登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
作者:王钦 1 张艳岗 1梁君飞 1 王华 2
单位:1. 中北大学能源与动力工程学院;2. 北京航空航天大学化学学院
引用: 王钦, 张艳岗, 梁君飞, 等. 硅基固态电池的界面失效挑战与应对策略[J]. 储能科学与技术, 2025, 14(2): 570-582.
WANG Qin, ZHANG Yangang, LIANG Junfei, et al. Challenges and strategies for interface failures in silicon-based solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 570-582.
DOI:10.19799/j.cnki.2095-4239.2024.0774
本文亮点:1,总结了纯硅材料的锂化过程中离子电导率,电子电导率,杨氏模量性能的变化,这对于纯硅电极在固态电池中的应用具有新的思路启发;
2,总结了硅基固态电池中面临的界面失效问题,并总结了解决界面失效问题的最新方案,包括粘结剂、缓冲层的应用、电极材料结构设计以及电极材料和电解质的粒径匹配等方案;
3,报道了固态电池循环压力对性能的影响,等静态循环压力有助于循环性能提升以及可以提供一个统一、准确的循环压力评估标准。
摘 要 硅基材料因较高的理论比容量被认为是固态电池中最有前景的负极材料之一。然而,在充放电过程中,硅基电极材料和固态电解质容易发生界面失效,破坏了界面处的离子电子传输通路、引起电池内部阻抗增加以及电流密度分布不均匀,最终造成电池容量和循环寿命的衰减,这是设计高比能和长循环硅基固态电池时面临的挑战之一。本文首先从硅基材料的晶体结构、临界直径和电化学烧结方面阐述了界面失效的原因,并介绍了嵌锂数量对纯硅材料电子电导率、离子扩散系数、杨氏模量性能的影响。随后总结了应对固态电池中电极和电解质界面失效问题的多种方案,包括黏结剂、缓冲层的应用、电极材料结构设计以及电极材料和电解质的粒径匹配。此外,文章还强调了循环过程中施加相等且恒定的堆叠压力对电池性能的潜在影响。本文旨在阐明固态电池中硅基材料与电解质界面失效导致的电池容量衰减以及循环寿命下降的科学挑战,并从硅基材料设计、电极材料制备、电极材料和电解质匹配等方面提出了解决这些挑战的策略,为该领域的进一步发展指明了方向。
关键词 硅基固态电池;界面失效;应力错配;堆叠压力
随着电动汽车及大型储能设备市场的不断扩大,对二次电池的能量密度、安全性和循环寿命提出了更高的要求。传统电池使用的有机电解液在高温下易燃,存在较大的安全隐患。固态电池(solid-state battery, SSB)采用不可燃的固态电解质(solid electrolyte, SE)替代易燃的有机电解液,有望实现高能量密度和高安全性,被认为是最有潜力的下一代电池。
开发高能量密度固态电池的关键是制备高容量的电极材料,硅负极在室温下具有3590 mAh/g的高理论容量(相对于Li3.75Si),以及0.4 V(vs Li+/Li)的嵌锂电位,同时,硅材料在合金化反应中锂化动力学较快,硅负极在工作过程中不易形成锂枝晶,从而增加了电池的安全性和稳定性,而且硅材料广泛分布于全球,原料供应不受地域限制。因此,硅基材料成为全固态电池中极具前景的负极材料之一。
硅基固态电池可以借鉴传统硅基锂离子电池的设计经验,但固态电池中存在一些与传统锂离子电池不同的现象。在固态电池外部往往施加一定的压力,压力通过具有较高机械强度的固态电解质传递到硅基材料上,这种方式在一定程度上限制了硅基材料的体积膨胀率、增强了电极材料的结构稳定性,因此,在固态电池中硅负极表现出较少的颗粒粉化,在一定程度上缓解了合金材料开裂导致的电子通路失效问题,从而有望实现更好的循环稳定性。然而,固态电解质的低流动性和低润湿性增加了电极材料电解质界面失效的风险。
本文主要从控制硅基材料的体积膨胀以及调控电极电解质界面角度来提供SSB性能优化策略(图1)。首先,从硅基材料的基本性质出发讨论了电极材料和电解质界面失效的原因;随后,总结了关于硅基材料本征性质的最新研究,包括硅基材料的电子电导率、离子扩散系数、杨氏模量随锂化程度的变化;最后从黏结剂、电极结构设计、缓冲层、电极材料和电解质粒径匹配方面介绍了缓解界面失效的策略,同时强调了相等且恒定的循环压力对于固态电池性能测试的潜在影响。本文旨在为缓解硅基材料在固态电池中的界面失效问题提供可行性方案的参考,并为硅基固态电池的下一步发展指明方向。
1 硅基负极的机理研究
由于固态电解质与液态电解液在润湿性和流动性方面存在差异,电极材料与电解质之间生成的固体电解质界面(solid electrolyte interface, SEI)、界面接触和离子传输过程等也有所不同。同时,固态电池中硅基负极与电解质之间的机械稳定性的重要性也不可忽视。本部分回顾了近期国内外对于硅的晶体结构、临界直径以及电化学烧结性质的研究结果,从根本上探究硅基固态电池界面失效的原因,以及硅基材料在锂化过程中的电子电导率、离子扩散系数、杨氏模量以及体积随锂含量变化的研究成果,可为解决硅基固态电池界面失效问题提供理论基础。
