登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
新能源的迅猛发展,依靠的是不断进步的技术。在风电领域,海上风电的漂浮式基础、整体安装等极有可能成为未来的主流技术。
近年来,风力发电技术愈加成熟,单机容量持续增加,风电机组技术也随着发生重大变革,从失速调节发展到变桨调节,从定速运行发展到变速运行,从齿轮箱传动发展到无齿轮箱直驱技术。风电机组的发电效率和可靠性不断增加,运行维护成本也得到显著降低。
部件构成及工作原理
风电是风能转化为机械能进而机械能再转化为电能的过程。风力发电有横轴型风力发电系统和垂直轴型风力发电系统两种。
目前商用大型风力发电系统一般为水平轴风力发电机,它由风轮(包括叶片和轮毂)、传动链(包括轴、齿轮箱(直驱式不含有齿轮箱)、制动器和发电机)、偏航装臵、控制系统、塔架等部件所组成(图 2-1)。风轮和传动系统是风电系统中的核心部件。
典型现代水平带齿轮装臵的风电机系统部件构成风电系统的工作原理是风轮叶片在风的作用下,使得整个风轮形成了扭转、倾覆和偏转运动。扭转的主轴(低速轴)将会传递风轮扭矩到齿轮箱的一级行星齿轮上,而一级行星齿轮将通过二级平行轴齿轮传递扭转,使得低转速大扭矩的载荷转化为高转速低扭矩的载荷,便于发电机的吸收;最后电机轴(高速轴)上的扭矩将通过切割电磁形成电能,完成风能—机械能—电能的转化。由于风向经常变化,为了有效地利用风能,必须要有迎风装臵,它根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮咬合的小齿轮转动,使机舱始终对风。
关键技术
风轮
风轮是风电系统的关键部件之一,占机组总体成本的 20%。影响风电性能的因素主要有风轮直径、结构设计、叶片材料、叶片制造工艺等。
1. 过去10年风轮直径增长迅速,捕风能力增强。
风轮直径影响扫风面积,也就决定了捕风能力。近几年,为满足低风速地区和海上风电的开发需求,叶片的长度不断增长。中国 2014 和 2015 年安装和投运的机组中,风轮直径在 93 米及以上的 1.5MW 机组占绝大多数,而 2008 年以前,是以 70 米以下风轮直径的 1.5MW 型机组为主。近三年,风轮直径为 100-121米的 2MW 机组陆续问世,并相继成为主流机型。2008 年之前,风轮直径没有超过 100 米的,但从 2009 年以后,美国大叶片占据市场的主导地位,到 2012 年,47%的新增装机的风轮直径超过100 米,到 2014 年,80%的新增装机的风轮直径是 110 米或者更长。
目前,全球最长的风轮直径是 190 米,是美国能源技术公司设计的 SeaTitan 10MW 的风电机组(样机正在制造中),其次是三星功率为 7MW 的 S7.0-171,风轮直径是 171 米。
未来风电机组将继续向大功率、大叶片的方向发展。根据欧盟资助项目 UPWIND 研究表明,开发 20MW 的风力发电机,叶片长度 120 米是可行的。
2. 叶片结构设计优化,性能不断提高
结构设计是在保证强度、刚度以及气动性能的前提下,对材料做出选择,对叶片截面的尺寸、形状进行设计和优化,以获取性能好而重量轻的叶片。
第一,在风电机组根部、迎风面等位臵黏贴组件,可以改善叶片的气动性能、抑制失速,提高风能利用系数,减少噪音等。通过添加涡流发生器可阻止面内流动分离和稳定面外流动,抑制叶片表面气流失速现象;格尼襟翼调节叶片特殊运行条件下的载荷并获得更高发电量;在叶尖下添加小翼可提升发电量并减少噪音;或者在后缘加上锯齿设计可改变尾涡结构,进而减少噪音。
第二,为了方便WMW级叶片的运输和方便生产,部分企业已研究出叶片分段技术。现阶段,大部分企业分段叶片主要是 2 段,西班牙 Gamesa 公司和德国 Enercon 公司已经商业化生产两段叶片,美国的 Modular 风电公司 3 段叶片技术设计完成。
