登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
参考文献
[1] 中国电力企业联合会.2016年全国电力工业统计快报数据一览表[R].北京:中国电力企业联合会,2017.China Electricity Council.National electric power industry statistics express data list 2016[R].Beijing:China Electricity Council,2017(in Chinese).
[2] Qi Y,Stern N,Wu T,et al.China’s post-coal growth[J].Nature Geoscience,2016,9(8):564-566.
[3] 国家统计局.中华人民共和国2016年国民经济和社会发展统计公报[R].北京:国家统计局,2017.National Bureau of Statistics.National economic and social development statistical bulletin 2016[R].Beijing:National Bureau of Statistics,2017(in Chinese).
[4] 中国电力企业联合会.2017年1-2月全国电力工业统计数据一览表[R].北京:中国电力企业联合会,2017. China Electricity Council.National electric power industry statistics data list January-February 2017[R].Beijing:China Electricity Council,2017(in Chinese).
[5] 中国电力企业联合会.2015年度全国火电600MW级机组能效水平对标[R].北京:中国电力企业联合会,2016. China Electricity Council.National 600MW class thermal power units energy efficiency benchmarking 2015[R].Beijing:China Electricity Council,2016(in Chinese).
[6] 薛彦廷,杨寿敏,牟春华,等.我国煤电技术国际竞争优势分析[J].热力发电,2015,44(10):1-8. XueYanting,Yang Shoumin,Mu Chunhua,et al.Study on international competitiveness of China’s coal-fired power generation technology[J].Thermal Power Generation,2015,44(10):1-8(in Chinese).
[7] 中国电力企业联合会.中国电力行业年度发展报告2016[R].北京:中国电力企业联合会,2016. China Electricity Council.Annual development report of electric power industry in China 2016[R].Beijing:China Electricity Council,2016(in Chinese).
[8] 张军,郑成航,张涌新,等.某1000MW燃煤机组超低排放电厂烟气污染物排放测试及其特性分析[J].中国电机工程学报,2016,36(5):1310-1314. Zhang Jun,Zheng Chenghang,Zhang Yongxin,et al.Experimental investigation of ultra-low pollutants emission acteristics from a 1000MW coal-fired power plant[J].Proceedings of the CSEE,2016,36(5):1310-1314(in Chinese).
[9] Daood S S,Nimmo W,Edge P,et al.Deep-staged,oxygen enriched combustion of coal[J].Fuel,2012,101:187-196.
[10] Li Y,Fan W D,Wang Y,et al.Characteristics of gasification in staged oxygen-enriched combustion in a down flame furnace[J].Energy & Fuels,2016,30(3):1675-1684.
[11] Adanez J,Abad A,Garcia-Labiano F,et al.Progress in chemical-looping combustion and reforming technologies[J].Progress in Energy and Combustion Science,2012,38(2):215-282.
[12] Lyngfelt A.Chemical-looping combustion of solid fuels-status of development[J].Applied Energy,2014,113:1869-1873.
[13] 郭岩,周荣灿,张红军,等.镍基合金740H的组织结构与析出相分析[J].中国电机工程学报,2015,35(17):4439-4444. Guo Yan,Zhou Rongcan,Zhang Hongjun,et al.Microstructure and precipitates of alloy 740H[J].Proceedings of the CSEE,2015,35(17):4439-4444(in Chinese).
[14] Yuan Y,Zhong Z H,Yu Z S,et al.Tensile and creep deformation of a newly developed Ni-Fe-based superalloy for 700℃ advanced ultra-supercritical boiler applications[J].Metals and Materials International,2015,21(4):659-665.
[15] 蔡宝玲,高海东,王剑钊,等.二次再热超超临界机组动态特性分析及控制策略验证[J].中国电机工程学报,2016,36(19):5288-5299. Cai Baoling,Gao Haidong,Wang Jianzhao,et al.Dynamic process acteristic analysis and control strategy verification on double-reheat ultra-supercritical coal-fired power units[J].Proceedings of the CSEE,2016,36(19):5288-5299(in Chinese).
