登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
式中:W---样品中的水分含量,μg; Q---电解电量,mC;18---水的分子量。
卡尔费休库伦微量水分测试仪一般结构如图1所示,主要包含卡尔费休电解池和样品加热单元,极片样品放入密封样品瓶中,然后一定温度下加热样品瓶,样品中的水分蒸发,然后利用干燥气体将水蒸气送入电解池中参与反应,再测定电解过程中的电量,从而滴定水分含量。
图1 卡尔费休水分测试仪结构示意图
Michael Stich等人采用图1所示装置更加详细研究了电池极片水分干燥行为。实验过程中,他们对极片加热干燥分两步进行:第一步,样品在室温下用干燥氩气冲洗,并监测从样品释放的水量。随后,将样品置于加热单元中,将其加热至120℃,持续时间为12分钟,使得样品中的水发生蒸发,并测定水分含量。同时,为了验证实验数据的准确性,先测定了不加样品的空瓶水分含量(Blank value),并考虑水分的漂移值(Drift value)。图2是LiFePO4电极样品水分测定过程中,释放的水分含量,水分释放速率以及空白值和漂移值的时间演变过程。空白值主要出现在测定的最开始几秒内,主要是空玻璃瓶壁吸附的水和气相中的水分。在测试加热过程中,样品中的水分不可能短时间内通过加热全部蒸发出来进入电解池中参与反应,Michael根据表征薄膜干燥过程的经验公式(2)对测试样品时6-15min中的水分释放速率进行
拟合:
(2)
曲线拟合后获取公式中的参数a、b、k1、k2,再通过公式外推计算实验测试后样品中剩余的水分,具体如图3所示。
图2 卡尔费休水分测试过程水分含量和滴定速率演变过程
图3 LiFePO4电极水分检测率曲线拟合和外推
这样,卡尔费休法所测定的水分可以分为三个部分:
1)室温下,干燥氩气冲洗的前3分钟内,所检测到的水分。
2)在120℃的加热13分钟过程中,用干燥氩气冲洗检测到的水分,
3)实验后剩余的水,根据水分测定速率曲线拟合并外推计算的水分。
3、极片水分残留量控制
在锂离子电池生产过程中,负极一般是水系浆料,正极一般是油系浆料。在浆料涂覆之后,电池极片第一次进行干燥,这一步主要目的是去除浆料中的溶剂,形成微观多孔结构的电池极片。此步干燥之后,极片中仍旧残留较高的水分。而且后续的极片加工过程,由于多孔高比表面积特点极片容易从环境空气中吸收水分。因此,电池极片残留水分控制是非常关键的步骤,目前主要有两个去除残留水分的干燥工序:
1)在电池卷绕或叠片之前,对电池极片进行真空干燥,一般干燥温度为80 ~ 150 ℃,电池极片往往成卷或成堆干燥,过程中进行多次气体置换。除了加热、真空度和气体置换等干燥程序外,极卷的尺寸,或者堆积片数对干燥效果也有较大影响,需要认真考虑。
2)在电池注液之前,对组装好的电池进行真空干燥,由于此时电池包含隔膜等部件,干燥温度一般为60 ~ 80 ℃,多次气体置换。此时,干燥温度较低,电池各部件组装在一起,预留的注液口较小,这些条件都不利于水分去除。
Michael Stich等采用第2部分所述方法,研究了各种电池极片干燥过程。干燥实验所包含的三部分水分含量如图4所示。其中,石墨负极是水系浆料,极片中残留水分含量较高,而正极极片含水分差异较大。影响电极极片干燥行为的主要因素包括电极比表面积、材料亲水性,与水的结合强度等。例如纳米材料比表面积大,更容易吸水。因此,极片干燥程序需要根据电极材料特性设定,以达到更佳干燥效果。
图4 各种电极材料的干燥水分含量
随后,Michael Stich还对极片吸潮过程进行了研究。各种电极材料在80℃,12h干燥之后,去除了一部分水分,通过卡尔费休水分测试仪测试电极干燥后水分,其含量都在700μg/g以下,玻璃纤维隔膜1040μg/g。然后把它们放置在相对湿度40%的大气环境中,考察它们的吸潮行为,其结果如图5所示,由图可见,吸付大部分水是在第一个小时内发生的。石墨负极在第一小时内吸收了80%以上的水分,甚至玻璃纤维隔膜和LiFePO4正极的吸水百分比更高。LiMn2O4和Li(NiCoMn)O2正极涂层厚度较薄,吸水率较低,LiCoO2正极总水含量低。电池极片干燥很困难,而吸潮却很容易。因此,电池生产环境湿度控制很重要,特别是极片干燥之后,电池的组装加工需要严格控制环境水分。
