登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
锂离子电池的循环寿命
电池用着用着,感觉不耐用,容量没有以前多了,这些都是循环寿命不断衰减的体现。
循环寿命的衰减,其实也就是电池当前的实际可用容量,相对于其出厂时的额定容量,不断下降的一种变化趋势。
对于理想的锂离子电池,在其循环周期内容量平衡不会发生改变,每次循环中的初始容量都应该是一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池循环性能产生严重影响。
影响锂离子电池循环寿命的因素有很多,但其内在的根本原因,还是参与能量转移的锂离子数量在不断减少。需要注意的是,电池当中的锂元素总量并未减少,而是“活化”的锂离子少了,它们被禁锢在了其他地方或活动的通道被堵塞了,不能自由的参与循环充放电的过程。
那么,我们只要搞清楚这些本该参与氧化还原反应的锂离子,都跑哪儿去了,就能够搞清楚容量下降的机理,也就可以针对性的采取措施,延缓锂电池的容量下降趋势,提升锂电池的循环寿命。
1.金属锂的沉积
通过前面的分析,我们知道锂离子电池当中是不应该存在锂的金属形态,锂元素要么是以金属氧化物、碳锂化合物的形态存在,要么是以离子的形态存在。
金属锂的沉积,一般发生在负极表面。由于一定的原因,锂离子在迁移到负极表面时,部分锂离子没有进入负极活性物质形成稳定的化合物,而是获得电子后沉积在负极表面成为金属锂,并且不再参与后续的循环过程,导致容量下降。
这种情况,一般有几种原因造成:充电超过截止电压;大倍率充电;负极材料不足。过充电或负极材料不足的时候,负极不能容纳从正极迁移过来的锂离子,导致金属锂的沉积发生。大倍率充电时,由于锂离子短时间内到达负极的数量过多,造成堵塞和沉积。
金属锂的沉积,不但会造成循环寿命的下降,严重时还会导致正负极短路,造成严重的安全问题。
要解决这个问题,就需要合理的正负极材料配比,同时严格限定锂电池的使用条件,避免超过使用极限的情况。当然,从倍率性能着手,也可以局部改善循环寿命。
2.正极材料的分解
作为正极材料的含锂金属氧化物,虽然具有足够的稳定性,但是在长期的使用过程中,仍然会不断的分解,产生一些电化学惰性物质(如Co3O4,Mn2O3等)以及一些可燃性气体,破坏了电极间的容量平衡,造成容量的不可逆损失。
这种情况在过充电情况下尤为明显,有时甚至会发生剧烈的分解和气体释放,不但影响电池容量,还会造成严重的安全风险。
除了严格限定电池的充电截止电压之外,提高正极材料的化学稳定性和热稳定性,也是降低循环寿命下降速度的可行方法。
3.电极表面的SEI膜
前面讲过,以碳材料为负极的锂离子电池,在初次循环过程中,电解液会在电极表面形成一层固态电解质(SEI)膜,不同的负极材料会有一定的差别,但SEI膜的成分主要由碳酸锂、烷基酯锂、氢氧化锂等组成,当然也有盐的分解产物,另外还有一些聚合物等。
SEI膜的形成过程会消耗电池中的锂离子,并且SEI膜并不是稳定不变的,会在循环过程中不断的破裂,露出来新的碳表面再与电解质反应形成新的SEI膜,这样会不断造成锂离子和电解质的持续损耗,导致电池的容量下降。SEI膜有一定的厚度,虽然锂离子可以穿透,但是SEI膜会造成负极表面部分扩散孔道的堵塞,不利于锂离子在负极材料的扩散,这也会造成电池容量的下降。
4.电解质的影响
在不断的循环过程中,电解质由于化学稳定性和热稳定性的局限,会不断发生分解和挥发,长期累积下来,导致电解质总量减少,不能充分的浸润正负极材料,充放电反应不完全,造成实际使用容量的下降。
电解质中含有活泼氢的物质和铁、钠、铝、镍等金属离子杂质。因为杂质的氧化电位一般低于锂离子电池的正极电位,易在正极表面氧化,氧化物又在负极还原,不断消耗正负极活性物质,引起自放电,即在非正常使用的情况下改变电池放电。电池寿命是以充放电循环次数而定的,含杂质的电解液直接影响电池循环次数。