1.1 晶体结构与临界直径
根据材料晶体结构的差异,硅基材料可以分为两大类:晶体硅(crystalline Si, c-Si)和无定形硅(amorphous Si, a-Si)。c-Si具备有序排列的晶格结构和明显的晶粒各向异性,相比之下,a-Si内部由于存在大量悬垂键,导致Si原子偏离轨道,形成各向同性[图2(a)、(b)]。此外,悬垂键的存在也使得a-Si合金化反应需要克服的势垒下降,更有利于合金化反应的进行。由于晶体结构的不同,c-Si和a-Si的锂化过程表现出差异。在c-Si形成a-LixSi(x<3.75)的锂化过程中,不同晶面上相边界移动速度不同,导致膨胀速率不均匀,在膨胀速率较快的方向上产生应力集中,超出材料承受极限后可能导致结构破裂,相比之下,a-Si锂化速度各向同性,使得应力释放更均匀,避免了应力在某个方向上集中[图2(c)]。这种应力释放机制将a-Si的临界直径拓宽至870 nm,显著大于c-Si的150 nm[图2(d)、(e)]。同时,a-Si由于无晶粒取向和边界,锂化势垒较低,锂化过电位也更低,更有利于锂化反应的进行。
1.2 电化学烧结
在锂化和脱锂化过程中,伴随Si-Si键周期性的断裂与重建,不同Si颗粒之间通过化学键重整合并成更大的粒子,这一现象被称为电化学烧结。原先紧密排列具有孔隙的Si颗粒在多次循环后通过电化学烧结转化为结构致密的大颗粒块,失去了小体积优势,增加了局部膨胀,导致其电化学性能下降,如图2(f)所示。此外,在固态电池中,为了保持循环过程中电极材料和电解质之间的紧密接触,通常施加较大的堆叠压力(2~250 MPa),高堆叠压力使得活性材料之间的接触更加紧密,因此在相邻的小颗粒之间通过Si-Si键连接形成大颗粒的难度降低,电化学烧结现象更加明显。
1.3 硅的锂化性质
c-Si/a-Si在第一次脱锂后都会转变成a-Si。在Si负极锂化过程中存在两种类型的体积膨胀:一种是形成LixSi(x<3.75)导致体积增加,这种相变导致的体积膨胀与硅基材料容量的释放密切相关。严格限制这种体积膨胀会减少锂离子的储存数量,降低电极材料的容量,因此有必要在体积膨胀和容量释放之间寻找一个平衡。另一种是循环过程中缺陷积累导致的不可逆膨胀[图3(a)],这种不可逆膨胀与储锂的容量无关,但缺陷的积累会增加硅基材料破碎的风险。因此,控制这种不可逆的体积膨胀对于提升硅基材料的机械完整性和循环稳定性至关重要。
作为一种半导体材料,纯硅的电导率为10-4 S/cm,在充放电过程中,其较低的电子电导率会在Si上形成较大的过电位,限制容量的释放。为了解决这一问题,过去人们通常选择添加碳或其他导电材料,制备成复合电极,以提升硅电极的电子电导率。然而添加的导电材料对容量的贡献较低,降低了电池整体的能量密度,更糟糕的是,添加的碳材料会导致硫化物电解质的分解,不仅降低电池的库仑效率,还会影响电池的循环稳定性。孟颖团队最近的研究结果表明,Li本身也可以作为一种性能优良的硅导电剂。随着Li含量的增加,LixSi的电子电导率从10-4 S/cm(Li0Si)增加到10 S/cm(Li2Si)[图3(b)(c)]。Huo等采用恒电流间歇滴定技术测量了无SE的Si电极中Li的扩散系数,证实了LixSi的离子扩散系数随着Li的增加也有相应改善[图3(d)][DLi(Li0.188Si)=5.7×10-10 cm2/s,DLi(Li3.656Si)=6.9×10-8 cm2/s,平均DLi为1.0×10-8 cm2/s],通过InLi |LPSCl|Si/LPSCl和InLi|LPSCl|Si半电池在0.1 C下的循环曲线可以看到,随着锂化过程的进行,无SE的Si负极的过电位逐渐降低[图3(e)],这与Li的嵌入对离子、电子电导率的改善结果相互印证。
有观点认为硅在嵌锂、脱锂过程中从晶体到非晶结构相变引起的局部机械应力是造成容量快速衰减的主要因素。Iwasa等研究了纳米晶体硅电极首次锂化为Li0.6Si、Li1.08Si、Li2.06Si和Li3.75Si相的杨氏模量,发现当x≤0.375时,LixSi合金的杨氏模量与Li的含量呈线性关系,而在0.52<x<0.67范围内,LixSi合金的杨氏模量保持为恒量。Zeng等在室温下使用原位高压同步加速器X射线衍射(X-ray diffraction, XRD)实验测量了亚稳态多晶Li15Si4相的体积模量,发现晶体Li12Si7和Li7Si3的体积模量和Li与Si的比例表现出非线性行为。非原位表征结果受到样品转移过程中的电压松弛以及样品不均匀性的干扰。近来,Putra等采用双峰原子力显微镜,以杨氏模量为力学映射指标,测得了非晶Si薄膜电极在固态电池中首次嵌锂和脱锂过程中的实时形貌和模量变化。在锂化初期(x=0~0.37),Si薄膜电极的模量急剧下降,随着LixSi中x继续增加,杨氏模量缓慢下降[图3(f)];而在脱锂过程中,LixSi电极的模量与x呈现近似线性关系[图3(g)]。需要更多的测试手段来直接获取连续嵌锂、脱锂过程中LixSi中局部机械应力变化,尤其是两相区域中的应力变化,这对于减轻硅基固态电池机械衰退和电极故障方面至关重要。