[16] 席新铭,王梦洁,杜小泽,等.“三塔合一”间接空冷塔内空气流场分布特性[J].中国电机工程学报,2015,35(23):6089-6098. Xi Xinming,Wang Mengjie,Du Xiaoze,et al.Airflow field acteristics in indirect dry cooling tower of three incorporate towers system[J].Proceedings of the CSEE,2015,35(23):6089-6098(in Chinese).
[17] 史文峥,杨萌萌,张绪辉,等.燃煤电厂超低排放技术路线与协同脱除[J].中国电机工程学报,2016,36(16):4308-4318. Shi Wenzheng,Yang Mengmeng,Zhang Xuhui,et al.Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J].Proceedings of the CSEE,2016,36(16):4308-4318(in Chinese).
[18] Zhang X,Fan J L,Wei Y M.Technology roadmap study on carbon capture,utilization and storage in China[J].Energy Policy,2013,59:536-550.
[19] Li Q,Chen Z A,Zhang J T,et al.Positioning and revision of CCUS technology development in China[J].International Journal of Greenhouse Gas Control,2016,46:282-293.
[20] 赵新宝,鲁金涛,袁勇,等.超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J].中国电机工程学报,2016,36(1):154-162. Zhao Xinbao,Lu Jintao,Yuan Yong,et al.Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants[J].Proceedings of the CSEE,2016,36(1):154-162(in Chinese).
[21] Le Moullec Y.Conceptual study of a high efficiency coal-fired power plant with CO2capture using a supercritical CO2 Brayton cycle[J].Energy,2013,49:32-46.
[22] Cau G,Tola V,Deiana P.Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems[J].Fuel,2014,116:820-833.
[23] Lee J C,Lee H H,Joo Y J,et al.Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle)plant with an entrained coal gasifier[J].Energy,2014,64:58-68.
[24] Duan Luanbo,Sun Haicheng,Zhao Changsui,et al.Coal combustion acteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle[J].Fuel,2014,127(2):47-51.
[25] 毛健雄. 700℃超超临界机组高温材料研发的最新进展[J].电力建设,2013,34(8):69-76. MaoJianxiong.Latest development of high-temperature metallic materials in 700℃ ultra-supercritical units[J].Electric Power Construction,2013,34(8):69-76(in Chinese).
[26] 郭岩,王博涵,侯淑芳,等.700℃超超临界机组用Alloy 617mod时效析出相[J].中国电机工程学报,2014,34(14):2314-2318. Guo Yan,Wang Bohan,Hou Shufang,et al.Aging precipitates of Alloy 617mod used for 700℃ ultra supercritical unit[J].Proceedings of the CSEE,2014,34(14):2314-2318(in Chinese).
[27] 孙浩,宋振龙.整体煤气化联合循环(IGCC)发电技术研究及应用[J].中国电力,2010,19(19):39-43.Sun Hao,Song Zhenlong.Research and application of integrated gasification combined cycle[J].Electric Power Technology,2010,19(19):39-43(in Chinese).
[28] 施强,乌晓江,徐雪元,等.整体煤气化联合循环(IGCC)发电技术与节能减排[J].节能技术,2009,27(1):18-20,96. Shi Qiang,Wu Xiaojiang,Xu Xueyuan,et al.IGCC power plant with energy conservation and emissions reduction[J].Energy Conservation Technology,2009,27(1):18-20,96(in Chinese).
[29] Lindqvist K,Jordal K,Haugen G,et al.Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle)power plants[J].Energy,2014,78:758-767.
[30] Montes M J,Rovira A,Muñoz M,et al.Performance analysis of an integrated solar combined cycle using direct steam generation in parabolic trough collectors[J].Applied Energy,2011,88(9):3228-3238.
[31] 林汝谋,韩巍,金红光,等.太阳能互补的联合循环(ISCC)发电系统[J].燃气轮机技术,2013,26(2):1-15.Lin Rumou,Han Wei,Jin Hongguang,et al.The integrated solar combined cycle power generation systems[J].Gas Turbine Technology,2013,26(2):1-15(in Chinese).