3. 增强材料以玻璃纤维为主,高成本限制碳纤维的使用。目前的风电叶片的原材料主要使用环氧树脂、聚酯树脂等与玻璃纤维、玻璃/碳纤维混合等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
对于同一种基脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能,并且碳纤维的叶片重量较轻,但是,碳纤维的价格是玻璃纤维的 10 左右。由于价格的因素,碳纤维应用较少。随着叶片长度不断增加,为保证叶片能够安全的承担风温度等外界载荷,风机叶片也采用玻璃/碳纤维混合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维材料。
目前,世界上主要机型选用的叶片材料主要是以玻璃纤维为主,相应长度采用玻璃/ / 碳纤维混合材料的叶片重量比玻璃纤维轻约 20% 以上。世界上最大的三个机型的叶片主要选用的是玻璃/碳纤维混合增强材料,碳纤维主要应用在叶片前后边缘和横梁盖上。 但是,现在有些厂商在减少碳纤维的应用。如丹麦叶片独立供应商 LM Glassfiber 公司新开发的 73.5 米的长叶片就未应用碳纤维,而西班牙 Gamesa 公司畅销全球的G114-2.0MW 风机则改用玻璃纤维,而上一款 G97-2.0MW则选用了玻璃/碳纤维混合材料。
4. 叶片制造主要 采 用真空灌注和预浸料工艺。
目前叶片制造工艺方面,主要工艺是预浸料工艺与真空灌注工艺,手糊制造工艺已基本被取代。传统复合材料风力发电机叶片多采用手糊工艺(Hand Lay-up)制造。手糊工艺的主要特点是生产效率低、树脂固化程度偏低,适合产品批量较小、质量均匀性要求较低复合材料的生产。此叶片在使用过程中出现问题往往是由于工艺过程中的含胶量不均匀、纤维/树脂浸润不良及固化不完全等引起的裂纹、断裂和叶片变形等。
尽管真空灌注和预浸料工艺都适用于常见设计的叶片结构,但预浸料主要用于箱式梁的叶片结构。真空灌注工艺是真空导入成型方法是先将纤维织物等增强材料铺放在模腔里进行抽真空作业,此时树脂基体在真空压力的作用下被导入模腔来浸渍增强材料。真空导入工艺是闭模成型的,这种工艺污染小、生产效率高,并且制作的叶片产品质量稳定,有助于提高产品的性能、降低制造成本,M LM 公司等大多数厂商使用此工艺。预浸料成型方法是按设计要求的铺层顺序先将预浸料铺放在模具内,然后用真空袋将尚未成型的制件密封,抽真空,以排除在铺层内的气泡、挥发分和袋内的空气,按最佳的固化工艺参数在热压罐内固化成型叶片。预浸料成型法可以提高叶片性能、降低叶片质量,对于40m 以上的叶片,丹麦维斯塔斯集团(VESTAS)和西班牙 GAMESA使用预浸料工艺。
传动链
传动链(包括轴、齿轮箱(直驱式不含有齿轮箱)、制动器和发电机)作为风电机组最核心的系统之一,在设计、布局、应用分析和安装维护等方面有着极其重大的影响。目前,风电的传动系统根据不同属性分类不同。
典型的风电发电机根据传动方式主要分为:1、高速齿轮传动,是目前最为流行的方式,通常通过 3-4 级齿轮箱连接发电机;2、中速齿轮传动(混合型),20 世纪 90 年代末提出,通常由 1-2级齿轮箱组成,传动比最高可达 1:30,最低为 1:5;3、低速无齿轮传动(直驱式),是一种风力直驱发电机,免去齿轮箱。
1. 风电机组功率不断增大
全球新增发电单机功率呈逐年上升态势,最大机组单机功率为8MW。目前主要是以 1.5MW 到 3MW 以下的机组为主,多兆瓦(≥3MW)发电装机在不断增加。据不完全统计,2015 年,1.5MW 以下的发电机组所占市场份额比 2014 年减少 1.4 个百分点,1.5-2MW 的发电机组占比减少 12 个百分点。而 2-3MW 之间的发电机组市场份额大幅增加,增加了 10 个百分点,多兆瓦的发电机组比例也增加了 3 个百分点。