伴随硅基材料的合金化相变过程,电极材料的体积、模量、电子电导率、Li+扩散系数也会发生相应的变化,电极材料性质的改变不可避免地影响了固态电池的机械稳定性、电化学性能和热稳定性。因此,综合考虑热-力-电化学多物理场耦合效应,建立真实工况下固态电池的物理化学模型对于理解固态电池的界面失效机制和推动其原始创新具有重要的意义。
2 缓解硅负极界面失效的策略
硫基电解质因其出色的室温电导率,成为固态电池中最有前景的电解质。然而硫基电解质的化学稳定性差,和碳材料接触易分解[图4(a)]。电解质的分解导致电极、电解质界面的离子、电子传输阻抗增大;同时硅基电极在循环过程中经历显著的体积变化,导致电极与电解质界面产生孔隙进而引发接触失效[图4(b)],引起电池容量衰减和循环稳定性下降。因此,减轻硅基电极的体积变化,同时确保固态电解质具有一定的弹性和化学稳定性,保持电极材料和电解质之间的良好应变匹配,可以显著缓解甚至完全避免由硅基负极的机械行为引起的界面问题。接下来将从五个维度来探讨抑制界面失效的策略:黏结剂的效用、电极材料结构优化、电极材料和电解质的粒径匹配、缓冲层的应用以及循环压力的设置。采用不同改性策略的硅基固态电池的性能见表1。
表1 采用不同策略的硅基固态电池性能统计
2.1 黏结剂的效用
利用结实且有弹性的黏结剂将硅基材料、导电剂和固态电解质黏合起来,来增强电极与电解质之间的结合强度,这是缓解硅基负极界面失效的一个实用方案。
根据黏结剂使用条件,电极制备工艺可以分为湿法涂浆、干法压片两种。湿法涂浆工艺和传统的锂离子电池电极制备工艺兼容,将黏结剂溶解在极性溶剂中,与电极材料混合均匀后涂覆在集流体上,并烘干以除去溶剂。干法工艺则无须将黏结剂溶解在极性溶剂中,而是依靠黏结剂自身的缠结作用,将黏结剂与电极材料充分搅拌均匀后压延成薄片,再将其压在集流体上。硫化物电解质在高极性的溶液中易发生溶解和晶格结构坍塌、导致离子电导率损失。干法工艺中常用的聚四氟乙烯(PTFE)聚合物黏结剂,其最低未占据轨道较低,在低电位下不稳定,主要用作正极材料的黏结剂。目前有研究将PTFE黏结剂应用在碳负极当中,但在硅基负极中的应用尚未有报道。同时,为提升聚合物黏结剂的离子、电子电导率而添加碳导电材料会催化硫化物电解质的分解,导致电池的阻抗增加。
为了减少硫基固态电解质与碳导电剂之间的副反应,研究人员对单一功能的黏结剂进行升级改造。Wang等制备了一种具有离子-电子双导电功能的Ag@PAP黏结剂。将原位还原的银纳米颗粒掺入富含醚键的高强度聚合物中,为锂离子和电子建立了导电途径。Si-Ag@PAP|Li6PS5Cl|Ni0.9Co0.075Mn0.025O2全固态电池在8 mA/cm2的电流密度下稳定循环2000次,容量保留率60.2%。这种复合功能黏结剂设计方案不仅解决了固态电池中的电解质副反应造成的循环性能差的问题,同时显著提升了倍率性能和循环稳定性,为固态电解质黏结剂的设计提供了新的思路。
2.2 电极材料结构优化
微米级、薄膜型材料相比于纳米材料具有高振实密度、高面容量、低成本的优点,同时由于比表面积的减少,增加了首次库仑效率,因此微米电极和薄膜型电极成为固态电池硅基电极的热门研究方向之一。Cangaz等采用易扩展的PVD工艺制备了柱状结构的硅薄膜电极[图5(a)、(b)],通过控制硅的体积膨胀方向,保持了与电解质的界面接触,与LiNi0.9Co0.05Mn0.05O2正极组成的全电池,面容量达到3.5 mAh/cm2。稳定循环100圈后容量保持率为82%。在微米材料中进行多孔结构设计可以同时兼顾微米材料的高振实密度和多孔材料的低体积膨胀率优点。An等设计的微米级的蚁巢状多孔硅负极[图5(c)、(d)],在5.1 mAh/cm2面容量下以2100 mA/g的电流密度循环1000圈后,容量保持1271 mAh/g,容量保留率高达90%,同时体积膨胀率控制在17.8%。Xu等利用镁的掺杂,通过在微米级的SiOx颗粒中诱导O的偏析形成高密度的碳酸镁以产生封闭的纳米孔[图5(e)、(f)]。这种闭合多孔的设计保证了电极材料与电解质的接触面积,同时闭合孔结构将SiOx的体积膨胀率限制到22%,大大增强了电解质和电极材料界面的稳定性,以制备的闭孔SiOx为负极组成的11 Ah的软包电池在循环700圈后容量保留率为80%。Yan等利用硅在循环过程中发生的电化学烧结过程,形成由可塑性变形的富锂相(Li15Si4、LiC6)组成的3D离子-电子导电网络,缓解了锂化过程中的应力集中,改善了电极动力学和机械稳定性。使用制备的硅基负极、LiNi0.8Co0.1Mn0.1O2正极、Li6PS5Cl电解质组成的固态电池表现出良好的倍率能力和循环稳定性,在5.86 mAh/cm2的高负载下,1 C(5.86 mA/cm2)倍率可以稳定循环5000圈。