电解质中还含有一定量的水,水会与电解质中的LiFP6发生化学反应,生产LiF和HF,HF进而又破坏SEI膜,生成更多的LiF,造成LiF沉积,不断的消耗活性的锂离子,造成电池循环寿命下降。
由以上分析可以看出,电解质对锂离子电池的循环寿命有非常重要的影响,选择合适的电解质,将能够明显的提升电池的循环寿命。
5.隔离膜阻塞或损坏
隔离膜的作用是将电池正负极分开防止短路。在锂离子电池循环过程中,隔离膜逐渐干涸失效是电池早期性能衰退的一个重要原因。这主要是由于隔离膜本身的电化学稳定性和机械性能不足,以及对电解质对隔离膜的浸润性在反复充电过程中变差造成的。由于隔离膜的干涸,电池的欧姆内阻增大,导致充放电通道堵塞,充放电不完全,电池容量无法回复到初始状态,大大降低了电池的容量和使用寿命。
6.正负极材料脱落
正负极的活性物质,是通过粘结剂固定在基体上面的,在长期使用过程中,由于粘结剂的失效以及电池受到机械振动等原因,正负极的活性物质不断脱落,进入电解质溶液,这导致能够参与电化学反应的活性物质不断减少,电池的循环寿命不断下降。
粘结剂的长期稳定性和电池良好的机械性能,将能够延缓电池循环寿命的下降速度。
7.外部使用因素
锂离子电池有合理的使用条件和范围,如充放电截止电压,充放电倍率,工作温度范围,存储温度范围等。但是在实际使用当中,超出允许范围的滥用情况非常普遍,长期的不合理使用,会导致电池内部发生不可逆的化学反应,造成电池机理的破坏,加速电池的老化,造成循环寿命的迅速下降,严重时,还会造成安全事故。
锂离子电池的安全性
锂离子电池的安全性问题,其内在原因是电池内部发生了热失控,热量不断的累积,造成电池内部温度持续上升,其外在的表现是燃烧、爆炸等剧烈的能量释放现象。
电池是能量的高密度载体,本质上就存在不安全因素,能量密度越高的物体,其能量剧烈释放时的影响就越大,安全问题也越突出。汽油、天然气、乙炔等高能量载体,也都存在同样的问题,每年发生的安全事故,数不胜数。
不同的电化学体系、不同的容量、工艺参数、使用环境、使用程度等,都对锂离子电池的安全性有较大的影响。
由于电池存储能量,在能量释放的过程中,当电池热量产生和累积速度大于散热速度时,电池内部温度就会持续升高。锂离子电池由高活性的正极材料和有机电解液组成,在受热条件下非常容易发生剧烈的化学副反应,这种反应将产生大量的热,甚至导致的“热失控”,是引发电池发生危险事故的主要原因。
锂离子电池内部的热失控,说明电池内部的一些化学反应已经不是我们此前所期待的“可控”和“有序”,而是呈现出不可控和无序的状态,导致能量的快速剧烈释放。
那么,我们来看看,都有哪些化学反应,会伴随大量的热产生,进而导致热失控。
1.SEI膜分解,电解液放热副反应
固态电解质膜实在锂离子电池初次循环过程中形成,我们既不希望SEI膜太厚,也不希望它完全不存在。合理的SEI膜存在,能够保护负极活性物质,不跟电解液发生反应。
可是当电池内部温度达到130℃左右时,SEI膜就会分解,导致负极完全裸露,电解液在电极表面大量分解放热,导致电池内部温度迅速升高。
这是锂电池内部第一个放热副反应,也是一连串热失控问题的起点。
2.电解质的热分解
由于电解质在负极的放热副反应,电池内部温度不断升高,进而导致电解质内的LiPF6和溶剂进一步发生热分解。
这个副反应发生的温度范围大致在130℃~250℃之间,同样伴随着大量的热产生,进一步推高电池内部的温度。
3.正极材料的热分解
随着电池内部温度的进一步上升,正极的活性物质发生分解,这一反应一般发生在180℃~500℃之间,并伴随大量的热和氧气产生。
不同的正极材料,其活性物质分解所产生的热量是不同的,所释放的氧气含量也有所不同。磷酸铁锂正极材料由于分解时产生的热量较少,因而在所有的正极材料中,热稳定性最为突出。镍钴锰三元材料分解时则会产生较多的热量,同时伴有大量的氧气释放,容易产生燃烧或爆炸,因此安全性相对较低。
4.粘结剂与负极高活性物质的反应
