北极星

搜索历史清空

  • 水处理
您的位置:电力核电核电建设与运行报道正文

印度乏燃料后处理:目前的挑战和未来的计划

2017-06-28 09:59来源:核能研究展望NPRV作者:NPRV关键词:乏燃料核燃料循环核电收藏点赞

投稿

我要投稿

电精炼之后进行对阴极进行处理,在这个过程中沉积在固态阴极上或者液态镉阴极中的U或者U/Pu会被进一步处理,并将它们制备成金属锭。在阴极处理过程中,若处理固态阴极或者蒸馏镉,蒸馏除去固态阴极上附着在U金属上的电解介质盐即可;在处理液态镉阴极时,需要在蒸馏之后继续熔融剩余的金属。电精炼和阴极产物处理是该处理流程中的关键步骤。

在进行了若干次金属乏燃料后处理后,电解质熔盐中会含有大量的裂变产物氯盐,使熔盐的固液相曲线温度提高至处理温度以上,同时镧系裂变产物的衰变热会导致电解槽中热负荷增大。因此需要定期将使用过的熔盐通过天然沸石柱,将熔盐与镧系裂变产物分离纯化,循环使用熔盐,并将杂质转化为合适的废物形式进行废物处置。熔盐中的锕系氯化物在后续的锕系drawdown过程中从盐中除去。在这个过程中,熔盐与Li-Cd之间形成平衡,Li将锕系氯化物还原为各自相应的金属,继而被萃取至合金相中。

在反萃取步骤中,镉中的锕系金属被重新氧化为相应的氯化物,然后装载在电解介质熔盐中,利用镉的氯化物作为氧化剂进行氧化。通过天然沸石离子交换的方法将在锕系元素提取过程中获得的熔盐与裂变产物分离进行纯化。含有裂变产物的天然沸石被转化为陶瓷废物形式,留在阳极篮中的贵金属裂变产物被转化为金属废物形式进行废物处置。

从阴极处理过程中获得的U、Pu金属与必要量的U和Zr进行重构,制备成燃料棒,作为制备新鲜燃料时的一部分。但是不同于新制备的燃料,由于高温化学处理过程中去污因子较低,经后处理后的产物具有高的放射性,故使用高温化学方法从乏燃料中回收的锕系金属铸造燃料棒需要在热室中开展。

为了实现该流程,系统化的研发工作正在IGCAR进行。第一步,开展了在FBTR中辐照钠结合的测试燃料棒(组分:天然U-6Zr、浓缩铀14.8% 235U-6%Zr和U-19Pu-6Zr燃料合金)的工作,目前正在进行。获取相对大规模的燃料制造经验对于商业规模的金属燃料快堆是至关重要的。针对此目标,FBTR将会在以后的数年中被作为一个辐射大量金属燃料棒/组件的试验平台。为制造这些燃料棒,IGCAR目前正在建造一个金属燃料制造示范设施(DemonstrationFacilityforMetalFuelFabrication,DFMF)。

8. 印度的钍铀燃料后处理

在孟买的BARC和帕坎的IGCAR开展了使用THOREX流程从辐照的钍中分离铀-233的工作。该工艺使用化学腐蚀方法除去核燃料包壳,并使用含氟硝酸溶液来溶解乏燃料,在溶解液中添加硝酸铝以减少氟对溶解设施的腐蚀。

以这些研究的操作经验为基础,建造了一座处理钍基动力堆乏燃料的后处理设施以处理来自PHWR的钍基乏燃料。使用激光切割方法来对钍基乏燃料组件进行切割,随后将燃料棒切碎,切碎的乏燃料使用含有硝酸铝和氟化钠的硝酸溶液进行溶解,在溶解之后,在混合澄清槽使用5%TBP进行萃取操作,将溶剂萃取过程中得到铀产物通过阳离子交换树脂柱,以除去铀产品中存在的痕量的钍,将该股物流浓缩,并使用亚当斯催化剂对其进行分批催化还原,得到的硝酸铀最终沉淀成为草酸铀,之后将草酸铀转化成其氧化物形式(Dhami et al., 2015)。