微米材料和薄膜材料相比于纳米材料具有突出的成本优势,通过对Si薄膜材料进行图案设计、微米材料进行结构设计可以将其体积膨胀率从400%控制到18%。结构设计方案有效缓解硅基材料的机械失效行为,这对于制备高稳定、低成本、高能量密度的固态电池具有重要意义。
2.3 电极材料与电解质粒径匹配优化
硅基材料和电解质颗粒的接触表面是离子传输的唯一路径,为了提升离子的传输速率,必须扩大电解质与电极材料的接触面积,尽管这会增加电极和电解质界面的副反应。优化固体电解质与电极材料的粒径比例对于选择最佳接触面积[图6(a)、(b)]、最优离子、电子传输速率[图6(c)、(d)]以及保持电极材料内部电流均匀分布[图6(e)]、降低界面副反应方面至关重要。Botros等发现较小的固体电解质颗粒可以增加离子电导率,进而提高倍率性能。Chang等分别比较了380 nm、5 μm、17 μm、30 μm粒径的Li6.4La3Zr1.4Ta0.6O12电解质在Li金属对电池中的电导率,发现电解质粒径为17 μm时可以获得最高的电导率,表明电解质粒径对电池性能的影响存在一个最优值。Schlautmann等探索了不同粒径Si颗粒和固体电解质的粒径相容性,通过设计电极材料与电解质的颗粒来优化堆积密度,可以减少复合电极中的孔隙率,进而降低离子的传输距离,增加电极的有效离子电导率,提升电池的倍率性能。Kim等比较了0.51 μm和1.32 μm的Li10.35Ge1.35P1.65S12的电解质在In-Li对电池中的电极电解质界面演化情况,采用1.32 μm粒径的电解质时,在循环5圈时,电极与电解质的界面处就产生了裂缝,而使用0.51 μm的电解质在循环到71圈时才在电极电解质界面处产生裂缝。证明降低电解质的粒径对于抑制充放电期间电极/电解质界面的机械降解的重要性不可忽视。
越来越多的研究数据表明,电极材料和电解质的粒径大小,对于固态电池的离子电导率、离子传输路径、界面结构稳定性具有不可忽视的影响。然而,目前粒径对于电池性能的影响还处于探索阶段,粒径对电荷传输和电化学性能的作用机理仍需进一步深入研究。
2.4 缓冲层的应用
除了考虑SE本身的化学稳定性外,还需要考虑SE与Si基电极之间的电化学稳定性。例如,硫化物SE不仅自身的化学稳定性差,易与碳材料发生化学反应,而且在锂离子迁移过程中会与Si发生多种电化学反应,电解质中发生的副反应不仅会降低库仑效率,还会缩短电池的循环寿命。在硅基材料以及固体电解质表面外添加具有特定功能的涂层材料,是缓解因固态电解质渗透性差导致的离子传输阻力大和导电性损的一种较为实用的方法。有机材料因具有较高的电化学惰性与较好的延展性和柔韧性,通常用作锂金属负极和无机SE之间的缓冲层。然而,有机材料的离子电导率较低,影响了固态电池整体的性能。目前,研究人员尝试结合有机材料高弹性、高化学稳定性和无机材料高离子电导率的优点,制备复合聚合物-无机固态电解质。Zhang等将聚环氧乙烷(PEO)与双氟磺酰亚胺锂(LiTFSi)和Li6.5La3Zr1.5Ta0.5O12(LLZTO)纳米颗粒均匀分散在乙腈溶液,然后将溶液注入PVDF纤维网络支架中,除去溶液后,得到具有缓冲层的复合电解质(PPG)。将Si@MOF与PGG/LiFePO4集成正极组成扣式电池,PPG在60 ℃条件下会发生软化,因此PPG与Si@MOF的接触界面可以紧密结合并持续保持,利用扣式电池内部压力即可稳定运行,以0.5C的倍率循环500圈后容量保持率达到73.1%。Han等采用微米硅、合成导电碳骨架、MgO制备的SE表面涂层,在电极和应力释放层之间形成了电子传输通路,微米Si和固态电解质的原位反应,形成了富含LiF的SEI,具有较强电荷转移动力学以及机械鲁棒性,可以达到3224.6 mAh/g的高比容量和200次的长循环寿命。Liu等采用旋涂技术在Li1.3Al0.3Ti1.7(PO4)3(LATP)表面涂覆一层石墨烯层,在电解质表面包覆涂层材料后,在0.1 mA/cm2的电流密度条件下循环200圈后,容量保留率为86.1%。Kim等采用静电纺丝技术,将Si纳米颗粒掺入到碳纳米纤维中,在Si/CNF复合材料表面的保形涂层增强了活性材料与固体电解质之间的界面稳定性,从而抑制接触损耗来改善电化学性能。Si/CNF@LPSCl电极在0.1 C条件下可以提供1218 mAh/g的可逆比容量。
在电极与电解质之间添加一层缓冲层,既可以解决电解质的失效分解问题,同时可以在缓冲层中添加特定功能的材料,来弥补电解质性能的不足,大大拓宽了固态电解质的使用范围。
2.5 外部压力的影响