[32] Mohammadi A,Kasaeian A,Pourfayaz F,et al.Thermodynamic analysis of a combined gas turbine,ORC cycle and absorption refrigeration for a CCHP system[J].Applied Thermal Engineering,2017,111:397-406.
[33] Su Shi,Yu Xinxiang.A 25kWe low concentration methane catalytic combustion gas turbine prototype unit[J].Energy,2015,79:428-438.
[34] 付镇柏,蒋洪德,张珊珊,等.G/H级燃气轮机燃烧室技术研发的分析与思考[J].燃气轮机技术,2015,28(4):1-9,21. Fu Zhenbo,Jiang Hongde,Zhang Shanshan,et al.Analysis and deliberation upon combustor technology development for the G/H class gas turbine[J].Gas Turbine Technology,2015,28(4):1-9,21(in Chinese).
[35] Lin Yipin,Wang W H,Pan Shuyuan,et al.Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry[J].Applied Energy,2016,183:369-379.
[36] Wang Kai,Sanders S R,Dubey S,et al.Stirling cycle engines for recovering low and moderate temperature heat:a review[J].Renewable and Sustainable Energy Reviews,2016,62:89-108.
[37] 刘强,段远源.背压式汽轮机组与有机朗肯循环耦合的热电联产系统[J].中国电机工程学报,2013,33(23):29-36. Liu Qiang,Duan Yuanyuan.Cogeneration system comprising back-pressure steam turbine generating unit coupled with organic Rankine cycle[J].Proceedings of the CSEE,2013,33(23):29-36(in Chinese).
[38] 郭丛,杜小泽,杨立军,等.地热源非共沸工质有机朗肯循环发电性能分析[J].中国电机工程学报,2014,34(32):5701-5708. Guo Cong,Du Xiaoze,Yang Lijun,et al.Performance of organic Rankine cycle using zeotropic working fluids for geothermal utilization[J].Proceedings of the CSEE,2014,34(32):5701-5708(in Chinese).
[39] 吴毅,王佳莹,王明坤,等.基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J].西安交通大学学报,2016,50(5):108-113. Wu Yi,Wang Jiaying,Wang Mingkun,et al.A towered solar thermal power plant based on supercritical CO2 Brayton cycle[J].Journal of Xi’an Jiaotong University,2016,50(5):108-113(in Chinese).
[40] 黄潇立,王俊峰,臧金光.超临界二氧化碳布雷顿循环热力学特性研究[J].核动力工程,2016,37(3):34-38. Huang Xiaoli,Wang Junfeng,Zang Jinguang,et al.Thermodynamic analysis of coupling supercritical carbon dioxide Brayton cycles[J].Nuclear Power Engineering,2016,37(3):34-38(in Chinese).
[41] 中国科学院.中国至2050年能源科技发展路线图[M].北京:科学出版社,2009:30-35. Chinese Academy of Sciences.Energy science and technology in China:A roadmap to 2050[M].Beijing:Science Press,2009:30-35(in Chinese).
[42] 中国工程院.中国能源中长期(2030,2050)发展战略研究[M].北京:科学出版社,2011. Chinese Academy of Engineering.Mid-and long-term development strategy of Chinese energy (2030,2050)[M].Beijing:Science Press,2011(in Chinese).
