北极星

搜索历史清空

  • 水处理
您的位置:电力风电风电运维技术正文

功率器件:风力发电技术与功率半导体器件及控制系统

2011-03-04 10:47来源:互联网关键词:风电风力发电技术功率半导体器件收藏点赞

投稿

我要投稿

变频器简化运行

最灵活的功率获取与控制能力来自于变速运行,因为涡轮发电机的转子可以理想地以最大轮叶叶尖速度比运行。人们早期进行的用一个自动齿轮箱代替固定转速步进行星齿轮箱的种种尝试,都因成本问题和可靠性问题而失败。由于滑差控制方法只能为感应发电机提供有限的速度控制,所以当今的许多涡轮发电机都采用了另一种替代方法,即80年代3MW的 Growian风力涡轮发电机试验率先使用的DFIG(双馈感应式发电机)。Growian结构包括一个同步发电机,这一发电机有一个三相滑圈馈电的转子,用以产生一个转子绕组式感应发电机。这种装置能使循环换流器将交流电流注入转子。循环换流器是一种用可控硅阵列制造的交流-交流变频器,它对三相线路频率进行采样,产生一个低频控制波形。将这一控制波形叠加在转子的电场上,就有助于稳定发电机的输出频率;控制这一控制波形的波幅和相位,就可控制发电机的功率系数,从而模拟同步发电机提供有效功率和无功功率的能力。这种结构还存在一些问题,如其中之一就是它比其他结构更容易受到电网故障的影响。

有一种相对简单的变速技术使用一个交流-直流-交流链路作为变频器,它先将发电机的“杂乱交流” 输出整流,然后再以线路频率换向。这一技术使发电机与负载分离,从而可使用更高效的同步发电机,并通过改变直流链路状态来保持发电机的转矩控制。Vestas 公司V90-3 MW 风力涡轮发电机是一个产品例子,它采用全轮叶斜角控制和该公司的OptiSpeed 技术来控制转子6362m2的扫过面积。OptiSpeed系统可使转子和发电机的转速改变60% 那么大,从而将输出至电网的电力变化减少到最低程度,并降低结构应力。这一系统的核心是该公司的VMP-Top控制器和变频器,它们构成功率电子电路,用来控制发电机及其送至电网变压器的输出。该风力涡轮发电机在其他方面已无特别之处,并保留一个齿轮箱来提高发电机转速(发电机的原转速范围为 9rpm~19 rpm)。

但是,在一种概念上最简单的方法中, Enercon公司开创了一系列无齿轮直驱式风力涡轮发电机,其额定发电量现在可达到4.5MW 。在这种设计中,将转子直接装在发电机上,就可将传动轮系轴承的数量减少到只有两个低速旋转部件。问题在于如何在低转速时产生足够的电力,以及如何用最好的方法将其转换为电网频率。Enercon公司解决发电机问题的方法是使用一个有大量电极的电激同步发电机,例如该公司的E-40机型600kW风力涡轮发电机中的直径为4.8m的84极电激励同步发电机。在这里,转子的速度从18rpm~34 rpm不等,扫过面积为1521m2。由于在工业变频驱动设计领域深厚的功底,Enercon公司 采用自己的电子电路。与之相比,Zephyros 公司刚推出的 Z72 型2MW风力涡轮发电机虽然同样具有直驱发电机,但却采用ABB 公司的改进型ACS 1000 变速电动机传动控制器。一个驱动轴轴承支承也是由 ABB 公司制造的永磁发电机。Zyphyros公司在 列举发电机损耗降低、部分负载效率出色、故障机率较低等优点时,突出了永磁发电机的好处。永磁发电机的不足之处是它因使用高导磁率的磁性材料(如钕铁硼和钐钴)而成本很高。永磁发电机的另一个缺点是功率因数特性差,必须由变频电路来进行补偿。但许多专家认为,永磁发电机是发展方向,对大型直驱设计来说尤其是这样。英国 NaREC(新能源与再生能源中心)的电气技术专家Adrian Wilson说,这种方法是当今一个以减轻重量为主要目标的研究项目的核心。由于风力涡轮发电机理论上电力输出是按它获得的空气体积的三次方增加的,所以结构件也会成比例地增加重量。Wilson说,现在的设计方法不能简单地按比例增大到10MW量级——更不用说未来需要的20MW或 30MW,所以他所在的部门正在调查一种可节省齿轮箱质量的直驱设计。这种方法同样也需要一个大直径的发电机。在该项目涉及到的尺度上,有一种可能违背常规的方法,即采用自行车轮似的结构,其辐条支持发电机的电极对。电网输出连接需要一条满功率的 交流-直流-交流 变频器链路,而变频器链路则需要多个并行的变频器。

