登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
04 富氧燃烧碳捕集技术综合能源系统优化调度模型
4.1 目标函数
系统以运行成本最小为优化目标,运行成本包括机组设备的运行维护成本Com、购售能成本Cgrid、碳封存成本CC、弃风弃光惩罚成本Ccf和系统碳排放成本即
1)运行维护成本为
式中:I为设备集合;fom,i为i类设备的单位维护费用;为设备i在t时刻的输出功率。
2)购售能成本为
式中:为t时刻气价;分别为t时刻购、售电价;为t时刻购气体积;为t时刻售电功率。
3)碳封存成本为
式中:为碳封存成本系数。
4)碳排放成本详见式(24)。
5)弃风弃光惩罚成本为
式中:hcf为单位弃风弃光惩罚成本;分别为光伏、风机预测的t时刻输出功率;Ppv,t、Pwt,t分别为t时刻光伏、风机实际并网功率。
4.2 约束条件
4.2.1 运行约束
1)设备运行约束为
式中:Pi,min和Pi,max为设备i最小、最大输出功率。
2)储能约束详见式(9)。
3)购能约束为
式中:分别为购、售电功率的最大、最小限度;分别为购天然气的上下限;为t时刻系统购买天然气的量。
4.2.2 功率平衡约束
1)电功率平衡约束为
式中:分别光伏和风机在t时刻的出力;分别为t时刻蓄电池充放电功率;为系统电负荷。
2)热功率平衡约束为
式中:分别为储热罐的充放热量;为系统的热负荷。
3)天然气平衡约束为
4)氧气平衡约束为
式中:分别为储氧罐的充放氧气量。
5)用户用能满意度约束为
式中:为用户用能满意度最小值。
05算例分析
为验证所提方法的有效性,本文通过Matlab调用商业求解器Cplex搭建模型并进行求解验证,对包含平方项的公式进行分段线性化处理。本文所研究的IES结构如图1所示,以一天24 h作为系统优化调度的周期,时间间隔取1 h。系统相关参数如表1所示,储能参数如表2所示,分时交易电价如表3所示,新能源输出功率曲线如图3所示。价格型需求响应负荷占比为15%,替代型需求响应负荷占比为15%。
表1 系统相关系数
Table 1 System correlation coefficients
表2 储能参数
Table 2 Energy storage parameters
表3 分时交易电价
Table 3 Time-of-use electricity prices
图3
图3 系统功率预测
Fig.3 System power forecast
利用拉丁超立方抽样技术生成遵循概率分布约束的风电和光伏出力多个随机场景,基于Kantorovich距离的场景削减方法实现场景缩减,以此模拟风电和光伏出力的不确定性。风电和光伏发电场景聚类削减结果如图4所示。
图4 场景聚类削减结果
Fig.4 Scenario clustering reduction result
为验证所提模型和策略的有效性,本文提出4个场景进行分析。1)采用传统的CHP机组进行调度,源荷两侧不参与响应;2)采用富氧燃烧碳捕集机组进行调度,源荷两侧不参与响应;3)采用富氧燃烧碳捕集机组进行调度,源侧参与响应,负荷侧不参与需求响应;4)采用富氧燃烧碳捕集机组进行调度,源荷两侧参与响应。
5.1 调度结果分析
如表4所示,场景1采用传统的CHP进行调度,未考虑富氧燃烧捕集技术,导致CHP机组的碳排放明显超出碳排放配额,进而使碳交易成本达到最高水平。相较场景1,场景2在应用富氧燃烧碳捕集机组的情况下,碳排放量减少kg,碳交易成本降低元,表明富氧燃烧碳捕集机组能够有效捕捉和储存CHP机组产生的碳排放,降低碳排放量和碳交易成本。与场景2相比,场景3在总成本和碳排放方面分别降低了6.5%和21.5%,可调热电比使得CHP机组的发电和产热比例更加灵活,打破了传统机组的“以热定电”模式,相较于不可调运行模式,这种灵活性使得系统运行更低碳、经济。在场景4中,基于场景3引入了多能耦合的需求响应,该响应机制中的价格型需求响应和替代型需求响应有效地对负荷进行了优化调节,实现了削峰填谷的效果,降低了系统调度的购能成本,因此场景4中的总运行成本最低。
表4 各场景系统运行成本
