登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
来源:《中国电力》2025年第2期
引文:李金, 刘科孟, 许丹莉, 等. 基于共享储能站的多能互补微能源网外衍响应双层优化[J]. 中国电力, 2025, 58(2): 43-56.
编者按
在“双碳”战略的推动下,电力行业对以传统化石燃料为主的能源结构低碳转型意识逐渐增强,绿色能源来源的多样化趋势日益显著。以风能和光伏为代表的新能源高比例渗透,被认为是实现能源系统低碳转型的有效途径。风电、光伏具有显著的不确定性和波动性,其大规模接入微能源网系统,势必会对微能源网的灵活性、经济性及稳定性运行带来严峻挑战。此外,微能源网中风光不确定性风险甚至有可能向上级电网扩散,影响电网稳定运行。
《中国电力》2025年第2期刊发了李金等撰写的《基于共享储能站的多能互补微能源网外衍响应双层优化》一文。文章提出一种基于共享储能站的多能互补微能源网系统外衍响应双层协调优化策略。首先,将多能互补微能源网系统分为上下双层结构。其中,上层为微能源网系统,直接与外界电网相连;下层为共享储能站,与微能源网系统相连。其次,分别构建微能源网系统能源设备的运行模型及共享储能站能量储存模型。然后,考虑到系统中风光不确定性,构建燃气轮机和柴油发电机功率型灵活性指标,并且采用Hong的(2m+1)点估计法量化风光不确定性,以此提升系统运行的稳定性与可靠性。最后,采用KKT条件和Big-M法将双层非线性优化模型转为单层混合整数线性模型求解。
摘要
高比例新能源接入能源系统带来的强不确定性使系统内部优化运行变得困难,同时可能导致不确定性风险外溢,从而影响到上级电网稳定运行。为此,提出了一种基于共享储能站的多能互补微能源网系统外衍响应双层协调优化策略。首先,构建了微能源网系统能源设备运行模型,并提出了共享储能站运行方式和盈利机制。其次,以微能源网系统运营商为上层,共享储能站运营商为下层,建立考虑2个不同利益体的双层协调优化模型。然后,通过Hong的(2m+1)点估计法量化风光不确定性,并利用基于KKT条件和Big-M将双层非线性优化模型转化为单层混合整数优化模型。最后,仿真结果表明该策略能有效防止风光不确定性风险外溢,减少了微能源网运营商6.3%的运行成本。
01 研究场景
本文研究基于共享储能站的多能互补微能源网系统包含微能源网系统运营商,共享储能站运营商及外部电网与气网,如图1所示。微能源网系统运营商拥有柴油发电机、燃气轮机、光伏机组、风力机组、电热泵、燃气锅炉、溴化锂制冷机组和电制冷机组的使用权。作为电网与用户之间的中间商,微能源网系统能够与用户进行能量交互。本文假定优先消纳光伏、风机出力。若新能源出力盈余,其余能源设备可以利用这部分能量来启动运行;若新能源无法满足用户的电能需求,不足的电能将通过燃气轮机和柴油发电机来弥补。燃气锅炉与电热泵供给用户热负荷需求。其中,燃气锅炉与燃气轮机所需的燃料由微能源网系统运营商向外界气源站购买。电制冷机组和溴化锂制冷机组供给用户冷负荷需求。电制冷机组作为电能消耗设备,其能量由燃气机组与柴油发电机组供给。溴化锂制冷机组作为热能消耗设备,其能量由燃气锅炉供给。此外,微能源网系统还可直接与外界电网、气网进行能量交互,以此降低系统运行成本。
图1 多能互补微能源网系统外衍响应结构
Fig.1 External derivative response structure of multi- energy complementary micro energy grid system
共享储能站运营商是独立于电网、微能源网系统运营商的盈利主体,其服务对象是微能源网系统运营商,通过提供储能服务,将微能源网系统内部的风光不确定性带来的风险通过外衍响应加以缓解,从而减小对系统运行的影响。在微能源网系统处于电力需求低谷期时,将盈余的电量存储至共享储能站中;而在电力需求高峰期,则从共享储能站中提取该部分电量以满足需求。同时,共享储能运营商得保证单个微能源网系统不能存、取过多的电量,使得共享储能站超过自身容量最大限制或者使其没有多余电量为其他系统服务。共享储能站运营商盈利模式:通过收取微能源网系统运营商在不同时刻储入与取出电量的服务费来盈利。