IGBT 取代可控硅

风力涡轮发电机所需的功率半导体器件是从事微电子学的人所不熟悉的。你要考虑的不是亚微米线宽,而是一个单器件模块占用的欧洲标准印制板面积(从 34mm×94mm ~ 140mm×190 mm)。这样的器件可在数千伏电压下承受千安培级的电流,而且在过去几十年内,这一技术的进步是对风力涡轮发电机发展的最大贡献。在 Growian 时代,可控硅技术可应付大功率应用,但传导损耗很大,并且转换时间的性能很差,常常在 100ms 范围内。相应地,变频器级采用6个阶跃或12个阶跃的波形近似一个正弦波的能量分布,从而产生特别强的奇次谐波,如五次谐波和十一次谐波。这些局限导致人们需要使用谐波频率滤波器。

用IGBT(绝缘栅双极晶体管)代替 Growian 的第一代可控硅,就可使用脉宽调制(PWM)来克服不良的谐波性能。该技术也使实际功率和无功功率的控制更为方便。尽管传统的可控硅很耐用,当今的可控硅,如三菱公司的 FT1500AU-240 可以在 12kV电压下开关1.5kA 电流,开关时间为 15ms ,但当传导电流超过维持电流值时,传统的可控硅是不可能关断的。GTO(栅极可关断)可控硅(如三菱公司的 FG6000AU-120D)可连续提供 6 kV 的电压和1.5kA的电流,并可在 30ms 内实现关断控制,但它们难以驱动。更糟的是,所有的可控硅都很难并联使用,而要达到风力涡轮发电机所需的功率水平,并联使用常常是不可或缺的。

大功率 IGBT 既有 MOSFET 的容易驱动和电流共享特性,又有1ms 的开关时间。虽然转换线路频率所需的 PWM 频率很低,仅为几千赫兹,但这种快速切换在IGBT穿越线性工作区时可减小传导损耗。诸如 Eupec 公司的 FZ600R65KF1等器件,其 导通时间不到 1ms,关断时间小于 6ms,可以在 6kV 电压下控制 1.2kA 电流;诸如该公司的 FZ3600R12KE3 等低电压器件,可以在 1.2kV 电压下开关 3.6kA 电流。因此,IGBT 可用于大功率变频器和软起动控制器。专业生产大功率半导体器件的其他公司包括 ABB公司、Dynex公司、富士通电子公司、Powerex公司和 Semikron公司。

Gamesa E條ica 公司的风力涡轮发电机系列具有660kW ~ 2MW输出功率范围,广泛采用IGBT 技术来实现变速控制和变频控制。可变倾斜角转子轮叶控制允许进行连续调整来获取最高的功率,并可耦合到其发电机速度范围为900rpm~1900rpm的一个 DFIG 系统。这种控制技术可将峰值、闪烁以及谐波都降低到最低程度,从而方便连网许可问题。矢量控制系统可产生或消耗无功能量,对功率系数进行精密调整,使电网电压稳定性得到提高。Gamesa E條ica公司 的功率电路还使自己的涡轮机能在电网中其他地方发生断电时保持在线操作。从经济上说,这些问题在西班牙是至关重要的,因为西班牙对高质量的电网连接要征收额外关税的。

法国 Cegele 公司主管风能部门的Ivan Novikoff指出,风力涡轮发电机及其技术的选择主要取决于当地基础设施的位置和特性。Novikoff 说,电缆敷设、起动时的起动电流和短路电流等问题都取决于系统结构。该公司在为已知用途的风力涡轮发电机制定规范时,都要考虑许多次要而又必须考虑的问题,从允许的转子高度、噪声辐射,到制造商的现场服务质量,不一而足。Novikoff 解释说,从投资者的观点来看,要考虑的机器经济因素包括风力供应的可靠性、机器的可靠性和维护成本以及电力生产关税的差异。

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

风电查看更多>风力发电技术查看更多>功率半导体器件查看更多>