因此印度在Th-U-233乏燃料的后处理循环的设计和运行方面积累了丰富的经验,在BARC的一个临界设施PURNIMA 2中还对U-233反应堆的物理性质进行了实验。名为KANINI的小型反应堆(30Kwt)使用U-233为核燃料并在IGCAR自1997年就开始运行。该反应堆主要用于放射性照相目的。为了开发钍基反应堆的从采矿、燃料制造、反应堆运行、乏燃料后出路以及放射性废物管理方面的技术,印度一直在开展相关的研发工作。一个名为AHWR(先进重水堆)正处在设计中,钍基反应堆的运行方式以及其他的相关技术将在该反应堆中进行测试,来自此反应堆的乏燃料的后处理也是一项挑战,因为是三组分后处理系统(U-Th-Pu)。

9. 当前水法后处理研发的趋势

一些国家正在研发其他萃取剂的水法流程,例如使用酰胺(Baron et al., 2001;Miguirditchian et al., 2007)和磷酸三丁酯的同系物(Suresh et al., 2015)为萃取剂。主要的研发目标是设计可以完全燃烧(例如酰胺)或者萃取性能更好的(如磷酸三丁酯的同系物)且安全性更好的萃取剂。

因为次锕系元素的寿命较长(半衰期长于1000年),特别强调要将后处理产生的高放废液中的次锕系元素回收,例如镅和锔。

许多国家认为对三价锕系元素使用分离嬗变(P&T)方法(IAEA, 2004; IAEA, 2010)处理是对高放废液(HLLW)进行安全管理的有效方法。分离主要使用液液萃取方法将HLLW中化学性质相似的三价锕系元素和镧系元素分离。目前认为可以用于锕系分离的化学试剂有有机磷化合物、酰胺和二乙二酰胺(Schulz and Horwitz,1988, Horwitz and Kalina 1984, Tachimori and Morita, 2009, Mikheev et al. 1979, Aspinall 2001, Nash 1993, Dam et al., 2007)。Horwitz 和Kalina (1984)提出了TRUEX流程,该流程使用0.2mol/L CMPO-1.2mol/L TBP-正十二烷(n-DD)为萃取剂,推荐使用CMPO为萃取剂,是因为经过系统深入的研究发现,该种物质有良好的三价元素配位化学性质。

在次锕系元素的分离过程中,镧系元素与三价锕系元素一同被萃取到有机相中,但为了后续的嬗变工作,有必要实现三价镧系元素和锕系元素的分离,否则,镧系元素在快堆中进行嬗变过程中会扮演中子毒物的角色。三价锕系元素和三价镧系元素的分离极具挑战性,这是因为它们的化学性质和萃取性能很相似。文献中已经报道了几种利用锕系元素存在的5f轨道以将锕系元素和镧系元素分离的方法,在这方面,IGCAR已经合成了双(2-乙基己基)二甘醇二酸(HDEHDGA),并对在硝酸介质中提取Eu(III) 和 Am(III)进行了研究,这些二甘醇酸是烷基-3-氧杂戊烷的衍生物,是实现锕镧分离的萃取剂备选物之一。与其他用于锕镧分离的萃取剂不同,二甘醇酸因为存在CHON-基团可以完全溶于正十二烷稀释剂中。

CORAL后处理设施对FBTR的碳化物乏燃料后处理产生的高放废液,已经成功的在IGCAR使用溶剂萃取流程进行了处理。在不久的将来,将有可能将锕系元素回收设施和后处理设施整合起来以便回收锕系元素,并将其在反应堆中嬗变处理,这样的话将大大的减少高放射性玻璃固化体的体积。

10. 干法后处理的近况

目前仅俄罗斯、韩国、日本、印度和捷克在积极研发干法后处理技术。俄罗斯、韩国、印度和日本的研究工作基于熔盐电精炼方法,捷克的研究基于氟化挥发过程。USA和法国目前没有具体的有关干法后处理技术的实施方案。

