北极星

搜索历史清空

  • 水处理
您的位置:环保节能工业节能技术正文

英威腾CHH100高压变频器在火电厂300MW机组主辅设备的应用

2013-01-08 13:25来源:深圳市英威腾电气股份有限公司 技术支持部关键词:高压变频器变频改造变频器收藏点赞

投稿

我要投稿

解决上述问题的重要手段之一是采用变频调速控制技术。利用高压变频器对凝结泵电机进行变频控制,实现给水流量的变负荷调节。这样,不仅解决了控制阀调节线性度差、纯滞延大等难以控制的缺点,而且提高了系统运行的可靠性;更重要的是减小了因调节阀门孔口变化造成的压流损失,减轻了控制阀的磨损,降低了系统对管路密封性能的破坏,延长设备的使用寿命,维护量减小,改善了系统的经济性,节约能源,为降低电厂厂用电率提供了良好的途径。

3.3 锅炉循环水泵

火力发电厂中的循环水泵是为汽轮机的凝汽器提供冷却水的重要辅机设备。作完功的蒸汽在凝汽器中凝结而放出的大量汽化潜热,必须由循环水带走,一般循环水泵流量较大,但扬程较低。

火电厂的循环水供水系统有两种:一种为开式循环供水系统,冷却水直接取自江河湖海,使用后仍排向江河湖海,南方多采用此种方式;另一种为闭式循环供水系统,循环水经凝汽器加热后,排向冷却装置,一般为冷却水塔,经冷却后再供凝汽器使用,北方缺水地区多采用此种方式。通常开式循环供水系统对循环水泵的扬程要求较之闭式循环供水系统要低,开式循环供水系统水泵的扬程在10~20m之间,采用较多的是轴流式水泵;闭式循供水系统水泵的扬程较高,一般在15~25m之间。轴流式水泵,钭流式水泵和离心式水泵都是循环水泵广泛采用的型式。

南方电厂和北方电厂的循环水泵是不一样的。在南方,由于江、河、湖泊的水源充足,一般多采用开式循环水系统:由江河中抽上来,进入汽轮机凝汽器,经热交换后直接排向江河,落差比较小,因而循环水泵的调速范围比较大(但循环水泵的扬程也较小)。在北方,由于水资源紧张,冷却水要循环使用,每台机组建一座冷却水塔,一条压力循环水管,一条双孔自流水沟。经凝汽器热交换后的热水由循环水泵压入水塔,从塔中经蜂窝材料喷淋而下,再进入凝汽器循环使用。一般水塔高程在70~80米左右,水位高度也在10-20米左右,因此循环水泵调速后的出口扬程有个最低值,这就限制了循环水泵的调速范围,因为循环水泵出口扬程的余量并不大,调速后循环水泵的出口扬程若小于水塔水位高程,冷却水就会打不进水塔去,循环水泵就不能正常工作。

汽轮机凝汽器的循环供水系统,又有单元制和母管制之分。小型火电机组采用的母管制循环供水系统是将所有的循环水泵并联在一根供水母管上,凝汽器也并联在供排水管上。这就要求并联的循环水泵特性相近,并联的凝汽器的水阻也要接近,否则会使循环水泵负荷分配不均和水阻大的凝汽器不能获得足够的冷却水而影响汽轮机真空。单机容量在300MW以上的机组,一般采用单元制循环水供水系统,设计3台循环水泵,冬季1台运行,一台备用,一台检修;夏季二台运行,1台备用。如果循环水泵同时停运,必然会导致机组停运,甚至可能造成汽轮机化瓦等恶性事故的发生。

在可能的条件下,循环水泵宜采用动叶调节或转速调节方式,以保持较高的运行效率。动叶调节在轴流泵上已有较多的使用,转速调节可采用定速电动机加液力耦合器调速和变频调速电动机调速方式。目前应用较多的是通过控制运行台数来实现流量的调节。例如单元制循环水系统用2台循环水泵并联供一台机组时,当冬季或负荷较低时,可停用一台循环水泵以调节水量,节省电耗。但由于供水管道阻力特性是按2台泵并联设计的,当一台泵运行时,运行泵的流量将显著增加,运行工况偏离最佳工况较远。尤其是轴流泵,其效率曲线较陡,偏离最佳工况点后,效率下降很快。母管制供水方式下,并列运行的泵组台数较多,水量的调节可以通过改变运行泵组的台数,或者变更大小泵的搭配方式来实现。调整后泵的运行工况也会偏离最佳工况,但较单元制供水情况要好一些。且这种调节方式使汽轮机真空度不稳定,不利于汽轮机的经济运行。如采用动叶调节或转速调节方式时,其运行经济性就好得多。

若进行变频调速改造,既可节能降耗,又能根据机组负荷和季节的变化调节冷却水的流量,达到汽轮机最有利真空的控制目的,实现了汽轮机真空度的高精度控制和经济运行的目的。且运行稳定,可靠性高,同时还可以消除管路的虹吸现象。