负极活性物质LixC6与PVDF粘结剂的反应温度约从240℃开始,峰值出现在290℃,反应放热可达1500J/g。
由以上分析可以看出,锂离子电池的热失控,并不是瞬间完成的,而是一个渐进的过程。这个过程,一般由过充、大倍率充放电、内短路、外短路、振动、碰撞、跌落、冲击等原因,导致电池内部短时间内产生大量的热,并不断的累积,推动电池的温度不断上升。
一旦温度上升到内部连锁反应的门槛温度(约130℃),锂离子电池内部将会自发的产生一系列的放热副反应,并进一步加剧电池内部的热量累积和温度上升趋势,这一过程还会析出大量的可燃性气体。当温度上升到内部溶剂和可燃性气体的闪点、燃点时,将会导致燃烧和爆炸等安全事故。
刚出厂的锂离子电池通过安全测试认证,并不代表锂离子电池在生命周期中的安全性。根据我们前面的分析,在长期的使用过程中,会发生负极表面的锂金属沉积,电解液的分解和挥发,正负极活性物质的脱落,电池内部结构变形,材料中混入金属杂质,以及其他很多非预期的变化,这些都会导致电池发生内短路,进而产生大量的热量。再加上外部的各种滥用情况,如过充、挤压、金属穿刺、碰撞、跌落、冲击等,也会导致电池在短时间内产生大量的热量,成为热失控的诱因。
在锂离子电池的使用过程中,没有绝对的安全性,只有相对的安全性。我们要尽量避免滥用的情况出现,降低危害事件发生的概率,同时也要从正负极材料、电解液、隔离膜等主要成分入手,选择化学稳定性和热稳定性优良的材料,具有良好的阻燃特性,在出现内外部热失控的诱因时,降低内部副反应的发热量,或者具有很高的燃点温度,避免热失控现象的发生。在电池结构和壳体设计上面,要充分考虑结构稳定性,达到足够的机械强度,能够耐受外部的应力,确保内部不发生明显的变形。此外,散热性能也是需要着重考虑的,如果热量能够及时的散发出去,内部的温度就不会持续上升,热失控也就不会发生。
锂离子电池的安全性设计,是系统论,单纯的以正极材料分解发热来衡量锂离子电池安全性并不全面。从系统的角度讲,磷酸铁锂电池不见得一定比三元材料的电池更安全,因为最终影响热失控的因素很多,正极材料分解所产生的热量仅仅是其中的一个因素。
总结与展望
大约在135亿年前,经过所谓的“大爆炸”之后,宇宙中的物质、能量、时间和空间形成了现在的样子。宇宙的这些基本特征,就成了“物理学”。
在这之后过了大约30万年,物质和能量开始形成复杂的结构,称为“原子”,再进一步构成“分子”。至于这些原子和分子的故事以及它们如何互动,就成了“化学”。
所有关于电池的原理,都得通过物理学和化学的理论来阐述,并受到客观规律的制约,脱离了这个范畴,我们既不可能发明电池,也不可能正确使用电池。
人类对电池的研究和使用已经有近200年的历史,在大规模的商业化应用方面,铅酸电池、碱性电池、锌锰电池、镍镉电池、镍氢电池、锂离子电池早已渗透到人类社会的方方面面,在支持工业化社会的正常运作方面,起着无可替代的作用。
人类对能量进行移动存储的追求,随着经济规模的扩大,呈现快速增长的趋势,这也在客观上推动了电池技术的发展和变革,要做到更快、更强、更长寿、更安全、更环保,同时单位价格还要更便宜。
自SONY在90年代将锂离子电池商业化以来,经过20多年的发展,现有的电化学体系已经逐步接近了瓶颈,未来将逐步进入“后锂电池”时代。市场的强劲需求,必将推动和催生新的材料、新的化学体系、新的工艺在电池领域的应用,从而实现大的突破。
在电池产业,新的研究方向层出不穷,而比较有希望商业化的方向,比如全固态锂离子电池、钠离子电池、锂-硫电池、锂空气电池等。“后锂电池”时代,将会是百花齐放、百家争鸣的局面,市场需求的多样性,技术路线的多样性,再结合原料供应的地缘因素,将给我们带来更多的选择和更好的体验。
相关阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,3月14日,山东省地方标准《锂离子电池储能性能测试及评价规范》(以下简称《规范》)正式实施。该标准是全国首个锂离子电池储能地方标准。《规范》发布于2月24日,由山东省能源标准化技术委员会归口上报,主管部门为山东省市场监督管理局。主要起草单位包括:单位国网山东省电力公司