与传统的储能设备相比,共享储能具有如下优点:1)共享储能站可以将投资,运行成本以服务费的形式分摊到多个用户。从微能源网系统角度看,无需微能源网系统运营商后期维护,省去储能设备安装费用,节省巨额的储能投资成本,从而降低系统的经济负担。2)共享储能提供了更大的灵活性和扩展性,用户可以根据需求调整使用时间。
02 基于共享储能站的多能互补微能源网系统模型
2.1 微能源网系统运营商模型
2.1.1 不可调节设备模型
1) 光伏发电机组模型。光伏机组出力取决于太阳辐射度的大小、光伏组件总数。其中,太阳辐射度受气象条件的影响具有强不确定性,通常将其不确定性描述为β概率密度函数,数学表达式为
式中:为t时刻太阳辐射度的不确定性;Γ为伽玛函数;
为t时刻形状参数;st为t时刻太阳辐射度;
为t时刻太阳辐射度平均值;
为t时刻太阳辐射度标准差。
光伏发电机组出力的数学表达式为
式中:Psolar为光伏发电机组的输出功率;Nsolar为光伏组件总数;F为光伏组件填充系数;Vsolar为实际电压;Isolar为实际电流;VMPP为光伏组件最大功率点的电压;IMPP为光伏组件最大功率点的电流;ISC为光伏组件的短路电流;VOC为光伏组件的开路电压;Kv为电压温度系数;TC为电池温度;Ki为电流温度系数;TA为环境温度;TOT为标称工作电池温度。
2) 风力发电机组模型。通常将风速的不确定性用Weibull概率密度函数表述,数学表达式为
式中:为t时刻风速的不确定性;vt为t时刻风速;
分别为t时刻形状参数;
为t时刻风速的平均值;
为t时刻风速的标准差。
风力发电机组出力的数学表达式为
式中:Pwind为风力发电机组的输出功率;a和b为相关量常数;vcin为切入风速;vo为切出风速;vcoff为额定风速;Pr为风力发电机组的额定输出功率。
2.1.2 可调节设备模型
在多能互补微能源网系统中安装柴油发电机组、燃气机组等可调节设备机组,以便在可再生能源的发电不能满足负荷要求的情况下提供足够的能量。
1) 柴油发电机组模型为
式中:为t时刻柴油发电机组输出的电功率;
分别为柴油发电机组输出的最大、最小功率。
2) 燃气机组模型为
式中:为t时刻输入燃气机组的天然气功率;μGT为燃气机组的发电效率;
为t时刻燃气机组输出的电功率;
分别为燃气机组输出最大、最小的电功率。
3) 燃气锅炉模型。燃气锅炉通过燃烧天然气来为微能源网系统提供热功率,其转化关系为
式中:为t时刻输入燃气锅炉的天然气功率;
为t时刻燃气锅炉输出的热功率;
为输入燃气锅炉天然气功率的最大、最小值;ηGB为燃气锅炉的制热效率。
4) 电热泵模型为
式中:为t时刻输入电热泵的电功率;
为t时刻电热泵的输出的热功率;ηHP为电热泵的制热效率;
分别为电热泵输入的最大、最小电功率。
5) 电制冷机模型。电制冷机组通过消耗电能来为微能源网系统提供冷功率,其能量转换关系为
式中:为t时刻输入电制冷机组的电功率;
为t时刻电制冷机组输出的冷功率;
为电制冷机组输入的最大、最小电功率;ηRM为电制冷机组的制冷效率。
6) 溴化锂制冷机模型。溴化锂制冷机通过将系统中的盈余热量转化为所需的冷功率,其能源转换关系为
式中:为t时刻输入溴化锂制冷机的热功率;
为溴化锂制冷机输出的冷功率;ηLBR为溴化锂制冷机的制冷效率;
分别为溴化锂制冷机输入的最大、最小热功率。
2.1.3 功率型灵活性指标模型
为具体化分析各个可控设备的灵活性,本文采用功率型灵活性指标对可控设备的灵活性水平进行评价。功率型灵活指标为设备某时刻可输出功率调节的范围与设备额定功率的比值,反映可控设备实际运行状态与实际调节能力映射关系。
本文重点以燃气轮机、柴油发电机作为可控灵活性调节设备,为系统提供向上、向下灵活性。其中,上调灵活性是指燃气轮机或柴油发电机能够在短时间内增加输出功率,以应对负荷需求的迅速上升;下调灵活性是指它们能够在短时间内减少输出功率,以应对负荷需求的迅速下降。功率型灵活性指标表达式为
式中:分别为t时刻燃气轮机、柴油发电机的向上灵活性供应;
分别为t时刻燃气轮机、柴油发电机的向下灵活性供应;
分别为t时刻燃气轮机和柴油发电机的额定功率;