图5 各种电极材料在80℃,12h干燥之后的吸潮过程
4、极片残留水分对电池性能的影响
Michael Stich等以石墨/LiFePO4纽扣电池为例,研究了水分对电池性能的影响,水分含量高的电池循环容量衰减严重,内阻增加,如图6所示。容量衰减的主要原因可能与SEI中导电性差的LiF不断积累,LiPF6的水解形成的酸性导致Fe离子的溶解和电解液中LiPF6浓度的不断降低有关。图6b是在放电状态下石墨/LiFePO 4纽扣电池的交流阻抗谱,水分含量高的纽扣电池在较高频率处出现一个额外的半圆,并且第二个半圆频率约为100Hz到1Hz。这些半圆归因于SEI增厚和电荷转移电阻,表明形成了电阻大的界面膜。电池的欧姆电阻没有明显变化,表明电解液的电导率没有受到LiPF6水解的影响。
图6 水分含量对石墨/LiFePO4电池循环稳定性和内阻的影响
牛俊婷等对电池极片残留水分与电池性能的关系进行了更加系统的研究。水分含量不同的正极片组装成电池的循环性能曲线示如图7。在前50周循环中,电极水分含量不同的电池容量衰减率接近,循环稳定。正极片水分含量在0.4‰~ 0.5‰间的电池循环性能良好,1C电流充放电循环200周后,电池放电容量仍保持为初始容量的92.9%。随着循环的进行,正极片水分含量超过0.6‰的电池容量急速衰减,性能恶化。这可能是由于充放电循环初始各电池极片析出的水分相差不多,随着循环的进行,水分含量较高(超过0.6‰)的电池极片中有更多的水分扩散至电解液中,与电解液中的锂盐发生反应产生了具有极强的腐蚀性HF,破坏了锂电池结构,导致电池容量衰减。尤其是随着充放电过程的进行,HF含量越高的电池衰减越快。
图7 不同水分含量电池1C循环性能曲线
从图8中1C~5C的倍率性能对比可看出,电池极片水分含量在0.3‰~ 0.6‰区间的电池放电比容较高且接近,随着放电倍率的增大(2C~ 5C),电池极片水分含量超过0.6‰,容量衰减速度增大。
图8 不同水分含量电池倍率性能对比
本文主要参考一下文献整理:
[]Michael Sticha, Nisrit Pandeyb, Andreas Bunda. Drying and moistureresorption behaviour of various electrode materials and separators forlithium-ion batteries. Journal of Power Sources, 2017, 364: 84-91.
[2]牛俊婷,孙琳,康书文,等.电极水分对磷酸铁锂电池性能的影响,电化学,2015, 21(5): 465-470.
[3] 肖顺华,章明方.水分对锂离子电池性能的影响.应用化学,2005,22(7): 764-767.
相关阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
广东瑞庆时代新能源科技有限公司(下称:瑞庆时代)锂离子电池集装箱产品下线仪式26日在广东肇庆举行。该产品的正式下线,标志着广东首个涵盖从电芯生产到电箱、电柜和集装箱系统集成全链条研发制造的新型储能产业基地建成。宁德时代新能源科技股份有限公司(下称:宁德时代)是全球领先的新能源创新科技公
6月25日,在发生火灾近三周后,汽车运输船“MorningMidas”号最终在当地时间6月23日16:35左右,沉没于水深约5000米的太平洋水域。经打捞运营商ResolveMarine表示,“恶劣天气和海水逐渐渗入船体,加剧了最初火灾造成的损害,最终导致该船沉没。”本月初,一艘载有3000多辆汽车的轮船在太平洋起火,当时
6月25日,云南施甸县政府发布《2025年1—5月施甸县经济运行总体平稳》一文。文章披露,1—5月份,全县全部工业发电量47631万千瓦时,同比增长39.4%。其中,火力发电量3087万千瓦时、下降0.4%,水力发电量1422万千瓦时、增长28.9%,太阳能光伏发电量23586万千瓦时、增长99.6%,风力发电19536万千瓦时、
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