北极星储能网获悉,3月17日,国家市场监管总局发布关于征求《点火枪安全规范》等26项拟立项强制性国家标准项目意见的通知。其中包含《锂离子电池系统能效限定值及能效等级》标准计划。《锂离子电池系统能效限定值及能效等级》由国家标准委提出,委托全国能源基础与管理标准化技术委员会执行。主要起草
作者:陈峥彭月胡竞元申江卫肖仁鑫夏雪磊单位:昆明理工大学交通工程学院引用:陈峥,彭月,胡竞元,等.基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J].储能科学与技术,2025,14(1):319-330.DOI:10.19799/j.cnki.2095-4239.2024.0686本文亮点:1.仅利用前30分钟充电数据且采样间隔为30秒的数
北极星储能网获悉,近日,贵州大龙开发区北部工业园区的贵州嘉尚新能源材料有限公司年产25万吨锂离子电池正极材料产业园项目二期的厂房钢结构主体已全部完工,项目整体综合完成率达96%左右,现正在做一些收尾工作,室内在进行吊顶装修、地坪硬化等,室外在进行附属设施施工,包含室外管网、室外绿化、
3月19日,湖北省市场监管局关于做好2025年度锂离子动力电池碳计量工作的通知(鄂市监量函〔2025〕44号)。其中提到,全力推进碳计量技术规范体系建设。紧紧围绕锂电池产品全生命周期碳管理需求,着眼企业碳足迹管理中长期需求,协同产业链龙头企业,借鉴相关行业工作经验,系统编制碳计量器具配备及管理、
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
作者:张文婧肖伟伊亚辉钱利勤单位:长江大学机械工程学院引用:张文婧,肖伟,伊亚辉,等.锂离子电池安全改性策略研究进展[J].储能科学与技术,2025,14(1):104-123.DOI:10.19799/j.cnki.2095-4239.2024.0579本文亮点:1.根据锂离子电池热失控机制,总结了在电池部件集流体上最具有创新性的改进方法:将集
北极星固废网获悉,3月4日,为推动再生资源循环利用,规范锂离子电池用再生黑粉原料、再生钢铁原料的进口管理,生态环境部研究制定锂离子电池用再生黑粉原料进口管理要求,并对《关于规范再生钢铁原料进口管理有关事项的公告》(公告2020年第78号)进行修订,形成《关于规范锂离子电池用再生黑粉原料、
作者:刘通1,3杨瑰婷1毕辉4梅悦旎1刘硕1宫勇吉3罗文雷2单位:1.空间电源全国重点实验室,上海空间电源研究所;2.军事科学院国防科技创新研究院;3.北京航空航天大学材料科学与工程学院;4.中国科学院上海硅酸盐研究所引用:刘通,杨瑰婷,毕辉,等.高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂离子电池回收拆解与梯次利用行业发展白皮书(2025年)》。EVTank数据显示,2024年中国废旧锂离子电池实际回收量为65.4万吨,同比仅增长5.0%,其中回收的磷酸铁锂电池及废料达到40.0万吨,占比继续提升至61.2%,三元锂电池及废料为24.3万吨,
北极星储能网获悉,3月4日,生态环境部公开征求关于规范锂离子电池用再生黑粉原料、再生钢铁原料进口管理有关事项的意见。其中提出,符合要求的锂离子电池用再生黑粉原料不属于固体废物,可自由进口。
北极星储能网获悉,3月22日,龙蟠科技在其投资者关系活动中透露,龙蟠科技通过新收购的电池拆解公司山东美多,可从废旧电池中提炼出碳酸锂、磷酸铁、硫酸镍、硫酸钴、硫酸锰等产品,均可直接在龙蟠科技体内的子公司常州锂源、三金锂电进行直接使用,从而达到内部的产销协同。同时龙蟠科技可以通过短流