[43] 杜祥琬. 中国能源战略研究[M].北京:科学出版社,2016. Du Xiangwan.Chinese energy strategy research[M].Beijing:Science Press,2016(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月6日,湖北电力现货市场结束416天连续试运行后正式转正,成为国家第二批电力现货市场建设试点中首个实现正式运行的省级市场。湖北也成为全国第6个迈入现货市场正式运行的省份。自2021年纳入电力现货市场建设试点以来,湖北积极构建适应新型电力系统的市场化运行机制。立足“水风光三足鼎立、送受电双
在“双碳”(碳达峰、碳中和)目标框架下,全球大型燃煤电厂碳排放的精准监测与核算议题备受关注。中国科学院空天信息创新研究院(空天院)20日向媒体发布消息说,该院遥感与数字地球全国重点实验室石玉胜研究团队在大型燃煤电厂碳排放遥感反演估算领域取得重要突破。他们通过优化算法、构建模型,研发提出
4月28日下午,西班牙和葡萄牙出现大范围供电中断现象,导致两国交通瘫痪、通信中断,民众生活陷入混乱。此次断电事件引发了全球对欧洲电网韧性和能源政策的反思,也让“能源基础设施如何构建”成为多方关注的焦点。(来源:能源评论•首席能源观文/万军)能源基础设施涵盖电力、油气、新能源等多个领域
【(山东公司)大唐郓城2X1000MW燃煤发电机组智慧电厂一体化管控平台及基础设施建设项目】招标公告
第一章nbsp;能源发展综述本章作者nbsp;邱丽静(中能传媒能源安全新战略研究院)一、宏观经济形势01经济总量再上新台阶,国内生产总值同比增长5.0%2024年是新中国成立75周年,是实现“十四五”规划目标任务的关键一年。一年来,我国经济运行总体平稳、稳中有进,新质生产力稳步发展,改革开放持续深化,
北极星售电网获悉,6月16日,新疆第八师电网电力市场化分时电价相关说明及价格测算发布。文件明确,第八师电网内的大工业、一般工商业及其他用电执行电力市场化分时电价(除国家明确规定的电气化铁路牵引用电外),居民、农业用电不执行。其中大工业用户根据用电容量执行两部制电价,电价由上网电价、
2025年,江苏、广东、山东、蒙西等电力市场化进程较快的地区,电价跌破预期,触底态势明显。由于煤价回落,火电成本降低,企业为保份额竞相压价;新能源大量涌入,凭借低成本与政策优势冲击市场;更多省份进入电力现货市场正式运行(长周期结算运行),用户侧现货低价时段购电等多因素共同推动电价持续
截至2025年4月,全球运行的CO捕集和封存能力略高于5000万吨,较一年前有所提升。与此同时,到2030年,封存能力可能达到6.7亿吨CO,与此前数据库更新相比增加了10%。CCUS项目数据库对2030年前项目管道数据的梳理显示,行业更注重推进现有项目,而非规划新项目。若当前在建项目全部完成,现有产能将几乎
北极星电力网整理了2025年6月9日至2025年6月13日一周火电项目,涉及项目的核准、开工、投运等。华能岳阳电厂2×1000MW“上大压小”项目可行性研究报告编制中标公示近日,华能集团发布华能湖南岳阳发电有限责任公司“上大压小”项目可行性研究报告编制及前期专题技术咨询服务中标结果公示,中标人为中国
北极星电力网整理了2025年6月9日至2025年6月13日一周电力项目:涉及火电、水电、核电项目的核准、开工、并网等。火电项目华能岳阳电厂2×1000MW“上大压小”项目可行性研究报告编制中标公示近日,华能集团发布华能湖南岳阳发电有限责任公司“上大压小”项目可行性研究报告编制及前期专题技术咨询服务中
一、现货运行情况实时价格与去年同期相比,正式运行五省与省间,除甘肃、广东价格上涨外,其他市场实时月均价均下降。多数市场需求同比上升,但新能源等供给增加更显著,最终价格同比下降的市场更多。甘肃价格较去年同期上涨了56.18%,上涨幅度较大,原因是负荷与外送大幅增长,尤其外送上升显著,相比
