北极星

搜索历史清空

  • 水处理
您的位置:电力技术正文

动力电池管理系统需要实现哪些功能?

2018-04-04 10:29来源:动力电池技术关键词:动力电池电动汽车锂离子电池收藏点赞

投稿

我要投稿

电动汽车锂离子电池容量大、串并联节数多,系统复杂,加之安全性、耐久性、动力性等性能要求高、实现难度大,因此成为影响电动汽车推广普及的瓶颈。锂离子电池安全工作区域受到温度、电压窗口限制,超过该窗口的范围,电池性能就会加速衰减,甚至发生安全问题。

 1 简介

 目前,大部分车用锂离子电池,要求的可靠工作温度为,放电时-20~55°C,充电时0~45°C(对石墨负极),而对于负极LTO充电时最低温度为-30°C;工作电压一般为1.5~4.2  V左右(对于LiCoO2/C、LiNi0.8Co0.15Al0.05O2/C、LiCoxNiyMnzO2/C以及LiMn2O4/C等材料体系约2.5~4.2  V,对于LiMn2O4/Li4Ti5O12 材料体系约1.5~2.7 V,对于LiFePO4/C 材料体系约2.0~3.7 V)。

温度对锂电池性能尤其安全性具有决定性的影响,根据电极材料类型的不同,锂电池(C/LiMn2O4 , C/LMO,C/LiCoxNiyMnzO2  ,C/NCM, C/LiFePO4 ,C/LiNi0.8Co0.15Al0.05O2,  C/NCA)典型的工作温度如下:放电在-20-55℃,充电在0-45℃;负极材料为Li4Ti5O12 或者 LTO时,最低充电温度往往可以达到-30℃。

当温度过高时,会给电池的寿命造成不利影响。当温度高至一定程度,则可能造成安全问题。如图所示图1中,当温度为90~120 ℃时,SEI  膜将开始放热分解[1 ~3] ,而一些电解质体系会在较低温度下分解约69℃ [4]。当温度超过120℃,SEI 膜分解后无法保护负碳电极 ,使得  负极与有机电解质直接反应,产生可燃气体将[3] 。当温度为130 ℃,隔膜将开始熔化并关闭离子通道,使得电池的正负极暂时没有电流流动[5,6]  。当温度升高时,正极材料开始分解(LiCoO 2 开始分解约在150 ℃[7] ,LiNi0.8Co0.15Al0.05O2在约160  ℃[8,9],LiNixCoyMnzO2 在约210℃[8],LiMn2O4 在约265 ℃ [1] ,LiFePO4在约310℃ [7]  )并产生氧气。当温度高于200℃时,电解液会分解并产生可燃性气体[3] ,并且与由正极的分解产生的氧气剧烈反应[9]  ,进而导致热失控。在0℃以下充电,会造成锂金属在负极表面形成电镀层,这会减少电池的循环寿命。[10]

过低的电压或者过放电,会导致电解液分解并产生可燃气体进而导致潜在安全风险。过高的电压或者过充电,可能导致正极材料失去活性,并产生大量的热;普通电解质在电压高于4.5  V时会分解[12]

为了解决这些问题,人们试图开发能够在非常恶劣的情况下进行工作的新电池系统,另一方面,目前商业化锂离子电池必须连接管理系统,使锂离子电池可以得到有效的控制和管理,每个单电池都在适当的条件下工作,充分保证电池的安全性、耐久性和动力性。

2 电池管理系统定义

电池管理系统的主要任务是保证电池系统的设计性能,可以分解成如下三个方面:

1)安全性,保护电池单体或电池组免受损坏,防止出现安全事故;

2)耐久性,使电池工作在可靠的安全区域内,延长电池的使用寿命;

3)动力性,维持电池工作在满足车辆要求的状态下。锂离子电池的安全工作区域如图1所示。

图1为锂离子电池的安全操作窗口

BMS由各类传感器、执行器、控制器以及信号线等组成,为满足相关的标准或规范,BMS应该具有以下功能。

1)电池参数检测。包括总电压、总电流、单体电池电压检测(防止出现过充、过放甚至反极现象)、温度检测(最好每串电池、关键电缆接头等均有温度传感器)、烟雾探测(监测电解液泄漏等)、绝缘检测(监测漏电)、碰撞检测等。

2)电池状态估计。包括荷电状态(SOC)或放电深度(DOD)、健康状态(SOH)、功能状态(SOF)、能量状态(SOE)、故障及安全状态(SOS)等。

3)在线故障诊断。包括故障检测、故障类型判断、故障定位、故障信息输出等。故障检测是指通过采集到的传感器信号,采用诊断算法诊断故障类型,并进行早期预警。电池故障是指电池组、高压电回路、热管理等各个子系统的传感器故障、执行器故障(如接触器、风扇、泵、加热器等),以及网络故障、各种控制器软硬件故障等。电池组本身故障是指过压(过充)、欠压(过放)、过电流、超高温、内短路故障、接头松动、电解液泄漏、绝缘降低等。

4)电池安全控制与报警。包括热系统控制、高压电安全控制。BMS诊断到故障后,通过网络通知整车控制器,并要求整车控制器进行有效处理(超过一定阈值时BMS也可以切断主回路电源),以防止高温、低温、过充、过放、过流、漏电等对电池和人身的损害。

5)充电控制。BMS中具有一个充电管理模块,它能够根据电池的特性、温度高低以及充电机的功率等级,控制充电机给电池进行安全充电。

6)电池均衡。不一致性的存在使得电池组的容量小于组中最小单体的容量。电池均衡是根据单体电池信息,采用主动或被动、耗散或非耗散等均衡方式,尽可能使电池组容量接近于最小单体的容量。