北极星储能网获悉,3月21日,日播时尚公告,拟通过发行股份及支付现金的方式购买远宇投资等10名交易对方持有的茵地乐71%股权,对应交易价格为14.2亿元,其中,股份对价11.61亿元,现金对价2.59亿元。本次交易完成后茵地乐将成为公司控股子公司。同时,日播时尚将向控股股东梁丰及其控制的上海阔元发行
自去年以来,全球新能源车市场对磷酸铁锂电池的需求呈现爆发态势,不少跨国车企与国内外电池厂商密集签订长期协议,开始供货时间大部分集中于今年和明年。就在上个月,福特汽车与宁德时代签订5年供货协议,锁定2026-2030年磷酸铁锂电池稳定供应,包括神行超充电池,2026年起应用于新车型。此前,雷
北极星储能网获悉,3月14日,浙江省丽水市遂昌县人民政府正式发布了《蔚孚科技(丽水)有限公司新能源汽车电池前驱体材料生产和循环再生项目》的环境影响评价信息公示,标志着该项目正式进入公众监督与评估阶段。该项目计划总投资额高达1.2亿元人民币,选址于浙江遂昌经济开发区龙板山区块013号地块,
北极星储能网获悉,近日,湖南安装分公司承建的湖北弗思创新材料有限公司新一代锂电池电解液核心材料项目正式开工。该项目总投资6.3亿元,为湖北省重点项目,受政府直接监管,建设内容包括2套锂盐生产装置,配套建设仓库、储罐、循环水站等,建成后年产1万吨(折固)锂电池电解液核心材料,将成为当地
IEA数据显示,2024年,全球电动汽车销量增长25%至1700万辆,电池年需求量首次突破1TWh;全球电池产能达3TWh,如果目前官宣项目全部建成,未来5年,电池产能有望再增加3倍。近日,国际能源署(IEA)发布最新报告指出,随着需求的急剧上升以及价格持续的下降,全球电池市场规模正在快速扩张。IEA数据显示
北极星储能网获悉,3月14日,山东省地方标准《锂离子电池储能性能测试及评价规范》(以下简称《规范》)正式实施。该标准是全国首个锂离子电池储能地方标准。《规范》发布于2月24日,由山东省能源标准化技术委员会归口上报,主管部门为山东省市场监督管理局。主要起草单位包括:单位国网山东省电力公司
北极星储能网获悉,3月17日,国家市场监管总局发布关于征求《点火枪安全规范》等26项拟立项强制性国家标准项目意见的通知。其中包含《锂离子电池系统能效限定值及能效等级》标准计划。《锂离子电池系统能效限定值及能效等级》由国家标准委提出,委托全国能源基础与管理标准化技术委员会执行。主要起草
作者:陈峥彭月胡竞元申江卫肖仁鑫夏雪磊单位:昆明理工大学交通工程学院引用:陈峥,彭月,胡竞元,等.基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J].储能科学与技术,2025,14(1):319-330.DOI:10.19799/j.cnki.2095-4239.2024.0686本文亮点:1.仅利用前30分钟充电数据且采样间隔为30秒的数
北极星储能网获悉,近日,贵州大龙开发区北部工业园区的贵州嘉尚新能源材料有限公司年产25万吨锂离子电池正极材料产业园项目二期的厂房钢结构主体已全部完工,项目整体综合完成率达96%左右,现正在做一些收尾工作,室内在进行吊顶装修、地坪硬化等,室外在进行附属设施施工,包含室外管网、室外绿化、
LGEnergySolution(LGES)公司计划今年开始在美国生产用于固定式储能系统的磷酸铁锂电池。LGES公司2月18日向韩国证券交易所披露,该公司董事会已经决定向其在美国密歇根州运营的子公司LGEnergyStorageMichigan公司提供债务担保。LGEnergyStorageMichigan公司在密歇根州霍兰德运营了一座电池生产工厂。
北极星储能网获悉,3月20日,万向一二三股份公司发布了其首个多场景低压电芯解决方案,涵盖三款颠覆性产品:闪充Ultra,天距电池和无极电池。闪充Ultra可以用“5分钟快充”终结铅酸电池的充电与安全焦虑,天距电池以860Wh/kg超高能量密度重新定义续航边界,无极电池以超高的功率密度探索速度的极限,集