中国新增风电装机主要是W1.5MW 和 2MW 风电机组占据主体地位W, 2MW 机组增加显著。中国风电的单机功率已从 2005 年的750~850kW,增加到 2012 年的 1.5~2.0MW,而从 2013 年开始,3MW 及以上型机组数量呈现增长趋势。2014 年,中国新增装机的风电机组平均功率增长 2.81%。在新增风电机组中,1.5MW 和 2MW风电机组占据主体地位,占全国新增装机容量的 87% ,1.5MW 机组市场份额同比下降5%,而 2MW 机组上升 10%。此外,3MW 及以24上机组占到 4%,比 2013年增加了约1%。
2. 高速齿轮传动为主流
市场中最流行的传动链主要是以高速齿轮传动为主,1998- -4 2014 年间发布的风电机中有 70% 的传动链是高速齿轮传动系统。直驱式是 1993 年由德国 Enercon 公司研制成功的。2004年,另一家德国公司 Aerodyn 发布了第一个中速齿轮传动系统。
目前,世界上最大的可商业化生产的高速、中速、和低速传动链的发电机分别是德国 Senvion 的 6.2M126(6.2MW),丹麦 Vestas的V164-8.0MW 和德国 Enercon的 E-126/7580 (7.58MW)。
3. 以双馈异步发电机和直驱式的永磁同步发电机为主
目前,高速齿轮传动与双馈异步发电机构建的发电系统主要被广泛应用到功率为 1.5MW-3.5MW;中速主要应用在大型的发电机中,平均功率为 4MW;直驱式的永磁同步发电机被广泛应用到功率在 1.5MW-6MW 之间。
海上风电
1、风电机组
现有海上风电所安装的风电机组基本上是由陆上风电机组改装而来,早起的海上风电场使用的是中小型的风电机组,单机容量为 220-600kw。近期的大型海上风电示范工程主要采用多兆瓦级风电机组,兆瓦级风电机组在尺寸、功率和风的捕获能力等方面都有很大的增加。全球在建项目的风电机组单机容量主要是以 4MW 以上为主要机型,单机容量最高的是英国 Burbo 银行海上风电场和 Walney Island 海上风电场项目,都使用 Vestas V164风电机组,单机容量为 8MW,风轮直径为 164 米。中国在建项目单机容量最高的是申能投资建设的临港海上风电一期示范项目,采用的华锐的 SL128,单机容量为 6MW,风轮直径为 128 米。
2. 海上风机基础
基础是风电机组赖以持续稳定工作的平台,是海上风电场的重要组成部分,目前基础的施工和运维费用约占海上风电总投资的 15% -25%。按照基础是否与海床直接接触,可将现有的海上风电基础分为着床式和漂浮式两种结构形式。其中, 着床式基础与陆上风电类似,该基础适用于近海区域(水深小于 50 m), 已被大量应用于目前已建成的海上风电场,技术成熟,经验丰富。而 漂浮式基础的概念来源于深海油气开发平台, 目前主要处于研发和示范阶段, 但适应性较强,与着床式基础相比施工难度较小、运维成本低,因此在发展 海上 风电具有良好的应用前景。
3. 机组安装
机组安装技术包括安装平台和安装方式两个部分。目前大部分海上风电机组的运输、吊装、维修主要依托于现有的船舶平台进行。随着离岸距离越来越远及机组功率越来越大,近年来已陆续出现新建或改装的专业化海上风机吊装平台,主要包括传统起重船(自航非自升)、起重安装平台(自升非自航)和自航自升起重船 3 种类型。
海上风电机组的安装主要包括两种方式:分体安装和整体安装。分体安装施工方法与陆上风电场类似,适用于潮间带及近海区域, 目前运行的多数风电场均按该方法建造;而整体安装则是在岸边将机组各部件装配成一个整体,竖直放臵于运输船运送并安放至目标地点,以减少海况对装配精度的影响,作业费用较低,这种施工方法是近年发展起来的,也已有成功案例。
4. 发展趋势