Table 4 Operating costs of each scenario
5.2 富氧燃烧碳捕集机组调度分析
场景4中电力负荷的调度情况如图5所示,该系统在00:00—06:00时段内主要依赖于风力发电以及从上级电网购电,以满足蓄电池的充电需求、电转气系统的运行需求,以及电力负载的需求,从而维持电力的平衡。在负荷高峰期,即17:00—20:00时段内,富氧燃烧碳捕集机组的净输出在热电比最小的限制下,无法完全满足电负荷,因此需要蓄电池的储能能力以及从外部电网购电来满足电力负荷的要求。在多能耦合的需求响应下,电负荷曲线变得较为平缓,不仅有助于降低综合运营成本,还能有效地促进风力发电的消纳。
图5 电负荷基本调度
Fig.5 Basic dispatch of electric load
场景4下富氧燃烧碳捕集机组碳排放情况如图6所示,当CO2被捕获后,大部分CO2被封存,其余部分成为电转气设备的反应原料,从而有效降低了碳封存成本。通过电转气设备将CO2转化为天然气,生成的天然气成为机组的原料,减少了对传统燃料的依赖,实现了碳资源的循环再利用,从而使系统在能源转化方面实现了双重收益。场景4下富氧燃烧碳捕集机组出力情况如图7所示,系统通过调整空分制氧设备和碳捕集设备的电力消耗,使机组能够灵活地调整净发电产出,这种灵活性使机组更好地适应电力负荷波动,有助于其更有效地参与电力系统的调度和调峰,从而提高整体能源系统的运行效率和可靠性。
图6 富氧机组碳排放情况
Fig.6 Carbon emissions of oxy-fuel combustion units
图7 富氧机组出力情况
Fig.7 Output of oxy-fuel combustion unit
5.3 源侧响应分析
为验证可变热电比机组的优势,在场景3的基础上提出场景5,场景5为恒定的热电比,其他条件不变。机组出力如图8所示,场景5机组的输出表现出较为稳定的特征,这是因为热电比保持不变,但这种运行方式在夜间风电功率与机组输出功率较大的情况下,易造成弃风现象。在场景3中,基于电价和电负荷的变化,灵活调整了富氧燃烧碳捕集机组的热电比,在电价高峰期,增加了富氧燃烧碳捕集机组的电出力,从而使热电比减小,以减少购电量,达到节约购电成本、减少碳排放并提升经济效益的目标。在夜间时段,调整热电比,使夜间时段增加热出力、增大热电比,从而在满足系统需求的前提下,有效解决夜间弃风的问题。
图8 机组出力对比
Fig.8 Comparison of unit output
图9 场景3的热电比
Fig.9 Electricity-to-heat ratio in scenario 3
由图8~9可知,富氧燃烧碳捕集机组的热电比呈现出与场景5中富氧燃烧碳捕集机组电出力变化相反的趋势。这是由于在夜间,系统热负荷需求较高,而电负荷需求相对较低,为了满足这一负荷需求,富氧燃烧碳捕集机组的热电比被调整为“热输出高,电输出低”。然而,在电价较高的时间段,系统会将富氧燃烧碳捕集机组的热电比调整为“电输出高,热输出低”,以减少购能需求。这种策略的调整能够有效平衡能源供需,提高系统的经济效益。
5.4 P2G影响性分析
P2G电解水阶段产生氧气以及系统氧气状况如图10所示,其中生成的氧气总量约占系统总消耗量的22.9%,这表明P2G电解水阶段一定程度上减少了对空分制氧设备的依赖性,提升了系统内部的能量耦合转换能力。储氧罐在氧气充裕时将氧气储存,在氧气需求较高时释放,实现“以氧定电”解耦,以保持富氧燃烧碳捕集机组的稳定输出。
图10 场景3氧气供求情况
Fig.10 Oxygen supply and demand in scenario 3
P2G甲烷化阶段产生余热与系统热负荷调度的情况如图11所示。其中由甲烷化产生的余热占据系统总热负荷需求的6.34%,通过对余热进行回收利用,系统能够向热负荷补充部分热能,从而减轻了富氧燃烧碳捕集机组的供热压力,使得富氧燃烧碳捕集机组的热电比能够与余热回收之间相互协调,以实现能源的经济高效利用。综合考虑,P2G的两阶段运行不仅可满足系统所需的氧气、甲烷和余热,同时还具备一定的CO2吸收能力,呈现了较为协调的能源综合利用模式,因此在系统调度方面,特别是在电价较低的时间段,更倾向于优先考虑利用P2G的产能。