固态电解质的流动性较差,加上硅基材料的体积变化较大,导致固态电池中的电极材料和电解质之间的固-固界面接触难以保持紧密。因此,在电池循环过程中施加适当的外部压力能够确保界面的稳定接触,从而维持固态电池的性能。总体而言,过高或过低的外部压力都会对电池性能产生影响,循环压力则成为评估固态电池商业化可行性的关键指标。过高的压力(例如150~230 MPa)能有效限制硅的体积膨胀,确保电池在多次循环中保持稳定的界面接触,但也牺牲硅的部分容量,同时引入加压设备导致整体的能量密度降低。相比之下,过低的压力(例如3 MPa)无法维持电极材料和电解质在循环过程中的稳定接触,导致硅负极容量迅速衰减。目前有两种主要策略来设计固态电池循环时所需的压力:一种是确定维持稳定循环所需的最低循环压力,在循环压力和系统的能量密度之间取得平衡;另一种是采用弹性电解质,利用电池内部的压力来维持稳定的循环,避免外部压力的施加。
由于循环过程中电极材料的体积变化,固态电池的循环压力也在动态变化。传统的由螺栓、螺母、压力板组成的固态电池测试支架提供的循环压力随着循环进行而变化,使得电池处于非最佳循环压力状态,而且电极上施加的压力分布不均匀,导致不同部位的锂化程度也有差异,使电极内部的应变差距拉大,加剧了界面失效的风险。为此,Ham等在电池支架中加入了弹簧,来适应循环过程中体积的变化,为固态电池提供恒定的循环压力[图7(a)、(b)],这种方案将LiNi0.8Co0.1Mn0.1O2|Li电池的循环压力从2 MPa降到了0.5 MPa以下,将电池在40 ℃时的临界电流密度提升了一倍。为了更精准地控制固态电池的循环压力,Chen等开发了采用流体介质施加的相等且恒定循环压力的固态电池支架,避免了固体弹性材料面临的材料疲劳问题,在电极材料各处施加均匀相等的压力[图7(c)、(d)],测得NCM811|LPSCl|Si的最小循环压力为2 MPa,这种等静态循环压力装置下的固态电池的容量相比传统加压方式有明显的提升[图7(e)],同时这种等静压方式为固态电池循环压力效应的评估提供了一种统一、准确的方法。此外,Pan等设计了一种弹性电解质[图7(f)],μm-Si|弹性电解质|LFP组成的全电池,在无外部压力条件下可以稳定循环150圈,而使用LPSCl固态电解质的电池在循环12圈后就发生了失效,而且容量远低于使用弹性电解质的方案[图7(g)]。通过有限元法模拟的μm-Si与LPSCl[图7(h)Ⅰ]、弹性电解质[图7(h)Ⅱ]中的应力分布与演化图,可以观察到,采用弹性电解质的电极内部压力分布均匀,避免了局部应力集中导致的电极失效问题。
以往的固态电池加压方式不能在电池内部提供均匀的压力分布,为了保证电池的循环性能,往往需要施加超过最低限值的循环压力,控制固态电池在循环过程中的压力变化,保持电极内部压力分布均匀,对于缓解界面失效、固态电池的循环性能改善和容量提升有一定贡献。
3 总结与展望
综上所述,通过对电极的优化可以有效缓解固态电池的界面失效问题,提升固态电池的循环寿命和能量密度。本文回顾了缓解固态电池界面失效问题的几种策略,包括添加黏结剂、电极材料结构优化、电极材料和电解质的粒径匹配、在电极材料和电解质之间添加缓冲层以及调控循环压力。未来,要实现硅基固态电池的商业化,需要解决以下几个关键问题:
(1)揭示电解质电极界面的演化和失效机理。固态电池中电极、电解质之间的离子、电子交换方式尚不明确,电极界面的SEI的生成、演化机制尚不清晰。需要结合热-力-电化学多物理场耦合模型和先进的表征技术,进一步揭示固态电池潜在的界面演化机制,从根本上减少界面失效对固态电池循环性能的影响。
(2)提升纯硅电极的面容量。目前受限于较大体积变化导致的容量迅速衰退,稳定循环的纯硅薄膜电极的厚度仍然是纳米级,要想达到实用化的水平,硅基电极的面容量要达到>4 mAh/cm2的水平,即纯硅薄膜的厚度要能够做到微米级。因此,提升稳定运行的纯硅电极的面容量对于高能量密度的硅基材固态电池的商业化进程至关重要。
(3)建立电极材料、电解质粒径匹配原则。通过猜测和经验来设计电解质和电极材料的粒径会经历大量的试错实验,许多试错实验成本高昂且耗时长久,通过机器学习和大数据筛选,可以省去大量组装电池和测试的时间,从而缩短确定电极材料和电解质粒径的周期。
(4)维持循环过程中电极材料上压力分布均匀性。电极材料上不均匀的压力分布,导致不同部位处的孔隙结构、界面接触、离子传输路径也有差异,这些差异导致不同部位的容量释放也不相同,电极上实际压力与所施加的外部压力值不相等,导致评估压力对电池性能的影响出现偏差。保证电极材料在循环过程中保持相同的压力,既有利于固态电池中电极材容量的释放,又方便研究人员用统一的标准来评价压力对电池性能的影响,这对固态电池的发展具有重要推动作用。
Challenges and strategies for interface failures in silicon-based solid-state batteries
WANG Qin 1 ZHANG Yangang 1LIANG Junfei 1 WANG Hua 2
(1. School of Energy and Power Engineering, North University of China, Taiyuan 030051, Shanxi, China;2. School of Chemistry, Beihang University, Beijing 100191, China )