7)热管理。根据电池组内温度分布信息及充放电需求,决定主动加热/散热的强度,使得电池尽可能工作在最适合的温度,充分发挥电池的性能。

8)网络通讯。BMS需要与整车控制器等网络节点通信;同时,BMS在车辆上拆卸不方便,需要在不拆壳的情况下进行在线标定、监控、自动代码生成和在线程序下载(程序更新而不拆卸产品)等,一般的车载网络均采用CAN总线技术。

9)信息存储。用于存储关键数据,如SOC、SOH、SOF、SOE、累积充放电Ah数、故障码和一致性等。车辆中的真实BMS可能只有上面提到的部分硬件和软件。每个电池单元至少应有一个电池电压传感器和一个温度传感器。对于具有几十个电池的电池系统,可能只有一个BMS控制器,或者甚至将BMS功能集成到车辆的主控制器中。对于具有数百个电池单元的电池系统,可能有一个主控制器和多个仅管理一个电池模块的从属控制器。对于每个具有数十个电池单元的电池模块,可能存在一些模块电路接触器和平衡模块,并且从控制器像测量电压和电流一样管理电池模块,控制接触器,均衡电池单元并与主控制器通信。根据所报告的数据,主控制器将执行电池状态估计,故障诊断,热管理等。

10)电磁兼容。由于电动车使用环境恶劣,要求BMS具有好的抗电磁干扰能力,同时要求BMS对外辐射小。电动汽车BMS软硬件的基本框架如图2所示。

图2 车载BMS的软硬件基本框架

3 BMS的关键问题

尽管BMS有许多功能模块,本文仅分析和总结其关键问题。目前,关键问题涉及电池电压测量,数据采样频率同步性,电池状态估计,电池的均匀性和均衡,和电池故障诊断的精确测量。

3.1 电池电压测量(CVM)

电池电压测量的难点存在于以下几个方面:

(1)电动汽车的电池组有数百个电芯的串联连接,需要许多通道来测量电压。由于被测量的电池电压有累积电势,而每个电池的积累电势都不同,这使得它不可能采用单向补偿方法消除误差。

图3 OCV曲线和每毫伏电压的SOC的变化(在25℃测量,休息时间3小时)

(2)电压测量需要高精度(特别是对于C / LiFePO 4 电池)。SOC估算对电池电压精度提出了很高的要求。这里我们以C / LFP和LTO /  NCM型电池为例。图3显示了电池C / LiFePO 4 和LTO / NCM 的开路电压(OCV)以及每mV电压对应的SOC变化。从图中我们可以看到LTO /  NCM的OCV曲线的斜率相对陡峭,且大多数SOC范围内,每毫伏的电压变化对应的最大SOC率范围低于0.4%(除了SOC  60~70%)。因此,如果电池电压的测量精度为10mV,那么通过OCV估计方法获得的SOC误差低于4%。因此,对于LTO /  NCM电池,电池电压的测量精度需要小于10 mV。但C / LiFePO 4OCV曲线的斜率相对平缓,并且在大多数范围内(除了SOC < 40%和65  ~80%),每毫伏电压的最大相应SOC变化率达到4%。因此,电池电压的采集精度要求很高,达到1 mV左右。目前,电池电压的大部分采集精度仅达到5  mV。在文献[47]和[48]中,分别总结了锂电池组和燃料电池组的电压测量方法。这些方法包括电阻分压器方法,光耦合隔离放大器方法,离散晶体管的方法[49]  ,分布式测量方[50] ,光耦合中继方法[51] 等等。目前,电池的电压和温度采样已形成芯片产业化,表1比较了大多数BMS所用芯片的性能。

表1 统计电池管理和均衡芯片

3.2数据采样频率同步性

信号的采样频率与同步对数据实时分析和处理有影响。设计BMS时,需要对信号的采样频率和同步精度提出要求。但目前部分BMS设计过程中,对信号采样频率和同步没有明确要求。电池系统信号有多种,同时电池管理系统一般为分布式,如果电流的采样与单片电压采样分别在不同的电路板上;信号采集过程中,不同控制子板信号会存在同步问题,会对内阻的实时监测算法产生影响。同一单片电压采集子板,一般采用巡检方法,单体电压之间也会存在同步问题,影响不一致性分析。系统对不同信号的数据采样频率和同步要求不同,对惯性大的参量要求较低,如纯电动车电池正常放电的温升数量级为1℃/10  min,考虑到温度的安全监控,同时考虑BMS温度的精度(约为1℃),温度的采样间隔可定为30 s(对混合动力电池,温度采样率需要更高一些)。

电压与电流信号变化较快,采样频率和同步性要求很高。由交流阻抗分析可知,动力电池的欧姆内阻响应在ms级,SEI膜离子传输阻力电压响应为10  ms级,电荷转移(双电容效应)响应为1~10 s级,扩散过程响应为min级。目前,电动车加速时,驱动电机的电流从最小变化到最大的响应时间约为0.5  s,电流精度要求为1%左右,综合考虑变载工况的情况,电流采样频率应取10~200 Hz。单片信息采集子板电压通道数一般为6 的倍数,目前最多为24  个。一般纯电动乘用车电池由约100  节电池串联组成,单体电池信号采集需要多个采集子板。为了保证电压同步,每个采集子板中单体间的电压采样时间差越小越好,一个巡检周期最好在25  ms内。子板之间的时间同步可以通过发送一帧CAN参考帧来实现。数据更新频率应为10 Hz以上。

原标题:一个典型的动力电池管理系统,需要实现哪些功能(完全篇)
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

动力电池查看更多>电动汽车查看更多>锂离子电池查看更多>