3.4 锅炉灰浆泵

灰浆泵是根据前池液面的高度决定启、停电机。这样就存在两方面问题:一方面为了适应生产工艺要求,需要每天根据前池液位和冲灰管的需要不断切换、启停电机,前池液位高度得不到很好控制,而且频繁工频启动电机对电机造成很大冲击。灰浆泵工艺流程图如下图3所示:

图3 灰浆泵工艺流程图

目前由于采用阀门调节流量 , 在这种调节方式下,系统主要存在以下几个问题:

1) 采用灰浆泵定速运行,阀门调整节流损失大、出口压力高、管损严重、系统效率低,造成能源的浪费。

2) 当流量降低阀位开度减小时,调整阀前后压差增加工作安全特性变坏,压力损失严重,造成能耗增加。

3) 长期的40~70%阀门开度,加速阀体自身磨损,导致阀门控制特性变差。

4) 管网压力过高威胁系统设备密封性能,严重时导致阀门泄漏,不能关严等情况发生。

5) 设备使用寿命短、日常维护量大,维修成本高,造成各种资源的极大浪费。

解决上述问题的重要手段之一是采用变频调速控制技术。利用高压变频器对灰浆泵电机进行变频控制,在灰浆泵前池液位设置压力式水位传感器,将测量得到水位高度信号,变换为4~20mA标准信号,由电流环接口送给变频器; 变频器计算出当前水位与控制水位之间的偏差,通过变频器内置的数字PID调节器改变变频器的输出频率,调节电动机的转速,进而控制灰浆泵前池液位的高度。这样,不仅解决了控制阀调节线性度差、纯滞延大等难以控制的缺点,而且提高了系统运行的可靠性;更重要的是减小了因调节阀门孔口变化造成的压流损失,减轻了控制阀的磨损,降低了系统对管路密封性能的破坏,延长设备的使用寿命,维护量减小,改善了系统的经济性,节约能源,为降低电厂用电率提供了良好的途径。

四、案例分析

4.1 项目介绍

1) 项目概述:该项目是英威腾电气有限公司针对山西某发电厂一期一台300MW机组所有高压电机进行变频改造,主要负载包括引风机、送风机、排粉机、给水泵、凝结水泵、循环水泵、灰浆泵。

2) 现场相关设备数据:

进行变频节能应用的设备统计情况如下表1所示。

表1 设备统计

序号
设备名称
功率等级
运行方式
所占厂用电率
1
引风机
2000KW/6KV
2
1.33%
2
送风机
1400 KW/6KV
2
0.93%
3
排粉机
710 KW/6KV
3
0.71%
4
给水泵
3350 KW/6KV
2用1备
2.23%
5
凝结泵
1120 KW/6KV
1用1备
0.37%
6
循环泵
1800 KW/6KV
2
1.2%
7
灰浆泵
560 KW/6KV
3
0.56%
8
变频可应用容量
20230 KW/6KV
14
7.34

4.2 系统方案:

4.2.1 变频器配置

根据山西某发电厂一期一台300MW机组主辅助设备的现场的额定参数和实际运行工况,再结合英威腾公司CHH100系列高压变频器在其它工程地应用情况,我公司所配置变频器如下表2:

表2 变频器配置

编号
设备名称
额定功率
电压等级
配置变频器规格
额定功率
数量
备注
1
引风机
2000KW
6KV
CHH100-2000-06
2000KW
2
 
2
送风机
1400KW
6KV
CHH100-1400-06
1400KW
2
 
3
排粉机
710KW
6KV
CHH100-0710-06
710KW
3
 
4
给水泵
3350KW
6KV
CHH100-3550-06
3550KW
2
 
5
凝结泵
1120KW
6KV
CHH100-1120-06
1120KW
1
 
6
循环泵
1800KW
6KV
CHH100-1800-06
1800KW
2
 
7
灰浆泵
560KW
6KV
CHH100-0560-06
560KW
3
 

4.2.2 变频器旁路切换控制方式

根据现场的额定参数和实际运行工况,再结合我公司的CHH100系列高压变频器在其它工程应用情况,我方提供的CHH100变频器的旁路系统采用一拖一自动方案,变频器具有转速跟踪功能,变频与工频能够自动切换,其一次系统如下图所示:

图4 CHH100系列高压变频系统图

变频器由用户开关、自动旁路柜、CHH100系列高压变频器、高压电机组成。自动旁路柜是由三个真空接触器KM1、KM2、KM3和两个高压隔离开关QS1、QS2组成。电机以变频方式运行时,QS1、QS2和KM1、KM2闭合,KM3断开;电机以工频方式运行时,KM3闭合,QS1、QS2和KM1、KM2断开,QS1、QS2用于变频器维护过程中高压隔离。变频系统采用转速跟踪技术,变频与工频之间切换在运行过程中可以不用停机自动完成。自动旁路柜严格按照“五防”联锁要求设计,变频输出开关KM2和工频开关KM3互锁,完全能够保证变频器安全运行。

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

高压变频器查看更多>变频改造查看更多>变频器查看更多>