Abstract: Silicon-based materials are among the most promising anode materials for solid-state batteries owing to their high specific capacity. However, interface failures between silicon-based electrode materials and solid-state electrolytes disrupt ion and electron transport pathways, leading to increased internal impedance, uneven current-density distribution, and eventual degradation of battery capacity and cycle life. This issue presents a major challenge in designing high-energy-density and long-cycle silicon-based solid-state batteries. First, we evaluate the reasons for interface failures between silicon-based materials and solid-state electrolytes, focusing on crystal structures, critical dimensions, and electrochemical sintering. We also discuss the impact of lithium concentration on the electronic conductivity, ionic diffusion coefficient, and Young's modulus of pure silicon materials. Furthermore, we summarize various strategies to address the interface failures, including the application of binders, buffer layers, electrode-material structure design, and particle-size matching between electrode materials and electrolytes. Additionally, we emphasize the potential influence of applying equal and constant stacking pressure on battery performance during the cycling process. This study aims to elucidate the scientific challenges associated with silicon-based material and electrolyte-interface failures in solid-state batteries, resulting in capacity decay and decreased cycle life. Further, this work proposes strategies to address these challenges considering silicon-based material design, electrode material preparation, and electrode-electrolyte matching, thereby guiding further advancements in this field.
Keywords: Si-based solid-state battery;interface failure;mismatch strain;stack pressure
第一作者:王钦(1998—),男,硕士研究生,研究方向为合金型电极材料;
通信作者:梁君飞,教授,研究方向为新型二次电池;王华,教授,研究方向为新型二次电池。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,近日,中固时代(北京)新能源科技有限公司作为固态电池领域的创新先锋,正式加入大储能生态创新联合体。截至目前,联合体成员单位已扩至21家,并收到多家企业的加盟申请。大储能生态创新联合体由科力远联合储能领域的代表性央国企、上市公司、高校和金融与服务平台发起成立,20家创始