从目前开发趋势来看,未来几年海上风电场的离岸距离将增加到 50km 以上,因此现有的机组基础型式及安装技术势必不能满足新的环境要求。漂浮式基础、整体安装及自航自升式施工平台极有可能成为未来的主流技术。
最新型技术高空风机
高空风力发电机,是利用地球在距地面大约 480 米至 12000米的高空风力来发电的装臵。目前主要有两种高空风电的构架方式:第一种是利用氦气球等升力作用,在空中建造发电站,高空发电,然后通过电缆输送到地面;第二种类似“放风筝”,即通过拉伸产生机械能输送到地面,再由发电机转换为电能。目前,高空风能发电公司全球已经有 50 家,欧美知名公司主要有WidLift、Makai Power、Altaeroseergies、KiteGen 等几家,中国有广东高空风能技术有限公司。Makani Power 最新的风电系统发电功率为 600 千瓦,Altaerosenergies 公司研发的高空风电系统“空中浮动涡轮”(BAT)发电功率为 100 千瓦,广东车载式高空风能发电系统位于芜湖的首个地面型电站—2.5MW试验电站项目目前厂房建设、设备安装基本完成,作为 400MW 项目的前期试验机组。
无叶机风机
西班牙公司 Vortex Bladeless 造出了一种新的风机Vortex,完全不需要任何可见的风机扇叶就能发电。Vortex 涡度发电机的原理,在遇到旋涡状的空气流动时,由纤维玻璃和碳纤维制成的机体将会发生振动。不同方向的震动,可以带动风机底部的发电机组产生运动,进而将动能转化为电能。Vortex 除了占地小,对环境的安全影响较低之外,还对风向没有限制。这种风机能够被安装在更小的空间里,迷你型的无叶片风机有12.5米高,4kW,可专为住宅和小型风力能源使用;大型风机有 1MW的机型,可用于大规模发电。
超导发电机
超导风机被认为是风电技术通往 10MW 级别及以上的风电机组的唯一路径。由于超导体的零电阻特性解决了散热问题,提升了功率密度。超导技术成功应用于风机行业后,对风电领域来说,将是一种非线性的颠覆式改变,这一应用将大幅度提高发电机功率密度和转矩密度,预计比传统永磁发电机提高至少 50%,风电度电成本有望下降 30%。
可折叠模块化风机叶片
美国一个联合科研团队公布了一种可折叠,模块化的风机叶轮设计,被称为“分段超轻变形风轮”(Segmented UltralightMorphing Rotor,SUMR),这种叶片按照下风向进行安装,在危险的天气条件下可以像棕榈树叶一样折叠起来,应用这种设计的叶片能够在实现最大叶片长度的同时实现轻量化,分段设计可让叶片在现场进行安装。当折叠式叶片达到最大长度时,在海面的强大风力吹动下可以发出 50MW 的功率峰值。
风透镜风机
这种风透镜风机的设计概念由日本九州大学提出,可像一个透镜聚焦光线一样聚焦气流,圆向内弯曲的圆环包围着风机叶片,可加速空气流动并引导气流方向。
垂直城市风机
专为城市设计的垂直风机,周身白色,形似抽象派雕塑并且没有任何旋转叶片。一台 2.0kW 的风机,高 9 米、宽 1.2 米,在5m/s 的风速下年产能为 4250kWh,而噪声不及一部普通洗碗机。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在全球能源转型与“双碳”目标的时代浪潮下,风电作为清洁能源的重要支柱,正以前所未有的速度蓬勃发展,风电产业已成为推动中国高端装备制造业发展的重要力量。为加速风电行业创新发展与核心技术突破,支撑行业高质量稳步发展,由金风科技牵头,产业上下游及多家高校科研机构共同组建了国家风力发电技
深远海域海上风电技术是行业发展的新形势,是我国风电赶超国际前沿的契机,是未来海上风电发展的一片蓝海,上一篇文章中介绍了深远海风力发电发展现状、深远海与近海风电装备的区别,这一篇文章将从深远海风力发电技术难题及施工难题两个维度进行分析,为我国深远海风力发电技术的发展提供指导价值。技