分别为t时刻燃气轮机和柴油发电机调用的备用容量;
分别为t时刻燃气轮机的最大、最小爬坡电功率;
分别为t时刻柴油发电机的最大、最小爬坡电功率。
2.1.4 微能源网系统运营商收益模型
微能源网系统发电成本主要考虑维护成本、燃料成本、环境成本等,其收益模型可表示为
式中:CIES为微能源网系统运营商成本;COM为设备维护成本;CFuel为微能源网系统燃料成本;CGrid为微能源网系统运营商与外界电网交互成本;CGas为购气成本;CFle为灵活性成本;CEn为污染物处理费;CES,Se为向共享储能站租赁电能的服务费;u为二进制变量,表示微能源网运营商是否与共享储能运营商签订电能租赁服务。
具体地,各项成本为
式中:αi为第i个设备的维护系数;为t时刻第i个设备的输出功率;m为分时电价;
为t时刻向电网购电的功率;τ、υ、ρ为柴油发电机组系数;cgas为燃气的单位体积价格;LNG为燃气热值。
随着灵活性设备的不断挖掘,微能源网系统运营商如何充分发挥灵活设备的调节能力,以较小成本满足灵活性需求,保证系统供需实时平衡,其成本为
式中:分别为t时刻系统向上、向下灵活性的总和;ζ1和ζ2为权重系数。
燃气轮机、燃气锅炉和柴油发电机在供能过程中会产生污染物处理费,表达式为
式中:T为一天总时段;K为污染物排放类型(CO2,SO2和NOx);N为污染物排放设备;ei为处理第i种污染物的单位费用;βi,j为不同供能生产方式下输出能量时所排放第i种污染物的排放系数;Pj,t为t时刻第j个设备的输出功率。
2.2 下层共享储能站模型
2.2.1 共享储能站充放模型
下层模型主要求解运营周期内微能源网系统与共享储能站之间能量交互情况。假设共享储能站运营商主要针对微能源网系统进行电能充/放服务。共享储能站在t时刻的容量为
式中:Et为t时刻共享储能站的容量;ηES,C、ηES,D分别为储能设备的充电、放电效率;分别为t时刻储能电站的充电、放电功率。
共享储能站须满足约束为
式中:分别为t时刻储能设备充电、放电功率状态标志位;
分别为储能设备最大的充电、放电功率。
微能源网系统将电量存于共享储能站时还需要预留一定的裕度,以保证共享储能站还能为其他系统服务。因此,通常会设定储能容量的上下界来保证共享储能站能同时为多个主体服务,具体表达式为
式中:Emax为储能设备储能容量的最大值。
区别于传统的独立储能设备,即使储能设备中有多余的能量,微能源网系统也不能取出超过自身储存容量的上限。因此,为保证共享储能站能够持续提供电能租赁服务,微能源网系统在共享储能站一天内的充放电功率差值须不小于零,具体表达式为
2.2.2 共享储能站运营商收益模型
共享储能站运营商收益主要取收取微能源网系统运营商服务费与维护储能设备成本的差值,具体表达式为
式中:CES为共享储能站运营商收益;CES,Se为储能站向微能源网系统收取的服务费;CES,OM为储能电站维护成本。
一天内微能源网运营商需要缴纳的服务费为
式中:为t时刻单位充电功率或单位放电功率的服务费;δOM为共享储能站运营商单位充、放电的维护费。
2.3 系统总功率平衡约束
微能源网系统约束除了满足各设备运行约束之外,还需要满足系统总功率平衡约束。
电功率平衡为
式中:为t时刻光伏发电机组的出力;
为t时刻风力发电机组的出力;
为t时刻用户的电负荷。
热功率平衡为
式中:为t时刻用户的热负荷。
冷功率平衡为
式中:为t时刻用户的冷负荷。
气功率平衡为
式中:为t时刻微能源网系统运营商向外界气源站的购气功率。
03 问题求解
3.1 基于Hong的(2m+1)点估计法的风光不确定性处理
Hong的(K*m)点估计法是描述随机输入变量(太阳辐射度、风速)概率性质的基本形式。通过Hong的(K*m)点估计法,可以从m个输入t时刻的太阳辐射度、风速变量中心矩提取概率信息集中在各个变量的K个点上,这称为集中度。通过将这些集中度和函数F的输入和输出变量相关联,可以用于估计与输出变量相关的不确定信息,从而量化其不确定性。因此,本文采用Hong的点估计法来处理风光不确定性,具体数学模型为
式中:和
分别为随机变量pl的平均值和标准差;ξl,k为标准位置。
