登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
在图 13 所示的例子中,2.2V LDO 输出负责给微处理器供电,而 VOUT 利用VS1 和 VS2 引脚设置为 3.3V,以给 RF 发送器供电。开关 VOUT (VOUT2) 由微处理器控制,以仅在需要时给 3.3V 传感器供电。当VOUT 达到其稳定值的 93% 时,PGOOD 输出将向微处理器发出指示信号。为了在输入电压不存在时保持运作,在后台从 VSTORE 引脚给 0.1F 存储电容器充电。这个电容器可以一路充电至高达 VAUX 并联稳压器的 5.25V 箝位电压。如果失去了输入电压电源,那么就自动地由存储电容器提供能量,以给该 IC 供电,并保持 VLDO 和 VOUT 的稳定。
在本例中,根据下面的公式来确定 COUT 存储电容器的大小,以在 10ms 的持续时间内支持15mA 的总负载脉冲,从而在负载脉冲期间允许 VOUT 有 0.33V 的下降。请注意,IPULSE 包括 VLDO 和 VOUT2 以及 VOUT 上的负载,但可用的充电电流未包括在内,因为与负载相比,它可能非常小。
COUT(μF) = IPULSE (mA) • tPULSE (ms) / dVOUT
考虑到这些要求,COUT 至少须为 454μF,因此选择了一个 470μF 的电容器。
采用所示的 TEG,在 ΔT 为 5ºC 时工作,那么 LTC3108 在 3.3V 时可提供的平均充电电流约为 560μA。利用这些数据,我们可以计算出,首次给 VOUT 存储电容器充电需要花多长时间,以及该电路能以多大的频度发送脉冲。假定在充电阶段中 VLDO 和 VOUT 上的负载非常小 (相对于 560μA),那么 VOUT 最初的充电时间为:
tcharGE = 470μF • 3.3V / 560μA = 2.77s
假定发送脉冲之间的负载电流非常小,那么一种简单估计最大容许发送速率的方法是用可从 LTC3108 获得的平均输出功率 (在本例情况下为 3.3V • 560μA = 1.85mW) 除以脉冲期间所需的功率 (在本例情况下为 3.3V • 15mA = 49.5mW)。收集器能够支持的最大占空比为 1.85mW / 49.5mW = 0.037 或 3.7%。因此最大脉冲发送速率为 0.01 / 0.037 = 0.27s 或约为 3.7Hz。
请注意,如果平均负载电流 (如发送速率所决定的那样) 是收集器所能支持的最大电流,那么将没有剩余的收集能量用于给存储电容器充电 (如果需要存储能力的话)。因此,在这个例子中,发送速率设定为 2Hz,从而留出几乎一半的可用能量给存储电容器充电。在该场合中,VSTORE 电容器提供的存储时间利用以下公式来计算:
tSTORE = 0.1F • (5.25V - 3.3V) / (6μA + 15mA • 0.01 / 0.5) = 637s
上述计算包括 LTC3108 所需的6μA静态电流,而且假定发送脉冲之间的负载极小。在此场合中,一旦存储电容器达到满充电状态,它就能以 2Hz 的发送速率支持负载达 637s 的时间,或支持总共 1274 个发送脉冲。
利用后备电池的超低功率应用
有些应用或许没有脉冲负载,但却可能需要连续工作。传统上,此类应用由一个小型主电池 (比如:3V币形锂电池) 来供电。假如功率需求足够低,那么这些应用就能够利用热能收集来连续供电,或者可以借助热能收集来极大地延长电池的使用寿命,从而降低维护成本。
图 14 示出了一种利用后备电池来驱动一个连续负载的能量收集应用。在该例中,所有的电子线路均全部由 2.2V LDO 输出来供电,且总电流消耗小于 200μA,只要 TEG 上至少存在 3ºC 的温度差,LTC3108 就能连续地给负载供电。在这些条件下,电池上没有负载。当可用的收集能量不够时,3V锂电池将无缝地“接管”并给负载供电。
图 14:具有后备电池的能量收集器
能量存储替代方案