云南公司开远小龙潭发电厂四期扩建工程烟气余热利用系统及附属设备公开招标项目招标公告1.招标条件本招标项目名称为:云南公司开远小龙潭发电厂四期扩建工程烟气余热利用系统及附属设备公开招标,项目招标编号为:CEZB250505876,招标人为国能滇南开远发电有限公司,项目单位为:国能滇南开远发电有限
北极星电力网获悉,近日,中国能建江苏院作为牵头方与江苏电建三公司、安徽电建二公司组成联合体中标江阴苏龙2×66万千瓦四期扩建项目工程EPC总承包项目,中标金额约50.0508亿元。据悉,该项目位于苏南电力负荷核心区,建设内容包括新建2台66万千瓦超超临界、二次再热燃煤发电机组,同步安装建设烟气脱
江苏省发改委近日发布关于国能谏壁2×100万千瓦八期、国信扬电2×100万千瓦三期扩建项目拟核准有关情况的公示,经履行相关程序,拟同意核准国能谏壁2×100万千瓦八期、国信扬电2×100万千瓦三期扩建项目。详情如下:关于国能谏壁2×100万千瓦八期、国信扬电2×100万千瓦三期扩建项目拟核准有关情况的公
6月23日,中煤京能秦皇岛热电二期2×660MW工程第一罐混凝土浇筑仪式在秦皇岛经济技术开发区顺利举行,标志着该项目正式进入实质性建设阶段。此次仪式深入贯彻中央八项规定精神,秉持勤俭节约、高效务实的原则,活动现场布置简朴,不摆花草、不制作背景板、不设主席台,充分展现了务实高效的会风,彰显
近日,中国电力企业联合会公布2024年度电力行业火电机组能效水平对标结果,国家能源集团有14台火电机组分别获评不同兆瓦级AAAAA级火电机组荣誉称号,代表了电力行业领先水平,这些火电机组正以“5A”实力,节能增效,焕“新”引领,全力应对迎峰度夏大考。国家能源集团都有哪些“5A”级火电机组上榜?
浙江公司宁海电厂630MW亚临界机组提温提效综合改造可行性研究服务项目公开招标项目招标公告1.招标条件本招标项目名称为:浙江公司宁海电厂630MW亚临界机组提温提效综合改造可行性研究服务项目公开招标,项目招标编号为:CEZB250605863,招标人为国能浙江宁海发电有限公司,项目单位为:国能浙江宁海发
近日,国家能源集团发布榆神工业区清水工业园综合能源供应岛2×660MW燃煤空冷机组项目3项招标公告,详情如下:榆神工业区清水工业园综合能源供应岛2×660MW燃煤空冷机组项目交流不停电电源(UPS)设备公开招标项目招标公告1.招标条件本招标项目名称为:榆神工业区清水工业园综合能源供应岛2×660MW燃煤
北极星风力发电网获悉,6月20日,中国能建鸡西多能互补能源基地400MW二期风电项目获得黑龙江省发改委核准批复。该项目拟选场址位于黑龙江省鸡西市恒山区、麻山区、梨树区,规划建设总装机容量400MW风力发电机组,风电场内规划建设2座220kV升压站及运行管理中心,配套建设35kV集电线路及检修道路等附属
北极星电力网获悉,6月23日,山东能源新能源集团灵台电厂2×100万千瓦超超临界燃煤机组2号机组成功并网发电,标志着该项目双机组全面进入投产试运行。作为“陇电入鲁”特高压直流输电通道重要的调峰和支撑电源项目以及全国首个“风光火储一体化”特高压外送工程的配套项目,灵台电厂采用国际领先的超超
北极星电力网获悉,6月19日,甘肃能化庆阳2×660兆瓦煤电项目主厂房第一罐混凝土浇筑完成,标志着该项目主体工程全面进入建设阶段。甘肃能化庆阳2×660兆瓦煤电项目位于甘肃省庆阳市宁县早胜镇,占地面积34.51公顷。该项目总投资约60亿元,规划建设2台660兆瓦超超临界空冷燃煤发电机组,项目采用“煤电
大唐台州头门港电厂(2×660MW)超超临界一次再热燃煤发电机组新建项目桩基工程施工总承包中标候选人公示第一中标候选人:山东正元建设工程有限责任公司,投标报价:145971362.30元,工期:满足,质量:良好;第二中标候选人:中电建振冲建设工程股份有限公司,投标报价:167273031.98元,工期:满足,