本文将K取为2。对于(2m+1)的点估计法,标准位置和加权因子为
式中:λl,j为随机变量pl的第j个标准中心矩;ω为加权因子。中心矩和标准位置期望分别为
式中:fpl为随机变量pl的概率密度函数;Mj(pl)为变量pl的期望。
在Hong的(2*m)点估计法中,对于每个m输入不确定性变量pl,目标函数Pt(l,k)即风光出力必须被评估K=2次。评估点包括变量pl的第k个位置pl,k和剩余(m–1)个变量的平均值,即(μp,1,μp,2,⋯,pl,k,⋯,μ)。
在给定的(2m+1)点估计法中,评估次数会以1的步长增加。在式(39)中将会产生pl,k=μpl。因此,在该位置仅须一次评估,相应的权重ω0更新为
利用加权因子ωl,k、Pt(l,k)和2.1.1节中光伏机组和风电机组模型,求出目标函数在t时刻第j阶原始矩(风光出力)E[(Pt],具体表达式为
3.2 双层模型转化单层模型求解过程
本文构建的双层模型中上层为微能源网运营问题,目标函数为式(22),下层为共享储能站运营问题,目标函数为式(32)。上层与下层模型之间存在变量耦合与约束关系,难以直接进行求解。故将构建下层模型的拉格朗日函数,基于下层模型的 KKT 互补松弛条件,将下层模型转换为上层模型的约束条件,具体转化步骤如下。
1) 由于式(29)中存在非线性约束,通过Big-m法引入无穷变量,将原非线性约束等价转化为混合整数线性约束,具体表达式为
式中:M为足够大的常数。
记式(32)中对偶变量为{χ1,t,χ2,νt,
ϖt,
κt,πt},将对偶变量与相对应约束条件式(28)~(31)相乘,得到下层共享储能电站决策模型的增广拉格朗日函数为
2)构建下层模型KKT互补松弛条件,从而将下层模型转化为上层模型的附加约束条件,具体约束转化条件为
式中:0⩽ab⩾0,即为a⩾0,b⩾0且a∗b=0。
3) 拉格朗日函数在原问题最优解处梯度为0,具体表达式为
具体求解流程如图2所示,经过上述转化,双层优化模型转化为单层线性模型,即目标函数为式(22),约束条件为式(15)~(21)和(48)~(49),直接调用CPLEX对混合整数线性规划问题进行求解。
图2 双层协调优化模型求解流程
Fig.2 Flow for solving the dual layer coordination optimization model
04 算例分析
通过算例分析,验证本文所提基于共享储能站的多能互补系统外衍响应双层优化策略的有效性。仿真计算采用MATLAB2018a软件,结合yalmip插件调用商用求解器CPLEX进行求解。
4.1 算例设置
算例采用冷热电联供型系统,并与共享储能站直接相连。将一天分为24个时刻,用户侧负荷曲线如图3所示。考虑光伏、风机机组的出力不确定性,采用文献[14]中太阳能辐射度与风速数据,数值如表1所示。多能互补微能源网系统的设备参数如表2所示,各设备发电污染物排放环境成本系数如表3所示。
图3 冷、热、电负荷数据
Fig.3 Data of electrical, heating, cooling load
表1 太阳辐照度和风速的统计数据
Table 1 Statistical data of solar irradiance and wind speed
表2 微能源网设备参数
Table 2 Micro energy grid system device parameters
表3 污染物排放系数
Table 3 Environmental cost emission coefficient parameters
4.2 场景设置与对比
本文设置4类仿真场景进行对比,以验证本文所提优化策略的合理性。
场景1(本文所提策略):考虑微能源网系统与外界电网交互电量,引入共享储能站,考虑污染物排放成本。
场景2:考虑微能源网系统与外界电网交互电量,考虑污染物排放成本,不引入共享储能站。
场景3:不考虑微能源网系统与电网交互,引入共享储能站,考虑污染物排放成本。
场景4:考虑微能源网系统与外界电网交互电量,引入共享储能站,不考虑污染物排放成本。
通过求解式(22),得出各场景下微能源网系统运营商成本、共享储能运营商收益,如表4所示。4种场景各类型成本对比结果如图4所示,场景1~3污染物排放成本占比如图5所示。