图11 场景3热平衡情况
Fig.11 Thermal balance of scenario 3
P2G容量对系统的影响如图12所示。随着P2G运行效率的增加,产生的氧气逐步增加,系统总运行成本随之减少。P2G运行效率从0.56到0.84,P2G产氧量从m3上升到m3,供氧占比从23.9%上升到33.42%,总运行成本从元降低至元。因此P2G的运行效率能够有效减轻空分制氧设备的供氧压力,并提高经济性。
图12 P2G运行效率对系统的影响
Fig.12 The impact of P2G operating efficiency on the system
5.5 需求侧响应分析
5.5.1 需求响应分析
引入多能耦合的响应策略可以有效平抑电价峰值,具体如图13 a)所示。在高电价时段,即12:00—14:00、20:00—22:00实施可削减负荷措施,从而降低负荷峰值;峰时电价引导负荷转移,将部分高电价时段的电力需求,即12:00—14:00、20:00—22:00迁移到00:00—06:00低电价时段,在降低高电价时段负荷压力的同时,也使低电价时段负荷水平有所提升,从而使负荷曲线更为平稳;通过替代型需求响应策略,在时段08:00—14:00部分电负荷被转换为热负荷或气负荷,从而实现资源的有效替代利用。
图13 需求响应情况
Fig.13 Demand response situation
如图13 b)所示,可转移负荷主要从较高负荷时段20:00—07:00向低负荷时段08:00—19:00转移,以降低夜间供热需求,从而减少机组的发电功率,促进系统对风电消纳。热负荷中的替代型负荷主要是由电能和气能实现转移,促进了电-热-气三者的耦合调度。图13 c)所示的气负荷需求响应,由于气价在各时段不变,因此气负荷并不参与价格型需求响应,主要是作为电-气、热-气之间的替代媒介。因此,在综合权衡价格型需求响应与替代型需求响应的协同作用下,使得负荷曲线得以平稳,进而实现了削峰填谷。
5.5.2 需求响应灵敏度分析
为分析系统成本受价格型需求响应和替代型需求响应负荷占比变化的影响,在基于场景4的基础上引入场景6和场景7。在场景6中,保持其他条件不变的前提下,对价格型需求响应和替代型需求响应的负荷占比进行调整,而替代型需求响应的占比则保持固定;在场景7中,则固定价格型负荷响应占比,而改变替代型需求响应的占比。
价格型需求响应和替代型需求响应对总运行成本的关系如图14所示。由图14 a)可知,随着可消减负荷和可转移负荷占比增加,系统总运行成本减少,呈负相关。总成本与价格型需求响应负荷之间的关系是因为在总负荷保持不变时,提高可消减负荷和可转移负荷的比例实质上扩大了价格型需求响应的规模,在高电价时段负荷有所下降;低电价时段的负荷则有所上升,从而降低总运行成本。
图14 需求响应灵敏度分析
Fig.14 Demand response sensitivity analysis
由图14 b)可知,当可消减负荷和可转移负荷占比设定为15%时,随着可替代负荷占比从10%增至30%,系统总运行成本上升,呈正相关。因此,在实际应用中,适当平衡价格型和替代型需求响应的比例,有助于优化系统经济性。
5.5.3 用户用能满意度分析
通过分析用户用能满意度来验证多元负荷之间的可替代型需求响应的有效性。本文提出3个子场景进行分析。1)场景A,不参与需求响应,即场景3;2)场景B,仅考虑价格型需求响应;3)场景C,考虑多能耦合的需求响应,即场景4。
由表5可知,仅考虑价格型需求响应和考虑多能耦合参与需求响应的运行成本分别下降了5.38%和12.13%。考虑多能耦合的需求响应较仅考虑价格型需求响应的综合用能满意度上升了3.09%。因此,考虑多元负荷之间的纵向可替代性能够减少运行成本,并且对用户用能满意度的影响较小。
表5 不同需求响应下的用户用能满意度
Table 5 User satisfaction with different demand responses
06 结论