对于那些选用可再充电电池来替代主电池以提供备份或能量存储的应用,图 14 中的二极管可以去掉,并用可再充电的镍电池或锂离子电池 (包括新型可再充电薄膜锂电池) 来替换锂电池。如果采用的是可再充电的镍电池,则其自放电电流必须小于 LTC3108 所能供应的平均充电电流。如果选用锂离子电池,则需要增设额外的电路以保护其免遭过度充电和过度放电的损坏。另外还有一种存储替代方案就是具有 5.25V 额定电压的超级电容器,例如:Cooper-Bussman PB-5ROH104-R。与可再充电电池相比,超级电容器的优势在于拥有更多的充 / 放电次数,而缺点则是能量密度低得多。
热量收集应用需要自动极性
有些应用 (例如:无线 HVAC 传感器或地热供电的传感器) 对能量收集功率转换器提出了另一种独特的挑战。此类应用要求能量收集电源管理器不仅能够依靠非常低的输入电压来工作,而且能以任一极性工作,因为 TEG 上的 ∆T 的极性可能改变。这是一个特别棘手的难题,而且,在几十或几百 mV 的电压条件下,二极管桥式整流器不是合适的选项。
LTC3109 是唯一适合克服这种从任一极性的能量源收集能量之挑战的器件。LTC3109 运用具 1:100 升压比的变压器,能以低至 ±30mV 的输入电压工作。LTC3109 与 LTC3108 的功能相同,包括一个 LDO、一个数字可编程的输出电压、一个电源良好输出、一个开关输出和一个能量存储输出。LTC3109 采用 4mm x 4mm 20 引脚 QFN 封装或 20 引脚 SSOP 封装。图 15 显示了 LTC3109 在自动极性应用中的一个典型例子。如图 16 所示,该转换器的输出电流随 VIN 变化的曲线说明,该器件在任一极性的输入电压时,都能同样良好地工作。
图 15:自动极性能量收集器供电的无线传感器节点
图 16:图 15 中转换器的输出电流随 VIN 变化的曲线
LTC3109 也可以针对单极性操作进行配置,采用单个变压器 (与 LTC3108 相似) 来适应那些需要尽可能低的启动电压和尽可能高的输出电流的应用。图 17 中示出的电路可在仅 15mV 的电压下启动,该电压是采用所示的 TEG 在小于 1ºC 的温差条件下产生的。在10ºC 温差时,它能够提供稳定的 5V 电压 (在 0.74mA 电流下),从而可输送 3.7mW 的已调稳态输出功率。在相同的条件下,这几乎达到了 LTC3108 输出功率的两倍,如图 18 所示。
图 17:采用 LTC3108 的单极性转换器能在仅 15mV 的电压条件下启动
图 18:LTC3108 和 LTC3109输出功率的比较
需要注意:在单极性配置中,LTC3109 对 TEG 呈现出约 1Ω 的负载电阻,因此应选择一个具有非常低源电阻的 TEG 以实现优良的负载匹配,否则在单极性配置中使用 LTC3109 将毫无优势可言,这一点很重要。本例中所采用的 TEG 具有 1.0Ω 的标称源电阻,旨在实现最佳的功率传输。
结论
LTC3108 和 LTC3109 能独特地在输入电压低至 20mV 时工作,或者以非常低的任一极性电压工作,提供了简单和有效的电源管理解决方案,能实现热能收集,以利用常见的
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
浩亭的边缘计算系统MICA(模块化工业计算架构)能够对机器进行监控并处理生成的数据。为了进一步扩展其能力,浩亭与艾睿电子合作开发了全新MICA无线传感器网络解决方案,为机器监控系统增加了无线通信功能。这个全新解决方案已在德国纽伦堡自动化展SPSIPCDrives(11月28日至30日;10号展厅/140号展台)
近期,据国外消息称,某调研公司的一份报告显示,由于采用无线传感器网络(WSN)技术,包括低功耗广域网(LPWAN)技术,如LoRa、Sigfox、LTE-M1和NB1等,工业物联网市场得到了大幅度增长。2021年无线传感器市场规模或达350亿美元。该研究公司称,在未来五年内,WirelessHART和ISA100.11a等短距离无线
据悉,SK电讯已经携手自动化和控制解决方案提供商韩国霍尼韦尔株式会社(HoneywellKorea),共同开发基于SK电讯LoRa网络技术的无线传感器。韩国霍尼韦尔株式会社计划在2017年第一季度推出具有LoRa功能的产品,包括恒温器、感测器、管道温度传感器和消防安全产品。使用LoRa网络技术的无线传感器可以安装在