自去年以来,全球新能源车市场对磷酸铁锂电池的需求呈现爆发态势,不少跨国车企与国内外电池厂商密集签订长期协议,开始供货时间大部分集中于今年和明年。就在上个月,福特汽车与宁德时代签订5年供货协议,锁定2026-2030年磷酸铁锂电池稳定供应,包括神行超充电池,2026年起应用于新车型。此前,雷
最新数据,1-2月磷酸铁锂电池累计装车量达到58.6GWh,同比暴增199.9%!最新消息,进入2025年,磷酸铁锂整体产能利用率已经超过60%!最新动向,磷酸铁锂加工费还在上涨,第四代高压密磷酸铁锂和降本工艺正在掀起新一轮淘汰浪潮!需求暴涨、技术迭代、产线更新,看来磷酸铁锂行业今年真的是要变天,一场
北极星储能网获悉,近日,贵州大龙开发区北部工业园区的贵州嘉尚新能源材料有限公司年产25万吨锂离子电池正极材料产业园项目二期的厂房钢结构主体已全部完工,项目整体综合完成率达96%左右,现正在做一些收尾工作,室内在进行吊顶装修、地坪硬化等,室外在进行附属设施施工,包含室外管网、室外绿化、
LGEnergySolution(LGES)公司计划今年开始在美国生产用于固定式储能系统的磷酸铁锂电池。LGES公司2月18日向韩国证券交易所披露,该公司董事会已经决定向其在美国密歇根州运营的子公司LGEnergyStorageMichigan公司提供债务担保。LGEnergyStorageMichigan公司在密歇根州霍兰德运营了一座电池生产工厂。
北极星储能网获悉,3月17日,湖南裕能在其投资者关系活动中表示,2024年,公司磷酸盐正极材料销量创下公司历史新高,其中,应用在储能领域的产品销量占比已提升至约41%。新产品方面,CN-5系列、YN-9系列和YN-13系列在2024年下半年合计销售约11.13万吨,在2024年下半年的总销量比例约27%。今年以来,行
3月15日,上海申能新动力储能研发有限公司发布了奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)项目磷酸铁锂储能系统采购招标公告,项目坐落于上海奉贤星火开发区民乐路315号。本期建设项目容量为40MW/160MWh,场区总占地面积约2公顷。计划储能类型包括锂离子电池10MW/40MWh,锌铁液流电池10M
北极星储能网获悉,3月12日,山东丰元化学股份有限公司披露投资者关系活动记录表,公布了公司磷酸铁锂产能规模、固态电池正极材料布局等进展。丰元股份宣布,目前公司已建成的磷酸铁锂产能共计22.5万吨,在建磷酸铁锂产能共计7.5万吨,公司也会根据行业的发展趋势和下游客户的需求变化,在产能建设实施
北极星储能网获悉,3月11日,中国汽车动力电池产业创新联盟发布2025年2月国内动力电池数据,2月动力电池装车量34.9GWh,环比下降10.1%,同比增长94.1%。其中三元电池装车量6.4GWh,占总装车量18.5%,环比下降24.6%,同比下降7.2%;磷酸铁锂电池装车量28.4GWh,占总装车量81.5%,环比下降6.0%,同比增长
据富临精工公告,鉴于公司及控股子公司江西升华与宁德时代签署《战略合作协议》,为进一步发挥各自在产业领域的专业与资源优势,公司控股子公司江西升华拟以增资扩股的方式引入战略投资者宁德时代。宁德时代拟以人民币40,000万元认购江西升华新增注册资本33,898万元,并取得江西升华18.7387%的股权。本
北极星储能网获悉,2025年2月,我国动力和其他电池合计产量为100.3GWh,环比下降7.0%,同比增长128.2%。1-2月,我国动力和其他电池累计产量为208.1GWh,累计同比增长89.2%。销量方面:2月,我国动力和其他电池销量为90.0GWh,环比增长12.0%,同比增长140.7%。其中,动力电池销量为66.9GWh,占总销量74.
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!