本文在传统IES优化调度中引入富氧燃烧碳捕集技术,并对电转气的产气、制氧和产热特性进行了量化分析。在源侧引入可调的热电比特性,实现灵活热电响应,在负荷侧考虑含多元负荷之间的纵向可替代性的多能耦合的需求响应;并进一步提出含气负荷碳排放的阶梯式碳交易机制,在优化经济成本的同时能够实现深度碳减排。通过算例分析可得以下结论。
1)本文所提的富氧燃烧碳捕集技术能够显著降低系统碳排放,与电转气技术的协同运行使得系统内的碳资源循环再利用成为可能,进一步提高了系统的低碳运行性能,证明了富氧燃烧在低碳经济调度方面具有优势。
2)源侧考虑CHP的热电比可调特性,根据实际的用能需求,即时地调整电力和热能的产生比例,实现热电的灵活供能,相较于传统机组总成本降低了6.5%。
3)P2G技术的氧制备降低了对空分制氧设备的依赖,进一步提高了系统的经济性。此外,在甲烷化过程中,P2G系统的CO2吸收机制拓展了P2G碳减排的潜力。
4)负荷侧引入多元能源耦合的需求响应,能够实现资源的优化利用,提升用户用能满意度。调整基于价格和替代性的需求响应比例能够提高多元能源需求响应的经济性。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
10月31日10时18分,中国石油工程建设公司西南分公司研发的中国石油首套CCUS-EGR碳捕集模块,在西南卧龙河气田茅口组气藏CCUS-EGR先导试验工程(引进分厂)项目现场完成吊装并精准就位。碳捕集模块是西南卧龙河气田茅口组气藏CCUS-EGR先导试验工程的核心设备,主要用于捕集引进分厂CPH尾气处理吸收塔排
10月16日,国家能源集团浙江公司宁海电厂“万吨级吸附法碳捕集示范建设项目”碳捕集系统土建基础出零米,工程进入全面建设阶段,这是国内首个煤电万吨级低压吸附碳捕集项目。该项目充分发挥国家能源集团“产业公司-科技型企业-科研院所”三位一体优势,由浙江公司、科环集团、低碳院开展联合攻关,依托
10月16日,国家能源集团浙江公司宁海电厂“万吨级吸附法碳捕集示范建设项目”碳捕集系统土建基础出零米,工程进入全面建设阶段,这是国内首个煤电万吨级低压吸附碳捕集项目。该项目充分发挥国家能源集团“产业公司-科技型企业-科研院所”三位一体优势,由浙江公司、科环集团、低碳院开展联合攻关,依托
近日,中国能建西北院中标新疆油田264万千瓦新能源及配套煤电、碳捕集一体化项目(一期)煤电EPC总承包项目。该项目紧扣国家“煤炭与煤电联营、煤电与可再生能源联营”政策要求,本期建设2×66万千瓦超超临界、间接控冷燃煤机组、配套建设100万吨/年二氧化碳捕集。项目建成后可实现年发电量52.8亿千瓦
近日,由中国能建建筑集团、西北电建参建的华能正宁百万吨级碳捕集项目冷却塔结顶。项目冷却塔的复合吸收塔塔身为方形塔器,塔体重约1194吨,施工难度大、风险系数高。为确保建设顺利推进,项目部密切监控施工过程中的每一个细节,严把质量关、安全关、进度关,克服了高空作业难度大、降雨频繁、大风大
在庆祝新中国75周年华诞之际,宁夏煤业甲醇公司传来喜讯,近日,中国最大碳捕集利用与封存全产业链示范基地——宁夏300万吨/年CCUS示范项目一期工程打通10万吨/年工业级生产流程,标志着该项目一期工程建设圆满完成,正式投入生产运行。宁夏300万吨/年CCUS示范项目一期工程以煤制油公司和烯烃一公司低
在庆祝新中国75周年华诞之际,宁夏煤业甲醇公司传来喜讯,近日,中国最大碳捕集利用与封存全产业链示范基地——宁夏300万吨/年CCUS示范项目一期工程打通10万吨/年工业级生产流程,标志着该项目一期工程建设圆满完成,正式投入生产运行。宁夏300万吨/年CCUS示范项目一期工程以煤制油公司和烯烃一公司低
10月11日,中国能建党委书记、董事长宋海良,党委副书记、总经理倪真在公司总部与海南省委书记、省人大常委会主任冯飞,省委副书记、省长刘小明举行会谈。双方就贯彻落实习近平总书记关于海南工作的系列重要讲话和指示批示精神,进一步开展全方位、宽领域、深层次、多形式的战略合作,推进海南加快建设
在2023年,大多数碳捕获、利用和储存(CCUS)能力仅来自两个国家,这两个国家总共捕获了3300万吨。然而,根据国际能源署(IEA),我们必须每年移除10亿公吨碳,才能在2050年达到净零目标。(来源:国际能源小数据作者:ESmallData)我们从能源研究所的2024年世界能源统计回顾中获取数据制作信息图,展