导读海上风电由于具有风能稳定、密度大等优点,在世界范围内已逐渐发展成为风力发电的重要形式。在深远海域,风能资源更丰富,风湍流强度与海面粗糙度较近海更小,因此深远海域海上风电技术的研究和开发成为了当今海上风电发展的新趋势,其作为风电技术的制高点,正在成为海上风电产业众多参与方追捧的
日前,丹麦风机制造商维斯塔斯旗下的维斯塔斯风险投资公司(VestasVentures)宣布收购瑞典木材技术公司Modvion部分股权,这也是该公司自成立以来完成的首笔投资,意在推动其木制风电塔筒的研发应用。这也引发业内热议,木制塔筒是否真的具有光明前景?■降低对钢材的依赖根据维斯塔斯发布的声明,此次
2020年浙江科技成果竞价(拍卖)会计量测试和市场监管科技成果专场近日在中国计量大学举行。活动中成功拍卖科技成果12项,起拍金额1087万元,成交金额共计1225万元,溢价率12.7%。最高溢价项目为“活性炭再生工艺及再生活性炭应用”,150万元起拍,最终以200万元成交,溢价率为33.3%。在本次拍卖的科技
风力发电很难再汽车上应用,光伏发电到是可以用在汽车上。风力发电之所以不能用在汽车上,主要是因为风机装在汽车上会增加汽车阻力,风阻增加后油耗也会增加。汽车之所以要设计成流线型,主要就是为了降低风阻系数,降低汽车行驶时的空气阻力。当降低10%的空气阻力时,油耗就会降低2.5%。这边空气动力
2019年10月21-24日,2019北京国际风能大会暨展览会(CWP2019)在北京隆重召开,大会主题“风电助力‘十四五’能源高质量发展:绿色、低碳、可持续”。自2008年首次在北京举办以来,已连续举办11届,成为北京金秋十月国内外风电行业争相参与的年度盛会。CWP2019进一步加强了大会的国际化特色,组织了20
斗山重工业于4月27日发布消息说,将引进HYUNDAIELECTRICENERGYSYSTEM(以下简称HYUNDAIELECTRIC)的5.5MW级海上风力发电技术。正式合同将于5月签订,届时将一并收购相应机型试制品与设计资料、知识产权等。HYUNDAIELECTRIC所开发的5.5MW级海上风力发电机在韩国产品中属最大容量,目前安装于济州金宁实证
2015年中国风电并网装机超过1亿千瓦,居全球首位。作为后起之秀,2005年中国风电总装机占全球装机容量仅为2.0%,仅仅十年时间中国风电累计装机占全球装机比例已达25.9%。风电的迅速发展不仅向中国各地输送了绿色清洁能源,同时也催生了中国风电产业链的繁荣发展。作为支撑风电产业快速发展的标准与标准
2015年中国风电并网装机超过1亿千瓦,居全球首位。作为后起之秀,2005年中国风电总装机占全球装机容量仅为2.0%,仅仅十年时间中国风电累计装机占全球装机比例已达25.9%。风电的迅速发展不仅向中国各地输送了绿色清洁能源,同时也催生了中国风电产业链的繁荣发展。作为支撑风电产业快速发展的标准与标准
随着全球化经济的飞速发展,低碳环保理念也受到国家的重视,并实施到各行各业中,尤其是在能源企业的发展中,更加重视清洁新能源的研发,风力发电技术作为绿色能源的重要组成部分,能源企业应不断地对风力发电技术进行研究,为国家的能源开发做出巨大地贡献。随着近些年风电技术的飞速发展,能源公司对
近日,三峡发布《山东半岛北烟台海域海上风电基地环境影响研究分析招标公告》。据了解,在当前的规划中,半岛北基地共有6个海上风电场(场址K、L、M、N等),规划风电场装机容量约400万千瓦。而且上述招标的三峡烟台海域海上风电基地不包含在内。相关阅读:万亿目标!山东海上风电“三连跳”据悉,近年
北极星风力发电网获悉,22日,东方电缆发布《东方电缆及全资子公司关于中标海缆产品及敷设施工项目的提示性公告》,《公告》显示,该公司近期中标直流海底电缆、交流海底电缆项目约目合计约40亿元人民币。
11月21日,温州市生态环境局发布《关于拟对华润苍南1#海上风电二期扩建工程环评文件作出审批意见的公告》。公告显示,华润海上风电(苍南)有限公司将在温州市苍南县东部海域实施华润苍南1#海上风电二期扩建工程。拟利用苍南1#海上风电场空余机位新增安装24台远景8.5MW风机,总装机容量204MW,同时新建