近年来,随着电源应用领域的不断扩大和相关技术的快速发展,电源行业对于标准工作需求日益提高。为进一步加强我国电源行业标准化建设,及时规范和更新电源标准,促进电源行业有序发展,中国电源学会依据国务院《深化标准化工作改革方案》有关要求,于2016年正式开展学会团体标准建设工作。2016年6月起,
2015年12月7日嵌入式标签(ETB)进入下一阶段。可实现完全无线、清晰的物体识别,并从数米远的距离监控其状态。到目前为止,可以监测四个离散的状态。未来型号将获得独立于现场总线和提供者之外的模拟测量功能,并实现无线或无电池传输。浩亭于2015年11月24日至26日在纽伦堡工业自动化展会(SPSIPCDriv
11月13号,丽水山体滑坡的事故让我们认识到了我国在无线传感监测上的漏洞。无线传感监测是利用无线传感器对我国容易发生事故的地方进行监测,可以对灾情进行预测和减少灾害造成的损失。其实,无线传感器不仅仅可以监测环境,其对生物对象的监测、感知也十分便捷。可以说,无线传感器在未来发展将会越来
感谢加州大学圣地亚哥分校的霍华德们,能兼容不同品牌不同消费电子产品的无线充电器离现实更近一步了。这些研究者们开发出一种双频无线充电平台,能同时给多个设备充电,如智能手机、智能手表、笔记本和平板电脑,无论每个设备支持哪种无线标准或频率。据我们所知,这是唯一能同时工作在两个不同频率的
7月9日,国网信通产业集团所属智芯公司承建的山东广饶华骜植化集团物联网项目已完成现场传感器的安装调试工作,并顺利通过山东广饶县农业局及华骜植化集团的验收。山东广饶华骜植化集团物联网项目是山东广饶农业局在华骜植化集团部署的农业物联网二期工程,实现对华骜植化集团食用菌关键环境参数的定量
在全球面临能源紧缺、气候变暖等严重问题的情况下,人类为了生存和发展转而去寻找和利用清洁能源技术。清洁能源包括太阳能、风能、热能、振动能、海洋能,以及其他能量如人体动能、生化能等能量。随着科技的发展,无线传感器网络技术已经渗透到人类生产和生活的方方面面。无线通信网已经逐步发展到能为
对超导技术不太熟悉,不妄加猜测。答主研究生期间做的就是无线充电方向,实验室在十年前年就开始做无线充电,算是国内最早做无线电能传输的团队。无线电能传输技术的类型和主要研究热点、现状,排名靠前的几个答案已经写得很详细了。在此,补充一些信息。1.感应耦合电能传输技术已经比较成熟,基本上商用的无线电能传输装置都采用的是这一技术方案。至于MIT所提出的磁共振式技术,在学术界尚存在争议。我们实验室老师就认为磁共振式与电磁感应式传输从机理上没有什么区别,只是工作频率更高,传输距离更远。2.在中距离传输方面,借电动汽车的东风,研究热点是电动汽车的无线充电,分为定点无线
年末,小编汇总了《科学美国人》杂志的2014年十大科技成就和十大科技事件,以及《自然》杂志的2014年十大科技事件,其中能源和电力领域在工程应用方面还是有相当大突破的,或者说被人们寄予厚望。科学美国人——2014年十大科技成就1、基因精灵2、可重新编辑的细胞3、透明的生物4、唾液燃料电池5、视觉矫正屏幕6、原子尺度的乐高积木7、超硬的可回收塑料8、用声波进行无线充电9、用低级废热充电的电池10、纳米粒子摄像机科学美国人——2014年十大科技事件1.埃博拉疫情暴发2.人类探测器“罗塞塔&rdqu
2016年9月9日,南京中人能源科技有限公司、中国电力科学研究院和深圳禾望电气有限公司联手完成了中人能源ZR2.0MW-122超低风速机组低电压穿越测试工作。ZR2.0MW-122机组低电压穿越测试期间,风电机组始终保持不脱网连续运行,自电压恢复时刻开始,有功功率以至少10%额定功率/秒的功率变化率恢复至实际风
据国外媒体报道,英特尔周日发布了赛扬847、酷睿i5-2557M、酷睿i7-2637M和i7-2677M四款超低电压处理器的官方价格。重要的是指出这个价格表是不全面的,没有包括嵌入式微处理器、主流处理器以及奔腾和酷睿i3移动系列处理器以及酷睿i5-24xxM系列处理器的价格。因此,我们必须等待英特尔官方发布这个消息。 赛扬847是一种基本的双核微处理器,配置2MB三级缓存和最低的功能集。这款处理器的时钟速度是1.1GHz。这个速度比上一代Westemere微处理器中最快的超低电压赛扬U3600处理器慢100Mhz。英特尔赛扬847的价格与U3600相同
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!