近日,东方电气集团东方锅炉股份有限公司(简称“东方锅炉”)在国际上首次实现化学链碳捕集装备系统试验成功。该技术可在燃烧源头直接得到90%浓度以上的二氧化碳,预期比传统碳捕集技术成本减少三分之二,是碳捕集技术领域的颠覆性创新。这项技术将为全球电力、供热、石化、化工、油气等行业的深度脱
长期以来,煤电一直是我国的主体性电源,也是碳排放的主要来源。2020年9月,国家主席习近平在七十五届联大一般性辩论上提出中国将在“2030年前实现碳达峰、2060年前实现碳中和”的目标,随之而来,煤电的角色也必然将在推进该目标实现的进程中而改变。(来源:能源新媒文/秦旗作者系能源与清洁空气研究
北极星电力网获悉,国家能源集团近日发布11项火电相关招标,涉及国产阀门设备、碳排放数智平台、等离子点火装置、全厂门禁系统设备等,整理如下:江西公司国能神华九江电厂2×1000MW二期扩建工程国产阀门设备(第二批)采购公开招标项目招标公告1.招标条件本招标项目名称为:江西公司国能神华九江电厂2
随着全球能源转型成为共识,各国政府纷纷出台控制温室气体排放的相关政策。中国也将应对气候变化作为国家战略,积极落实“碳达峰、碳中和”目标。今年8月2日,国务院印发《加快构建碳排放双控制度体系工作方案》,推动“能耗双控”向“碳排放双控”政策导向转变,进一步加大能源经济绿色转型的力度与速
国务院副总理丁薛祥在第29届联合国气候变化大会(COP29)的发言中提到,“中方将提交覆盖全经济范围、包括所有温室气体的2035年国家自主贡献,努力争取2060年前实现碳中和。”(来源:微信公众号“老汪聊碳中和”)这个发言发出来后,我看并没有多少人关注,但其实这是非常重磅的消息。为此,我打算在这
北极星电力网获悉,11月19日,国家发展改革委召开11月份新闻发布会。国家发展改革委政策研究室副主任、委新闻发言人李超表示,党的二十届三中全会对建立能耗双控向碳排放双控全面转型新机制、构建碳排放统计核算体系等作出部署。碳排放统计核算,是指对二氧化碳排放进行计量、统计和分析的过程,简单理
11月14日,《重庆市碳排放核查机构管理细则(征求意见稿)》发布。《管理细则》共十三条,其中明确了核查机构、核查人员条件。对核查机构和核查人员共提出了十项要求,要求核查机构具备开展核查活动设施设备和技术力量且信誉良好,要求核查人员应具备开展碳排放核查活动的相关能力且无违法违规从业行为
近日,生态环境部印发《2023、2024年度全国碳排放权交易发电行业配额总量和分配方案》(以下简称《分配方案》),正式启动全国碳排放权交易市场第三个履约周期工作。自治区生态环境厅高度重视,立即行动,组织相关单位全力做好履约清缴各项准备工作。截至目前,已准确核定发放全区37家纳入配额管理企业
鼓励用能企业使用绿电,既可以减少企业碳排放量,有利于企业提升绿色低碳发展水平,也可以增强企业核心竞争力,日前,北京市生态环境局联合市发展改革委、市城市管理委等部门和首都电力交易中心召开重点碳排放单位绿电消纳与碳排放核算政策培训会,近300家重点碳排放单位参会。培训会上,市生态环境局
湖北省生态环境厅11月11日印发《湖北省2023年度碳排放权配额分配方案》(鄂环发〔2024〕18号),确定449家纳入湖北省2023年度碳排放配额管理范围的企业,涉及钢铁、水泥、化工等17个行业。根据2020-2022年度纳入湖北省碳市场控排企业排放量占湖北省总排放量比例及2023年度全省地区生产总值与碳强度下降
美联社发表署名SETHBORENSTEIN(AP科学作家)的文章,题目是:Trump2.0willalterglobalclimatefightingefforts.Willothersstepup?(特朗普2.0将改变全球抗击气候变化的努力。其他国家会加强行动吗?)(来源:国际能源小数据作者:ESmallData)在全球努力对抗气候变化的过程中,唐纳德·特朗普上次当选