北极星储能网获悉,4月2日,四川省商务厅等9部门正式对外发布《四川省推动汽车后市场高质量发展的实施方案》。文件指出,为主动顺应汽车消费新趋势,着力破除限制汽车后市场发展的体制机制障碍,促进汽车后市场高质量发展,更好满足消费者多样化汽车消费需求,力争到2027年实现全省汽车保有量突破1850
近日,日本大型电池企业麦克赛尔株式会社(Maxell)宣布,将解散旗下一家中国子公司——无锡麦克赛尔能源有限公司(下文简称:无锡麦克赛尔)。资料显示,麦克赛尔成立于1961年,1964年成为日立集团成员,以研发和生产高科技数据媒体、视听设备及能源产品著称。无锡麦克赛尔成立于1996年,是麦克赛尔在
北极星储能网获悉,4月1日,天齐锂业在投资者互动平台上表示公司高度关注固态电池的技术进展,并通过多种方式积极布局相关领域。在关键材料方面,公司已顺利完成下一代固态电池核心原材料——硫化锂的产业化筹备工作,持续推进产品质量提升和降本技术优化。公司已完成硫化锂产业化设备、工艺开发,形成
北极星储能网获悉,4月2日,万润新能在投资者互动平台上表示,公司作为头部正极材料供应商,紧跟固态电池行业发展需求和战略客户量产节奏,已在固态电池环节价值量较高的正极材料和电解质领域进行发力布局。正极材料方面,性能优异的磷酸铁锂正极材料可以适配固态电池体系,公司不断进行材料结构和工艺
北极星储能网获悉,金龙羽4月2日公告,孙公司金龙羽新能源(惠东)有限公司拟在惠州新材料产业园内投资建设固态电池关键材料量产线项目。计划总投资额为12亿元,其中,建设投资为8.7亿元,流动资金为3.3亿元。孙公司已竞拍取得惠州新材料产业园内相关土地使用权,前述投资额不包括建设用地使用权出让价
北极星储能网获悉,4月1日,深圳新宙邦科技股份有限公司披露投资者关系活动记录表,回答投资者提问。对于公司电解液市场后续规划,新宙邦回答:公司核心业务之一为电池化学品,主要产品包括:锂离子电池化学品(如电解液、添加剂、新型锂盐、碳酸酯溶剂)、超级电容器化学品、一次锂电池化学品、钠离子
北极星储能网获悉,4月1日,藏格矿业股份有限公司发布投资者关系活动记录表,回答投资者提问。对于当前锂盐的供需格局问题,藏格矿业回答:展望2025年,需要持续关注供应端的高成本产能出清进程。需求端,电动汽车智能化大势所趋,储能市场大有可为,固态电池、AI、具身智能等技术革新有望提供新增长极
北极星储能网获悉,3月31日,容百科技在投资者互动平台上表示,2024年,公司9系以上超高镍产品销售超2.7万吨,公司的高镍及超高镍系列产品技术与生产规模均处于全球领先地位。9系超高镍三元正极材料是固态电池未来的主要方向,公司在固态电池领域持续投入,其中,半固态电池用超高镍正极材料保持稳定出
北极星储能网获悉,4月1日,振华新材在投资者互动平台上表示,2025年,公司重点加快推进完成6系三元材料在主要客户需求计划的同时,在钠电、磷酸锰铁锂方面加速推进产业化,紧密围绕固态电池、低空经济等领域所需材料加大研发力度,持续降本,生产高附加值产品,提升公司的核心竞争力。
北极星储能网获悉,4月1日,天齐锂业在投资者互动平台上表示公司高度关注固态电池的技术进展,并通过多种方式积极布局相关领域。在关键材料方面,公司已顺利完成下一代固态电池核心原材料——硫化锂的产业化筹备工作,持续推进产品质量提升和降本技术优化。公司已完成硫化锂产业化设备、工艺开发,形成
2024年中国磷酸铁锂正极材料行业呈现出如下特点:1)加工费和价格触底,2025年初触底回升;2)高性能磷酸铁锂材料出货快速起量;2)在正极材料中占比进一步扩大。1、加工费和价格触底,2025年初价格开始回升。高工产研锂电研究所(GGII)数据显示,2024年磷酸铁锂正极材料价格低于4万元/吨,部分低端产
近日,在行业周期性调整的挑战下,盐湖股份发布了一份逆势增长的年报。其2024年度财务报告显示,全年净利润达到了46.63亿元。尤为值得注意的是,在锂业务板块,盐湖股份同样实现盈利,且毛利率高达51.86%,远超行业同行。这家被外界称为“资源之王”的企业,究竟是凭何在逆境中稳扎稳打,实现逆势突围
近日,研究机构EVTank联合伊维经济研究院共同发布了白皮书表示固态电池的产业化给上游材料带来的最大的市场机会在于核心的固态电解质,其数据显示,2024年全球固态电解质出货量约0.17万吨,主要来自于中国市场。EVTank预计随着半固态电池和固态电池的逐步产业化,预计到2030年全球固态电解质的出货量将
北极星储能网获悉,3月28日,三祥新材在投资者互动平台上表示,固态电池(电解质)材料领域系公司重要战略布局方向,公司已成立固态电解质材料领导小组,进一步促进固态电解质材料科研创新工作的开展及成果转化。
一夜之间,这位碳酸锂实控人失去了全部股权。金圆股份日前公告称,公司实控人之一赵辉先生和潘颖女士已通过协议离婚方式办理解除婚姻关系手续,潘颖将得到赵辉所持公司全部股权。本次权益变动前,金圆股份实际控制人赵璧生、赵辉父子通过直接和间接方式合计持有金圆股份约3亿股股份,占公司总股本的38.