6月23日,苏州市生态环境局发布受理环境影响报告书(表)情况的公示。其中,江苏都桐科技有限公司新建锂离子电池用再生黑粉生产及再生磷酸铁锂测试电芯研发项目在列,标志着这家“锂电新秀”进一步构建产业布局。江苏都桐科技有限公司,是一家成立于2024年8月22日的高新技术企业,位于江苏省苏州市
北极星储能网获悉,6月23日,国家市场监管总局关于发布电动平衡车等136种产品质量监督抽查实施细则的公告。其中包括电动汽车充电桩产品质量监督抽查实施细则、电子产品用锂离子电池和电池组产品质量监督抽查实施细则、电动汽车用动力蓄电池单体产品质量监督抽查实施细则。其中,电动汽车用动力蓄电池单
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
今天起,全国各地陆续公布2025年高考分数线,成绩“出炉”后,如何选择院校及专业?中关村储能产业技术联盟(CNESA)对当下热门专业——储能科学与工程进行了解读,包括专业特点、院校选择、就业前景与发展潜力、重点高校专业培养特色等方面进行了梳理和更新,供考生和家长决策参考。专业背景与战略意
退役锂电池,特别是退役动力锂电池,正在从“环境负担”蜕变为战略资源。随着全球新能源产业的加速发展,退役锂电池这座“城市金矿”,正引发各国在回收网络、技术标准和资源循环利用上的激烈博弈。不过,近日央视新闻报道,“目前我国动力电池回收行业存在一个普遍困境:合规企业守规矩却难赚钱,不合
作者:汪红辉1,3李嘉鑫1,3储德韧1,2,3李彦仪1,3许铤2,3单位:1.上海化工研究院有限公司;2.上海化工院检测有限公司;3.工信部工业(电池)产品质量控制和技术评价上海实验室引用本文:汪红辉,李嘉鑫,储德韧,等.磷酸铁锂电池存储失效机理及热安全性研究[J].储能科学与技术,2025,14(5):1797-1805.DOI:10.1
美国海岸警卫队拍摄的“MorningMidas”号近日,持续燃烧十余天的汽车运输船“MorningMidas”号最终沉没,此次事故再次将电动汽车海上运输的火灾风险推至舆论焦点。国际船舶管理公司ZodiacMaritime当地时间6月24日发布声明称,旗下的“晨曦迈达斯”号(MorningMidas)滚装汽车运输船因火灾导致船体进水
20日,河北省充换电产业协会成立大会在石家庄召开。河北省发改委、省民政厅、省工信厅、省交通厅、省市场监管局、省机关事务管理局、省消防救援总队等有关部门负责同志以及各地市充换电行业主管部门、运营企业代表等100余人参加大会。大会审议通过《河北省充换电产业协会章程》等制度文件,并选举产生
北极星储能网获悉,6月23日上午,甘肃兰州生态创新城新型储能西北区域总部项目现场,工人们正在进行展示中心土建收尾和管网铺设工作。该项目是成都罗宾汉新能源科技有限公司在兰州生态创新城规划建设的罗宾汉新型储能西北区域总部项目,计划投资6.2亿元,投放2000台移动储充机器人,日均解决超1万台新
近日,安徽亳州市发展和改革委员会、国网安徽省电力有限公司亳州供电公司发布关于印发2025年亳州电网迎峰度夏电力负荷管理方案的通知。2025年迎峰度夏期间,亳州电网预计最大负荷约340万千瓦,同比增长11.66%(2024迎峰度夏年最大304.5万千瓦)。亳州市大中型企业少,峰期居民负荷占比65%以上,可调控
北极星储能网获悉,6月26日消息,宁波前湾新区经济和信息化局发布《2025年宁波前湾新区电力保供专项补贴实施方案》,《方案》提到,临时性区域调峰(虚拟电厂)补贴标准,在响应下达时段内有效响应,有市场出清补贴价格的在浙江省电力交易平台成交价格基础上新区财政另外补2元/千瓦时,区域自发邀约响
6月26日,浙江省丽水市景宁畲族自治县发展和改革局等4部门发布关于印发《景宁畲族自治县电力负荷管控措施和绿电近零碳微电网群建设补贴实施办法》的通知,对2025年至2028年迎峰度夏(冬)期间,注册地在景宁县,企业有效参与由供电公司发起的移峰填谷、集中检修且拥有独立用电户号、满足计量采集要求的
进入智能化时代,当每度电都学会“思考”,能源系统的变革才真正开始。今天,在全球能源结构与电力系统转型的浪潮中,人工智能(AI)技术正成为不可或缺的关键“破局者”,让能源系统迎来前所未有的“数字觉醒”。6月20-21日,以“人工智能深化协同,能源科技求索创新”为主题的2025国家能源互联网大会