11月8日,根据全国碳市场管理平台对2023年履约期碳排放配额预分配及核定确认,国能连江公司加入全国碳排放权交易市场以来首年履约即实现配额盈余11.54万吨。国能连江公司高度重视碳排放数据质量管理提升,成立碳排放管理工作组织机构,修编并严格执行碳排放管理相关工作制度;积极推进煤检验工作标准化
当地时间11月16日,由中国能建总承包的乌兹别克斯坦1500MW燃气联合循环独立发电电站顺利完成了性能实验和240小时可靠性运行,达成了项目重大里程碑节点。这标志着乌兹燃机项目已具备实现全厂商业运营条件,电站正式进入稳定电力输出阶段,将为乌兹别克斯坦乃至整个中亚地区经济发展提供稳定的能源支持
2024年4月3日早上七点,台湾台南市,森霸电力二期发电厂项目现场一切如常。西门子能源的团队与客户及合作伙伴们正为当天的重要任务——9000HL燃气轮机的首次点火做准备。每个人都在忙碌中,一切都在按计划进行。八点整,突如其来的地震打破了这份平静。大地剧烈摇晃,建筑物发出沉闷的嘎吱声,瞬间取代
华能松原燃机项目燃机及其辅助设备长期维护服务协议【重新招标】招标公告(招标编号:HNZB2024-10-1-326)项目所在地区:吉林省松原市1.招标条件华能松原燃机项目已由项目审批机关批准,项目资金为企业自筹,招标人为华能松原燃机发电有限公司。本项目已具备招标条件,现对华能松原燃机项目燃机及其辅助
11月9日19时58分,华电章丘燃机项目6号机组点火吹管圆满完成,标志着6号机组即将进入整套启动阶段。为确保此次机组点火吹管工作的顺利开展,章丘公司与各参建单位密切配合,分阶段组织召开专题会议,梳理工作条件,明确工序步骤,做足点火吹管前的各项准备“功课”。并提前发布并张贴公告告知周围居民
11月5日22时02分,集团所属光明电力锦上添花,再传捷报——3号机组首次点火一次成功!这标志着3号机组设备安装、单体调试等工作基本结束,一期项目实现全面投产指日可待。为确保3号机组点火工作顺利进行,光明电力及各参建单位高度重视,积极跟踪调试进度、优化调试计划、细化调试节点,分析研判点火存
11月6日消息,西门子能源将继续与山东电力建设第三工程有限公司在燃气发电、新型储能、新能源与可持续能源系统、工业低碳转型、绿色氢能、多维电力转换、电力传输设备等领域深化合作,共同打造中德能源企业合作典范。此前,西门子能源为山东电建三公司建造的乌兹别克斯坦苏坎达亚1600兆瓦燃气联合循环
11月5日下午,中国华电集团有限公司交易分团在第七届中国国际进口博览会期间举办进口商品采购签约仪式。中国华电党组副书记、董事祖斌出席第七届中国国际进口博览会暨虹桥国际经济论坛开幕式,参加第七届虹桥国际经济论坛“深化产业链供应链合作促进企业高质量发展”分论坛并作为中国华电交易分团团长
10月29日3时10分,由中国能建东电一公司承建的华能苏州燃气轮机创新发展示范项目2号机组(商业机)通过72+24小时满负荷试运行,一次性、高质量完成重大节点目标,移交生产。机组满负荷试运行期间,燃机、余热锅炉、汽轮机、发电机等主要设备及辅机运行安全稳定,现场设备电气保护、热控保护、自动化、
今年10月,深圳能源集团东部电厂二期工程实现“双机投产”,成为深圳市首个全面投产的H级燃气-蒸汽联合循环发电项目,为粤港澳大湾区能源供应增添了绿色新动力。今天,让我们走进深能东部电厂,回顾项目建设全过程,看看这群深能人是如何把蓝图变为现实。敢为人先选择H级燃机机组二期项目启动之初,东
当地时间10月24日0时,塞尔维亚潘切沃161兆瓦联合循环项目质保期已达两周年,正源源不断地为当地输送不竭的电力。两年时光流转,700多个日日夜夜里,该项目机组累计发电量超20亿度,每年可减少碳排放超64万吨,满足当地50万户普通家庭一年用电需要。同时,它还为周边炼油厂累计提供高、中、低压工业蒸
10月26日14时00分,山东省“十四五”重型燃气机组示范项目——华电章丘公司2×400MW级燃机热电项目5号机组圆满完成168小时满负荷试运行,标志着山东省首批、济南市首台重型燃气示范机组高质量建成投产,正式投入商业运营。5号机组燃气轮机作为东方汽轮机有限公司生产的第100台燃机,试运行期间,系统及
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!