图4 4种场景各成本对比结果
Fig.4 Comparison results of operating costs for four scenarios
表4 不同场景下对比算例结果
Table 4 Comparative results under different scenarios
图5 各场景下污染物排放成本占比
Fig.5 The proportion of pollutant emission costs in each scenario
与场景2相比,场景1通过引入共享储能站,微能源网运营商的总运行成本降低了6.3%。这是由于运营商与储能站进行存储/取用服务,使得运营商可以有效调节不同时段的发电量。具体来说,场景1中系统与电网交互的成本相比场景2减少了32.6%,其余成本都略有上升。场景1中系统对外界电网交互的电功率减少,未能满足需求的电能由微能源网内部设备提供,这导致发电成本自然上升,但总体成本仍保持在较低水平。虽然场景1中的碳排放量较场景2略有上升,但系统与外界电网的交互电量显著下降,表明场景1下的微能源网自我供给能力更强。
与场景3相比,场景1微能源网运行成本降低了0.9%,下层共享储能运营商收益下降了27.2%。在场景3中,微能源网系统不与外界电网交互功率,系统所需的功率需求全部由内部设备提供。设备维护成本增加了13.3%,燃料成本增加了18.2%,环境成本同时增加了6.8%。由于系统与电网交互电量为0,大部分的电量都由柴油发电机与燃气轮机提供,导致污染物排放量增大,碳排放量、环境成本大幅度提高。
在场景4中,由于不考虑系统排放污染物成本,微能源网运营商使用发电成本较低的发电设备来满足系统内部供需平衡,使得燃料成本较场景1增加了18.2%,设备维护成本增加了13.3%,碳排放量增加了25.1%。
4.3 本文策略优化结果分析
多能互补微能源网系统与共享储能站优化调度结果如图6~9所示。
图6 电负荷与设备电功率
Fig.6 Electrical load and equipment electrical power
图7 共享储能站运行曲线
Fig.7 Shared energy storage station operation curve
图8 热负荷与设备热功率
Fig.8 Heating load and equipment heating power
图9 冷负荷与设备冷功率
Fig.9 Cooling load and equipment cooling power
由图6可知,电功率主要由柴油发电机与燃气轮机提供。在00:00—07:00与21:00—23:00时段,电网电价较低,系统与外界电网进行大量电能交互。
由图7可知,为降低成本,在微能源负荷低峰时段(00:00—09:00),系统将多余的电量存储到共享储能站,共享储能站此时容量上升,尽管需要支付给共享储能站手续费,但考虑到在负荷高峰时段(18:00—21:00)利用这些储能更经济划算。此外,在控制污染物排放方面,系统在用电低峰时段尽量减少柴油发电机运行,由于柴油发电机的污染物排放较高,系统需要承担相应的环境成本。对比之下,燃气轮机的污染物排放较少,所需承担的环境成本较低。
由图8可知,热功率主要由燃气锅炉与热泵提供。在00:00—07:00时段,系统将盈余的电量转化为热功率供居民使用。随着时间推移,电力需求逐渐增加,供能设备从电热泵过渡到燃气锅炉,运营商向外界购买天然气并利用燃气锅炉来维持热功率供应。
此外,图9中,系统的部分冷功率由电制冷机组提供。在热能盈余时,通过溴化锂制冷机将热能转化为少量冷能,从而提高系统的整体冷能供应效率。
4.4 系统灵活性分析
微能源网系统各设备优化后的灵活性如图10所示。可以看出,在06:00—12:00与14:00—17:00时段,燃气轮机与柴油发电机在调节能力上表现出互补特性,使得总输出功率达到最大。相比于仅考虑单设备的运行特性,多设备的耦合调度显著增强了系统运行调节的灵活性。此外,燃气轮机与柴油发电机的上调灵活性始终不为0,说明系统预留了充足容量以应对风光等不确定性。下调灵活性在某些时段接近于0,说明各设备在这些时段具有较高的利用率。