11月19日,中核集团新华发电湛江徐闻东二海上风电项目EPC总承包招标。公告显示,中核集团新华发电湛江徐闻东二海上风电项目(以下简称徐闻东二项目)位于广东省湛江市徐闻县锦和镇以东海域,场址最近端距离锦和镇陆岸27km,最远端距离陆岸57.6km,场址二水深约为10m~26m,规划场址面积为48km2。项目规
近日,英国Beatrice海上风电场迎来“另类”里程碑,项目累计领取补贴突破10亿英镑!Beatrice海上风电场位于苏格兰MorayFirth地区,Caithness海岸以外13公里处,装机容量588MW,安装了84台西门子歌美飒7MW海上机组。项目由SSE和CIP投资开发,总投资22亿英镑,于2016年开工,2019年6月全容量并网,至今已
11月18日,海南省发改委印发《关于公开征求关于完善海上风电上网电价的通知(征求意见稿)意见的通知》(以下简称《征求意见稿》)。《征求意见稿》显示,《海南省海上风电场工程规划》(2022年)中规划建设的海上风电场址建设的海上风电项目,其保量保价的优先发电电量上网电价按海南省燃煤发电基准价
11月11日,挪威能源部批准漂浮式海上风电示范项目GoliatVIND提出的环境影响评估(EIA)计划。几周后,GoliatVIND公司将提交许可申请。如果许可报告获批,该项目将成为全球首个安装单机容量超过15MW机组的漂浮式海上风电示范项目。GoliatVIND漂浮式项目位于挪威哈默菲斯特西北85公里处的巴伦支海,将为世
11月18日,莆田平海湾海上风电场DE区项目风力发电机组及塔筒设备采购中标候选人公示,共两个标段,规模共计400MW。详情如下:标段一:中标候选人第1名:金风科技,投标报价:67013.6万元;中标候选人第2名:电气风电,投标报价:65869.44万元。标段二:中标候选人第1名:金风科技,投标报价:62725.2万
近日,运达股份官网发布洞头2号海上风电项目、苍南6号海上风电项目招标公告。苍南6号海上风电项目:公告显示,苍南6号海上风电项目位于浙江省温州市苍南县海域,拟安装14台单机容量15MW风电机组,规划装机容量210MW,远期规划扩容至310MW。场址呈不规则多边形,东西长约10km,南北宽约2.0km-3.7km,场
北极星售电网获悉,海南省发展和改革委员会发布关于公开征求《关于完善海上风电上网电价的通知(征求意见稿)》意见的通知,文件提到,《海南省海上风电场工程规划》(2022年)中规划建设的海上风电场址建设的海上风电项目,其保量保价的优先发电电量上网电价按海南省燃煤发电基准价执行;市场化电量的
日前,“电建志高”号3600T全回转起重船完成了航行锚泊试验、航速试验、DP动力定位试验、回转试验等十余项关键海上试验,圆满通过了为期6天的海上试航。“电建志高”号是中国电建首艘入列的海上风电施工船,总长182米,型宽49米,型深15米,最大起重能力3600吨,吊高可达甲板上130米,适合25MW以下海上
近日,宿迁市泗洪县出现惊险一幕,一名工人在维修风力发电机时突遇大风,被困在百米高空,由于当时风很大,被困的维修工不仅无法从高空返回,还被风吹得到处乱晃,情况非常危急。工人被困百米高空记者了解到,这一幕发生在5月18日上午10点左右,当时,这名维修工正在对发电机的扰流条进行切割时,因为
4月21日17时17分,葫芦岛兴城市消防大队临海消防救援站接到支队指挥中心命令,称位于兴城市刘台子乡某村境内的风力发电机起火,指挥中心立即调派临海中队赶赴现场进行处置。临海消防救援站站长赵海东带领施救人员立即前往处置,到达现场发现,疑为一个正在运行的风力发电机“大风车”起火,现场浓烟滚