6月25日,在发生火灾近三周后,汽车运输船“MorningMidas”号最终在当地时间6月23日16:35左右,沉没于水深约5000米的太平洋水域。经打捞运营商ResolveMarine表示,“恶劣天气和海水逐渐渗入船体,加剧了最初火灾造成的损害,最终导致该船沉没。”本月初,一艘载有3000多辆汽车的轮船在太平洋起火,当时
2025年6月25日,广州汽车集团股份有限公司与广州市公共交通集团有限公司战略合作协议签订仪式在广汽集团番禺总部举行。此次签约是双方深化合作的新起点,标志着双方在公共交通领域开启了协同创新、融合发展的新篇章。广汽集团董事长、总经理冯兴亚,广州公交集团董事长覃海宁,广汽集团副总经理高锐,
北极星售电网获悉,6月20日,贵州电力交易中心关于印发南方区域电力市场贵州省内配套交易规则及实施细则的通知。其中《南方区域电力市场贵州省内配套市场注册实施细则》提到,虚拟电厂(含负荷聚合商)经营主体基本条件(1)与电网企业签订负荷确认协议或并网调度协议,接入新型电力负荷管理系统或电力调
电化学储能系统在电力系统中的应用场景大致可以分为5类,分别是源侧、网侧(主网)、台区(配网)、工商业以及户用储能。在这些场景中,储能有不同的接入位置,根据市场主体与电网公司的产权分界点来区分,可以把源侧、工商业以及户用都放置于表后的区域,可称为表后大小储,因为这些接入场景中,除了
北极星储能网获悉,6月27日,恩捷股份披露投资者关系活动记录表,回答投资者有关公司业务布局的问题。在半固态电池隔膜业务布局方面,公司下属控股子公司江苏三合电池材料科技有限公司具备半固态电池隔膜量产供应能力,公司在积极开拓市场。在全固态电池材料布局方面,公司下属控股子公司湖南恩捷前沿
北极星储能网获悉,6月26日,天能股份披露投资者关系活动记录表,说明了公司钠离子电池、固态电池等前沿技术领域目前最新进展情况。在钠离子电池领域,公司针对小动力和储能市场,成功研发出一款能量密度达到160Wh/kg的高性能层状氧化物钠电软包电芯。此外,公司还成功开发出首款能量密度95Wh/kg的聚阴
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
受供需突变、债务高企、技术竞争力不足、供应链脆弱、地缘政治加剧贸易与投资不确定性等多重因素冲击,锂电产业链公司正经历前所未有的生存挑战,行业分化加剧,洗牌步入深水区,一场关乎存续与出局的战役已经打响。“红海”搏杀从高歌猛进到销声匿迹2025年全球电池行业破产、退市事件频发。在国际市场
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
回首储能行业刚被抽离政策拐杖之初,整个市场不乏犹疑、焦虑的声音。一方面,以低质产品进行低价竞争得以存活的储能企业陆续黯然离场;另一方面,储能在趋向市场化后更加聚焦价值重构,储能企业也在兼顾安全、效率与成本中愈发“求真”,迸发活力。价值导向下,直面储能安全2024年工信部发布的强制性国
“电池行业正突破单一化学体系束缚,进入真正以用户需求为核心的多核时代。”宁德时代创始人曾毓群在今年4月的公开演讲中曾阐述上述观点。他强调,多核时代是宁德时代的新阶段,无论是追求极致性能,还是强调性价比,多核技术都能让定制化成为现实,消费者无需在续航、寿命、安全、快充等维度进行妥协
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
作者:汪红辉1,3李嘉鑫1,3储德韧1,2,3李彦仪1,3许铤2,3单位:1.上海化工研究院有限公司;2.上海化工院检测有限公司;3.工信部工业(电池)产品质量控制和技术评价上海实验室引用本文:汪红辉,李嘉鑫,储德韧,等.磷酸铁锂电池存储失效机理及热安全性研究[J].储能科学与技术,2025,14(5):1797-1805.DOI:10.1
北极星储能网获悉,6月23日消息,大连融科储能集团股份有限公司全钒液流电池电解液生产线项目(一期)在大连北黄海经开区正式投产。据了解,全钒液流电池电解液生产线项目(一期)总投资4亿元,建设年产1.5GWh钒电解液、钒电解液晶体生产线。项目于2023年7月开工建设,2025年3月完成设备调试,目前已正
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!