图10 微能源网系统各设备灵活性指标
Fig.10 Flexibility indicators of various devices in the micro energy grid system
05 结论
本文提出了一种基于共享储能的多能互补微能源网系统外衍响应双层协调优化策略。其中,上层模型为求解微能源网系统优化运行问题,下层为求解共享储能站电能充放问题。设置4类场景进行对比,验证了所提策略提高了系统运行灵活性,减少了系统运行成本,得出如下结论。
1)在多能互补微能源网系统中引入共享储能站,避免风光不确定性外溢至上层电网,可以节省系统自身储能投资成本,提高系统运行灵活性,减少微能源网运营商6.3%的运行成本。
2)通过将设备运行状态与灵活性指标相结合,使微能源网系统能预留充足容量来应对风光不确定性,进一步挖掘了不同灵活性设备的调节能力。
3)采用基于KKT条件将下层共享储能站电能充放问题转换为上层系统优化运行问题的约束条件,并采用Big-M法将非线性条件转化为混合整数线性规划模型,可在保证不牺牲求解精确度下,实现双层优化问题的快速求解。
在未来的研究工作中,将进一步探讨共享储能站的寿命损耗与政府补贴政策之间的关系。此外,还将进一步考虑微能源网系统运营商与共享储能运营商间的博弈情况。
注:本文内容呈现略有调整,如需要请查看原文。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,3月19日,昌黎县金智储新能源科技有限公司发布130MW/260MWh构网型共享储能电站工程EPC总承包。项目资金来源为其他资金40000万元,项目位于河北秦皇岛市昌黎县。项目拟建设一座130MW/260MWh构网型共享储能电站,拟配置5%构网型储能设备,95%跟网型储能设备,项目拟配套新建一座220kV
北极星储能网讯:3月17日,太仆寺旗荣鑫新能源科技有限公司发布200MW/400MWh独立共享储能电站项目EPC总承包招标公告,该项目位于内蒙古自治区锡林郭勒盟太仆寺。太仆寺旗荣鑫新能源科技有限公司为北京宏源能科新能源有限公司的全资子公司。本期一次性建成,采用150MW/300MWh跟网型非步入式液冷磷酸铁锂
北极星储能网获悉,3月15日,云南能投曲靖发电有限公司沾益区白水小塘集中共享新型储能项目EPC总承包工程中标候选人公示。第一中标候选人为中国电建集团昆明勘测设计研究院有限公司,投标报价13709.08371万元,折合单价0.685元/Wh;第二中标候选人为中国水利水电第十四工程局有限公司,投标报价14497.6
近期,中国电建连续中标、开工多个项目、新能源、水利设施和基础设施建设等项目,为公司加快发展新质生产力、推进战略转型和高质量发展打下坚实基础。广西桂林龙胜抽水蓄能电站项目开工公司承建的广西桂林龙胜抽水蓄能电站项目正式启动。电站位于广西壮族自治区桂林市龙胜各族自治县,装机容量160万千
北极星储能网获悉,3月14日,齐鲁高速发布公告,公司全资附属公司齐鲁高速(香港)有限公司(以下简称齐鲁香港)与山东高速能源发展有限公司(以下简称山高能源发展)于同日订立投资合作协议。据此,双方将共同成立一家合营公司——山东高速鲁东新能源有限公司(暂定名,以工商登记为准),以投资于威
北极星储能网获悉,3月12日,广西贵港市平南县300MW/600MWh集中共享新型储能电站EPC承包工程候选人公示。第一中标候选人为中建八局广西建设有限公司、华昇(深圳)电力设计院有限公司联合体,投标报价64607万元,折合单价1.077元/Wh;第二中标候选人为中明建投建设集团有限责任公司、铭扬工程设计集团
北极星储能网讯:3月12日,石储(新乐)新能源科技有限公司新乐市200MW/400MWh共享储能电站项目EPC总承包招标公告发布。项目业主为石储(新乐)新能源科技有限公司,建设资金来自企业自筹,出资比例为100%。该项目位于河北省石家庄市新乐经济开发区长青路北侧。本次招标内容包含:拟建设200MW/400MWh共