俄罗斯的处理流程以位于季米特洛夫格勒的原子反应堆研究所(RIAR)发展的熔盐电沉积技术为基础,适用于处理快堆的氧化物燃料。

韩国已经开展了不同规模的以熔盐电精炼技术研究为基础的高温处理流程研究,最近他们委托PRIDE开展相关研究(PyRo process Integrated inactive DEmonstration facility)。该研究设施目的是对所有单元操作的性能、发展远程处理设备、解决安全设施问题等进行测试等。

日本发展的处理流程中设想使用从热堆乏燃料或高放废物中回收超铀元素,为快堆制造金属燃料靶件以进行嬗变。

印度正在发展处理金属燃料的熔盐电精炼处理流程,以便未来用于处理快堆的金属乏燃料。

虽然美国和俄罗斯早在20世纪60年代就已经开始发展使用氟化挥发流程处理反应堆乏燃料的研究,但是在1973年美国取消了熔盐堆项目,而俄罗斯则因切尔诺比利事件,搁置了干法后处理技术的发展。捷克开展了详细的干法研究,并发展了集成的氟化挥发实验工厂的概念设计,但在研究过程中出现了严重的腐蚀问题,并在1972年决定放弃在辐照核燃料后处理技术中采用氟化挥发路线。在不久之前,捷克重启了有关挥发技术的研发活动,并且发展了概念流程:利用熔盐电解沉积和液态镉阴极沉积Pu的原理,分解氟化反应器中残余的PuF4,进而回收Pu。

如上所述,高温化学后处理在处理FBRs的乏燃料中存在若干优势,如结构紧凑、可处理短期冷却的燃料、废物体积小、固有的锕系产物循环潜力等。但是,这种后处理过程由于操作温度高,需要在惰气氛围中操作,相对于水法后处理技术具有更高的挑战性。

11. 结论

自二十世纪50年代中期开始应用PUREX流程进行燃料后处理,TBP作为溶剂的处理流程已经发展到其他溶剂无法比拟的成熟程度。随着英国在二十世纪60年代和法国在二十世纪70年代相继获得的成功,比利时、法国、德国、俄罗斯、英国和美国也开始了若干后处理厂的运作,但是由于技术问题之外的各种原因,目前只有少数几个后处理厂(在法国、英国、日本、俄罗斯和印度)在运行。

印度是目前世界上少数几个拥有超过50年经验、并具有持续的乏燃料后处理项目的国家之一。由于印度天然铀资源有限, 钍储量丰富,故对印度而言,发展乏燃料后处理技术是铀迫切需要的,在处理含低含量钚的热堆乏燃料方面,印度有三个大规模的后处理厂(PREFRE-1和2,KARP)。

除印度之外,没有其他国家在开展快堆燃料后处理技术的发展。除了来自RAPSODIE和Phoenix反应堆的快堆乏燃料后处理外,法国也在阿格后处理厂开展了大规模的、使用快堆和热堆混合辐照燃料的快堆燃料后处理示范工作,日本目前也有了部分快堆燃料后处理(FRFR)的经验。英国处理了来自实验快堆DFR的乏燃料,德国也运行了一个名为MILLI、类似于CORAL的处理工厂以对FR后处理进行示范,美国和俄罗斯没有相关的快堆乏燃料水法后处理技术的详细信息,印度是目前唯一一个参与快堆乏燃料后处理的国家。印度发展后处理技术的其中一个指导因素在于降低后处理时间和系统倍增时间。

卡尔帕卡姆的快堆燃料CORAL后处理厂已经处理了放射性强的FBTR钚含量高的的碳基燃料,为世界范围内首次开展。随着DFRP示范工厂的调试和一个PFRP商业后处理厂的在建,印度将会成为快堆燃料后处理技术的领导者,这也是印度科学与技术实现可持续的长期能源安全的胜利。印度将会成为未来使用金属燃料后处理和钍基反应堆乏燃料的反应堆的核燃料后处理技术领域的先锋。

原标题:【后处理】印度的乏燃料后处理:目前的挑战和未来的计划
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

乏燃料查看更多>核燃料循环查看更多>核电查看更多>