在德国联邦经济事务和能源部的支持和资助下,德国的SkySailsPower、EnBWEnergieBaden-WürttembergAG、EWEOffshoreService&Solutions和莱布尼茨汉诺威大学发起了SkyPower100研究项目,旨在开发和测试全自动高空风力发电系统,目标是在2020年完成对100kW级别系统的研发。(来源:微信公众号“欧洲海上
在德国联邦经济事务和能源部的支持和资助下,德国的SkySailsPower、EnBWEnergieBaden-WrttembergAG、EWEOffshoreServiceSolutions和莱布尼茨汉诺威大学发起了SkyPower100研究项目,旨在开发和测试全自动高空风力发电系统,目标是在2020年完成对100kW级别系统的研发。高空风力发电机的概念由来已久,其
1高空风机(AirborneWindTurbine)自2013年谷歌收购了空中风机设备公司MakaniPower以来,一种没有支柱为结构支撑的高空风机已经成为了创新风机中的领头羊。目前,这种风机有两个主要设计构架:空中飞行,地面发电:在空中建造发电站,高空发电,然后通过电缆输送到地面。空中飞行,空中发电:类似于风筝
当下,绝大多数的风力发电机都是陆上涡轮机,一个高大的风力发电机看上去非常显眼在大规模的风力发电场,这种视觉效果被放大,许多带着叶片的风电机就像金属的森林一样:新的研究表明,高空风力发电(300米以上)能够产生更有效的能源,也许在未来地面上的涡轮机会被高空的风电风筝所取代。实际上已经有
在高空风电的竞赛上,这次中国的确领先了一把。查阅国外几家知名的高空风电公司,今年上半年进展一般,虽然谷歌在三月份高调宣布要试飞84英尺飞机形状的风力发电机组,但后来却毫无新消息对外公布,甚至对发烧友们提出的一些关键问题也三缄其口,比如在三月份对外发布的信息中,谷歌提到此次84英尺长的
想到风力发电,脑海中浮现的影像往往是一根高高的塔柱支撑着扇叶的景象,不过诞生自麻省理工学院(MIT)的 Altaeros Energies 却离经叛道,发展飘浮在高空中的高空风力发电,风力发电机与扇叶都放在一个甜甜圈般的氦气球之中,飘浮在高空,这个前卫的设计,却得到日本软件银行(SoftBank )认同,2014 年12月4日,软件银行宣布将投资700万美元,合约将近 2.2 亿元新台币,支持Altaeros Energies发展高空风力发电。成本降低机动性更高高空风力发电比起主流的塔式技术,有许多优点,由于愈高的空中,气流愈稳定,发电效果也愈好,近年
想到风力发电,脑海中浮现的影像往往是一根高高的塔柱支撑着扇叶的景象,不过诞生自麻省理工学院(MIT)的Altaeros Energies却离经叛道,发展飘浮在高空中的高空风力发电,风力发电机与扇叶都放在一个甜甜圈般的氦气球之中,飘浮在高空,这个前卫的设计,却得到日本软件银行(SoftBank)认同,2014年12月4日,软件银行宣布将投资700万美元,合约将近2.2亿元新台币,支持Altaeros Energies发展高空风力发电。成本降低机动性更高高空风力发电比起主流的塔式技术,有许多优点,由于愈高的空中,气流愈稳定,发电效果也愈好,近年来风力发电机
飞艇,这种曾在飞机普及前被广泛使用的飞行器近两年被赋予了各种新使命。近日,美国阿拉斯加中部城镇费尔班克斯的天空中出现了一艘巨大的飞艇,其外观就像是海中的鳐鱼,不过它的作用可不是用来载客观光,而是科学家最新发明的高空风力发电机。据外媒介绍,麻省理工学院的Altaeros研究团队正在测试这种名为“空中浮动涡轮”(BAT)的新型风电系统,其内部充满了氦气,通常会被放置在距地面1000-2000英尺(约合305-610米)的空中,产生的电能将通过导线传回地面设备。至于为何要把飞艇放在数百米的高空,研究小组认为,这一高度的风资源丰富,而且
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!