3月12日,广西百色平果103MW/206MWh共享储能电站2025-2027年运维服务采购比选公告发布,项目招标人为重庆两江综合能源服务有限公司,业主为重庆两江综合能源服务有限公司的子公司广西平果渝电能源科技有限公司。广西百色平果103MW/206MWh共享储能电站(调度命名:渝峡储能站)项目位于广西百色市平果市玻
北极星储能网讯:3月5日,工信部公开征集对318项行业标准计划项目的意见,其中包括《通信基站共享式储能系统》与《船舶建造企业三元锂电池储能系统安装和调试安全要求》两项标准。《通信基站共享式储能系统》由信息通信发展司主管,中国通信标准化协会归口,主要起草单位有中国铁塔股份有限公司,中国
北极星储能网获悉,近日,中国能建浙江院牵头联合体中标衢州智慧绿电80兆瓦/160兆瓦时共享储能示范项目工程EPC总承包。项目位于衢州市龙游县白马垄附近,拟利用现有空余土地建设规划容量80兆瓦/160兆瓦时独立储能电站,采用磷酸铁锂电池储能系统。项目为电网侧储能项目,拟考虑其中10兆瓦/20兆瓦时容量
北极星售电网获悉,3月20日,上海市经济信息化委发布关于开展2025年度工业和信息化领域绿色低碳技术产品征集工作的通知。文件明确,根据《上海市工业通信业节能减排和合同能源管理专项扶持办法》(沪经信规范〔2023〕5号)的通知的要求,对实现工艺突破或流程再造,以及企业首次应用绿色低碳新技术、新
北极星输配电网获悉,近日,江苏交控首个跨地域绿电远送交能融合示范项目——苏通大桥南主线收费站智能微电网项目一期工程并网。项目利用已经拆除的苏通大桥南主线收费站闲置空地和水面建设光伏电站,装机容量约为4MW,其中一期项目容量为400kW,通过2回10kV电缆输送至3.5公里外的常熟经济开发区收费站
近日,江苏交控首个跨地域绿电远送交能融合示范项目——苏通大桥南主线收费站智能微电网项目一期工程一次受电成功实现并网,标志着云杉清能围绕“源随荷动”发展理念,在拓展交能融合新应用场景、推动交通能源更高质量融合发展方面取得重要进展。该项目充分利用已经拆除的苏通大桥南主线收费站闲置空地
在呼和浩特市哲里木微电网超充站,一场关于能源未来的革命性测试圆满落幕。3月7日,特来电内蒙古大区与南京德睿特来电能源研究院携手,成功完成了“集中式车辆到车辆”(V2V)充放电技术的验证。这一测试不仅标志着我国在新能源汽车技术领域的又一次重大突破,更将车网互动(V2G)、微电网建设、储能技
北极星售电网获悉,河南省发展和改革委员会发布关于河南省2024年国民经济和社会发展计划执行情况与2025年国民经济和社会发展计划草案的报告,其中提到,2024年,河南省加快构建新型电力系统,出台煤炭消费总量控制行动方案、新能源规模化开发行动方案、加快推进源网荷储一体化实施方案,实施208个节能
近日,江苏南京“光储充换检”一体化全绿电示范充电站在江宁开发区正式建成并投运。该项目占地约3000平方米,是目前南京地区规模最大、功能最完善的开放式充电站,可满足不同车型的充电需求,同时实现微网内部协同自治运行和与电网友好互动。据悉,该项目光伏系统由平面光伏和垂直光伏组成,装机总容量
推进“十大工程”建设1.藏东南至粤港澳大湾区±800千伏特高压直流工程2.广东阳江三山岛海上风电柔直输电工程(一期)3.云南楚雄500千伏光辉变百万千瓦级新能源汇集站源网储协同控制示范工程4.广东广州220千伏天河棠下柔直背靠背工程5.广西北海涠洲岛并离网智能微电网工程6.深圳超充网络及车网互动示范工
智能微电网具有较强的灵活性和独立性,是大电网的重要支撑。国家发展改革委等部门联合发布的《加快构建新型电力系统行动方案(2024—2027年)》提出,“鼓励各地结合应用场景,因地制宜建设智能微电网项目”。“智能微电网在提升新能源消纳能力、增强电网韧性等方面具有重要意义。建议加快智能微电网建
北极星储能网获悉,近日,中原环保发布公告称,中原环保拟在下属马头岗污水处理厂、子公司郑州污水净化公司下属郑州新区污水处理厂实施源网荷储微电网电站合同能源管理项目,由中原环保三级子公司郑州智碳科技有限公司(简称“智碳公司”)负责具体项目实施。本项目建设地点分别为郑州新区污水处理厂、
