展行动方案》。方案明确,加大新型储能技术应用与推广,鼓励装机容量2兆瓦及以上的分布式光伏发电项目,按照不低于装机容量8%的比例配建储能系统,储能系统与分布式光伏发电项目组成部分一并办理备案。鼓励
近日,成都市经济和信息化局发布《成都市电网2025年第二季度各区(市)县分布式光伏可开放容量》,我区电网2025年第二季度分布式光伏可开放容量为13.84万千瓦,承载能力评估等级为“绿色”。相关阅读:四川成都青羊区2025Q1分布式光伏可开放容量177.4MW
4月24日,山东电力交易中心发布《山东电力市场经营主体不良行为监测及处理办法(试行)》的通知,经营主体包括发电企业、售电公司、电力用户以及新型经营主体(含分布式光伏、负荷聚合商、储能和虚拟电厂等)。详情如下:[$NewPage$][$NewPage$]
作为国家能源战略的核心载体,“西电东送”南通道工程历经三十余年发展,其战略定位已实现三重跨越:从传统能源输送转向低碳枢纽,从区域互补升级为国家能源网络整合,从国内资源配置延伸至国际能源合作;其功能从区域能源电力调配演进为服务“双碳”目标、推动全球能源电力治理系统性工程,成为支撑经
广东电网公司2025年柔性互联设备专项招标招标公告(项目编号:CG0300022002029792)1.招标条件本招标项目广东电网公司2025年柔性互联设备专项招标,招标人为广东电网有限责任公司,项目资金来自自筹资金,出资比例为100%,资金已落实。该项目已具备招标条件,现对本项目进行公开招标。2.项目概况和招标
面对日益增大的分布式光伏接入压力,为既做好刚性保供又做到充分消纳,国网江苏省电力有限公司探索县域示范,在国网扬中公司采用中低压柔性互联技术,着力打造多通道、多组合的“蜂巢配电网”,保障电力的稳定供应,努力推动现代智慧配电网系统发展,为能源的高效利用和可持续发展开辟新的道路。长期以
针对“双碳”目标实现过程中电力系统持续发生的结构、形态、特性变化,构建新型电网,是保障电力安全运行和可靠供应的迫切需要,是加快能源电力清洁低碳转型的有效举措,是助力新型电力系统加快建设的重要保障。公司2024年十大战略课题之二《大电网、配电网、微电网等多种形态协调发展研究》,坚持统筹
在能源革命与数字技术深度融合的背景下,智能配电网不仅是能源互联网的“神经末梢”,更是实现“双碳”战略、保障能源安全的核心基础,其建设水平将直接影响新型电力系统的经济性与稳定性。为了助力新型电力系统和新型配电系统的构建,浙江省轨道交通和能源业联合会(筹)联合北极星电力网于2025年5月1
今年政府工作报告提出,“协同推进降碳减污扩绿增长”“加快发展绿色低碳经济”“深入实施绿色低碳先进技术示范工程”“推进新能源开发利用”“积极稳妥推进碳达峰碳中和”……能源电力绿色发展成为备受关注的议题之一。绿色发展是高质量发展的底色。南方电网公司正加快数字化绿色化协同发展步伐,推动
北极星售电网获悉,近日,山西临汾市人民政府印发《临汾市碳达峰实施方案》(以下简称《方案》)的通知。《方案》指出,积极拓展段村“交直柔性互联”模式,实施村级智能微电网工程,推进新能源电站与电网协调同步。结合清洁取暖和新能源消纳工作开展县级源网荷储一体化示范,支持城区商业区、工业园区
近日,由粤运交通集团创新打造的数字化直流微网台区互济示范项目在沈海高速开阳路段大槐服务区动工,为光能源为该项目提供了2台10kV/1250kVA、10kV/1000kVA电能路由器装置,标志着为光能源在推动绿色交通方面取得了重要进展,同时对加速实现双碳目标具有深远意义。该项目中2台10kV/1250kVA、10kV/1000k
北极星输配电网获悉,2月13日,16届93次广州市政府常务会议审议通过《广州市面向2035年电力供应保障规划》。规划明确,以满足经济社会高质量发展的能源电力供应保障为底线,以电力基础设施建设和互联互通为重点,系统电网供电能力在2024年2680万千瓦的基础上,力争到2027年、2030年、2035年分别提升达
编者按柔性多状态开关(softopenpoint,SOP)因其控制灵活性高、响应速度快、动作成本低等特征,在配电网的潮流优化、馈线均衡、改善电压分布等起到重要作用配电网中柔性多状态开关控制主要是功率调控和电压调控,在配电网调控中的作用进行了研究。《中国电力》2025年第1期刊发了刘文军等撰写的《新能
近日,山东莱芜供电公司在莱芜羊里街道小增互联台区0.75千伏直流汇集线3号杆,成功开展国内首次带负荷处理线夹发热、带电断(接)分支线引线、带电更换拉线、带电安装验电接地环、带电清除异物等6类作业,实现客户用电“零感知”,填补了国内在低压直流配电网不停电作业领域的空白。与传统不停电作业相
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!