3月下旬,生态环境部印发《全国碳排放权交易市场覆盖钢铁、水泥、铝冶炼行业工作方案》(以下简称《方案》),旨在积极稳妥有序将钢铁、水泥、铝冶炼行业纳入全国碳排放权交易市场覆盖范围。《方案》要求落实全国生态环境保护大会部署,按照“边实施、边完善”的工作思路,分两个阶段做好钢铁、水泥、
今年的高考已经结束,又快到高考填志愿的时节了。有人向我打听火电行业的发展,我给你们说说我的看法:我觉得在火电厂上班挺好。(来源:微信公众号“跟着风行走”)之前我就在文章中提过这个观点,现在依旧不改变。按照我写文章的习惯,我选择提问和回答的形式来阐明这个看法。Q1:火电厂里面很辛苦,
6月13日,由电科院提供技术支持的宿州电厂机组深度调峰至30%额定负荷认证试验顺利完成,标志着电科院自主研发的新一代宽负荷AGC及协调控制策略在实际应用中取得重大突破,为火电机组灵活性改造提供了可靠的技术支撑。此前摸底试验中,电科院技术团队发现电厂机组在40%-100%额定负荷区间运行稳定,但当
在“双碳”目标引领能源革命的时代浪潮中,南京电厂牢固树立和践行“绿水青山就是金山银山”理念,以科技创新为驱动,走出了一条传统火电企业绿色化转型的标杆之路。从全国首批超低排放改造到城市污泥无害化处理,从碳资产管理创新到废水零排放突破,这座承载百年工业记忆的能源央企,始终以“环保示范
在“双碳”目标推进下,火电行业正加速向低碳、智能方向转型,脱硫系统作为火电机组环保的关键部分,其智能化升级意义重大。博奇环保依托20余年基于湿法脱硫工艺机理的深入钻研,结合前沿的AI人工智能数据分析技术,成功研发出TIFGD智慧脱硫技术,为火电行业带来了一套富有成效、智能的环保解决方案。
二氧化碳连续监测技术,是火电厂烟气二氧化碳排放检测的试点技术,但目前在精确度上仍存在一些问题,需要协同攻关、重点突破。(来源:能源新媒文/魏子杰作者系龙源(北京)碳资产管理技术有限公司党委书记、董事长)2020年6月,生态环境部公布《生态环境监测规划纲要(2020—2035年)》,提出遵循“核
5月16日,中国电力企业联合会公布2024年度电力行业火电机组能效水平对标结果。国能(泉州)热电有限公司4台机组参与评选竞赛,在同类型机组中表现优异:4号机组荣获600MW级超临界机组5A级奖;1、2、3号机组分别斩获300MW级亚临界机组3A级奖。至此,该公司已连续十年荣获5A级优胜机组荣誉,累计获奖机组
5月20日,我国首个国产超级耐热钢机组在大唐山东郓城630℃国家电力示范项目建设现场成功吊装,标志着我国自主研制的马氏体耐热钢首次实现工程化应用,项目机组热效率突破50%大关,供电煤耗降至世界最低水平。“大唐山东郓城项目首次将国产马氏体耐热钢全面应用于主蒸汽管道等关键部位,能够更好承担高
5月15日,中国电力企业联合会公布“2024年度电力行业火电机组能效水平对标结果”,宁夏电力12台机组在全国火电机组能效对标中获奖,获奖机组台数再创新高。发电机组能效对标竞赛是中国电力企业联合会组织开展的一项全国范围内火电行业对标评比活动,通过严格的评审程序对机组可靠性指标、经济性指标、
5月16日晚间,华电国际发布公告称,公司拟通过发行普通股(A股)及支付现金的方式购买中国华电持有的江苏公司80%股权,华电福瑞持有的上海福新51%股权、上海闵行100%股权、广州大学城55%股权、福新广州55%股权、福新江门70%股权、福新清远100%股权,华电北京持有的贵港公司100%股权,并募集配套资金,
5月15日,青海省投党委书记、董事长周栋,党委副书记、总经理王振林在公司本部会见了国核电力院党委书记、董事长王成立一行,双方围绕推进3×660MW火电项目建设、积极拓展合作领域等进行深入交流。周栋对王成立一行到访表示热烈欢迎,感谢国核电力院长期以来的关心支持,并介绍了公司基本情况。他表示
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!