北极星储能网讯:全国人大代表、国网金湖县供电公司电力调度控制分中心五级专家吉兰芳,向十四届全国人大三次会议提交《关于加快智能微电网建设,支撑构建新型电力系统的建议》。吉兰芳建议,进一步加大智能微电网相关政策支持力度、完善市场机制、建立健全标准体系,以加快智能微电网建设助力新型电力
近日,山西能源监管办组织召开2025年山西电网运行方式汇报会,总结2024年山西电网运行情况,分析研判山西电力系统运行主要特点、面临的形势和存在的风险,进一步明确提出做好电网风险管控工作建议和监管要求。山西能源监管办和山西省能源局负责同志及有关处室负责同志,省内各电力集团负责同志参加会议
1引言随着全球数字经济加速发展,政府、金融、电力等领域对高品质传输专线的需求不断增加,带动光传送网(OTN)持续向城域边缘下沉和行业末端节点规模部署。鉴于传统OTN技术带宽管道颗粒度偏大(最小带宽容器粒度为1.25Gb/s量级的ODU0),在承载GE以下速率业务时存在带宽利用率低、调度灵活性差等问题
“设备确认无误,许可融冰工作开工……”3月16日0时22分,在220千伏原平变电站内,国网山西忻州供电公司检修工作人员按下直流融冰车启动按键,对220千伏荣原Ⅰ线开展直流融冰作业,及时消除电力线路覆冰隐患,保障电网供电安全。这项技术在忻州电网是首次应用。近日,忻州多地降雪,特别是部分高寒地区
3月19日,河南焦作温县发布关于加强分布式光伏项目安全监管的通知。原文如下:关于加强分布式光伏项目安全监管的通知国网温县供电公司,各相关企业:近年来,分布式光伏发电快速发展,装机总规模不断扩大。分布式光伏发电项目数量众多、区域分散、周边环境复杂,安全生产管理难度较大,给人民群众生命
3月19日,江苏无锡供电公司发布优化营商环境五项行动方案42项创新举措,涵盖助力乡村全面振兴、提升供电可靠性、卓越供电服务、优化电网配套工程、科技创新等领域,为地方经济社会发展和人民美好生活提供坚强电力保障和优质供电服务。五项行动中,《“党建引领电力赋能”助力乡村全面振兴举措》提出“
3月18日,广东电网公司2025年变电站独立五防系统框架招标,本次招标含变电站独立五防系统共1个物资品类,预计需求金额900万元。详情如下:广东电网公司2025年变电站独立五防系统框架招标招标公告(项目编号:CG0300022002016338)1.招标条件本招标项目广东电网公司2025年变电站独立五防系统框架招标,
北极星输配电网获悉,截至3月3日,我国首座国产化换流站——±500千伏宝鸡换流站输送电量突破2000亿千瓦时,约满足1亿普通家庭一年的用电需求,替代发电用煤6400万吨,减排二氧化碳1.7亿吨。据悉,2009年,宝鸡换流站建成投运,该换流站是西北电网与西南电网的重要枢纽,在丰水期消纳西南水电,枯水期
今年年初以来,宁夏石嘴山供电公司积极探索配电自动化发展新路径,聚焦关键场景,提升配电自动化水平,推动配网运行调度控制数智化转型,为宁夏地区配电网高质量发展提供宝贵的经验,助力国网宁夏电力有限公司加快配电网一二次融合发展。早在2019年年中,石嘴山供电公司便建起配电自动化实验室。该实验
我国高度重视人工智能发展,将其放在国家战略层面系统布局、主动谋划。作为人工智能领域的重要分支,生成式人工智能近年来取得飞速发展,普及应用加速。然而,随着发展速度和应用规模的不断提升,随之带来激增的能源需求可能成为制约生成式人工智能可持续发展的关键因素之一,同时给“双碳”目标带来挑
3月11日,针对今年西北电网春检工期最长、停电方式和工序最复杂、电网运行和安全管控难度最大的工作——青海750千伏西宁变电站开关增容改造,国调、网调、省调三级调度联合召开安全管控工作会,梳理检修期间电网运行风险,做好电网运行方式安排。当前,西北电网2025年春检工作已全面铺开,共安排发输电
3月17日,国家能源局综合司关于切实做好2025年电力行业防汛抗旱工作的通知(国能综通安全〔2025〕40号)。其中提到,电网企业要针对洪涝易发地可能造成断电断路情况,提前做好抢修物质人力预置准备。因灾断电后,及时启动相应应急响应,要抓紧开展灾后应急供电和电力修复,争取灾后尽早复电,保障救灾
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!