作者:王泓张开悦单位:沈阳理工大学材料科学与工程学院DOI:10.19799/j.cnki.2095-4239.2024.0893引用:王泓,张开悦.全钒液流电池碳毡电极的热处理活化研究[J].储能科学与技术,2025,14(2):488-496.本文亮点:1.设计了用于碳毡电极活化的低温短时热处理策略,实现了多孔电极结构强度与催化活性的最优匹
3月24日晚间,东峰集团发布《关于控股股东控制权拟发生变更的进展公告》,公司控股股东香港东风投资集团有限公司与衢州智尚企业管理合伙企业(有限合伙)、衢州智威企业管理合伙企业(有限合伙)签署的《股份转让协议》项下之生效条件已全部达成,衢州市国资委即将成为公司实际控制人。时间回溯至1月21
当地时间2025年3月21日,刚果(金)政府发言人帕特里克·姆亚雅(PatrickMuyaya)表示,鉴于2月实施的钴出口禁令已推动钴价反弹超过50%,该国可能会延长为期四个月的出口限制,以进一步稳定市场。刚果(金)是全球最大的钴生产国,其钴产量约占全球供应的78%以上。上月,刚果(金)宣布暂停钴出口四个
盛新锂能发布的2024年年度报告显示,报告期内公司营业收入为45.81亿元,同比下降42.38%;归母净利润亏损6.22亿元,同比大幅下降188.51%。首次亏损的锂盐大厂这是盛新锂能近5年来首次出现亏损。回顾盛新锂能近5年的业绩,可以分为三个阶段。2020年:此时锂盐正处于上一轮下跌周期的尾部,锂盐价格持续下
近期,EnergyVault与印度SPMLInfra公司签署合作协议,将在未来1年内交付价值约1亿美元的500MWh储能产品,在未来10年内增加到30-40GWh的框架协议。EnergyVault成立于2017年,总部在瑞士,由RobertPiconi和BillGross共同创立,获得软银、壳牌等多轮融资,融资总额达数亿美元,以其重力储能解决方案而闻名
北极星储能网获悉,4月3日晚间,恩捷股份发布公告,下属子公司SEMCORPManufacturingUSALLC(以下简称“美国恩捷”)与美国某知名汽车公司(以下称“本次合作客户”)签订《供应协议》。本次合作客户预计2026年至2030年向美国恩捷(及其关联公司)采购约9.73亿平方米的锂电池隔离膜,具体以采购订单为准
关税大棒如期而至。4月2日,美国总统特朗普正式签署“对等关税”的行政令,宣布对所有贸易伙伴设立10%的“最低基准关税”,并对多个贸易伙伴征收更高关税。其中对中国实施34%的对等关税,对欧盟实施的对等关税为20%,对巴西、英国实施10%的对等关税,对瑞士实施31%的对等关税,对印度实施26%的对等关税
3月26日凌晨2时许,浙江省温州市海经区一厂房5楼车间突发火情。监控画面显示,5楼车间内一个正在充电的锂电池发生爆炸,火光四溅,冒出滚滚浓烟。工厂员工在对面宿舍楼发现车间冒烟立即拨打119报警事故发生后消防喷淋系统及时启动第一时间阻止了火势蔓延消防救援人员到场时现场已无明火据了解现场为锂
作者:叶锦昊1,侯军辉2,张正国1,3,凌子夜1,3,方晓明1,3,黄思林2,肖质文2nbsp;单位:1.华南理工大学传热强化与过程节能教育部重点实验室;2.厦门新能安科技有限公司;3.广东省热能高效储存与利用工程技术研究中心引用:叶锦昊,侯军辉,张正国,等.100Ah磷酸铁锂软包电池的热失控特性及产气行为[J].储能科
近日,日本大型电池企业麦克赛尔株式会社(Maxell)宣布,将解散旗下一家中国子公司——无锡麦克赛尔能源有限公司(下文简称:无锡麦克赛尔)。资料显示,麦克赛尔成立于1961年,1964年成为日立集团成员,以研发和生产高科技数据媒体、视听设备及能源产品著称。无锡麦克赛尔成立于1996年,是麦克赛尔在
3月28日上午,2025年“投资北京”大会在2025中关村论坛年会期间举办。会上,北京星川新能源电池科技有限公司(以下简称“北京星川”)超高倍率锂离子电池项目签约落地北京经开区(北京亦庄)。该项目预计将于明年6月开始量产。北京经开区有关负责人在大会上作推介。“北京星川超高倍率锂离子电池项目总
北极星储能网获悉,3月31日,珠海冠宇发布关于核心技术人员调整的公告,其中显示新增认定赵伟先生、钟季先生为公司核心技术人员。原核心技术人员邹啸天先生因个人原因离职,公司不再认定其为核心技术人员。截至2024年12月31日,公司研发团队共有研发人员3632人,占公司总人数的21.79%。
作者:梁毅韦韬殷广达黄德权单位:桂林航天工业学院汽车工程学院引用:梁毅,韦韬,殷广达,等.亲锂Ag-3D-Cu电极的设计及电化学性质[J].储能科学与技术,2025,14(2):515-524.DOI:10.19799/j.cnki.2095-4239.2024.0758本文亮点:通过在泡沫铜表面化学镀银的方式制备具有亲锂性的Ag-3D-Cu集流体。(1)银粒
船舶电池需求升级。由于缺乏新的强预期引导,投资者的目光也重新聚焦于具备扎实基本面支撑的领域。在此背景下,锂电池行业,特别是其在传统应用场景电动化进程中的价值提升潜力,正重获市场关注。其中,船舶电动化因其巨大的市场渗透空间和对大容量电池的显著需求,正成为新的焦点。船舶电动化被视为锂
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!