登录注册
请使用微信扫一扫
关注公众号完成登录
在高温条件循环之前,电池在240mA(C/5)下进行了2.5V和4.2V电压之间的两个循环对比,以证明电容可再生能力和电阻值的测定。之后电池在80℃温度下充电/放电到最初的储存电压,并在30天的时间内持续监测OCV和体积膨胀。
开始在80℃温度下观察循环过程中的电池参数,如图1,填充有标准电解质和1%VC电解质电池的电压分布不同,且具有不同的初始电压;在高初始电压下,电荷转移电阻会增大。观察可知最大的电阻增加发生在4.2V循环的电池中,其中充满了标准电解质,可以归因于阴极电解液氧化过程中产生的大量气体,如图2。随后,研究在80°C温度下循环后电阻增大和容量损失的情况,如图3。结果表明,在较高的循环电压下,SEI电阻逐渐增大,但在3.6V以下的电压下几乎保持一致;电容测试结果表明,最大的容量损失发生在高开路电压条件下,同时也伴随着电荷转移电阻值的增加。之后,在80°C温度下循环30天后,还额外增加了室温下的循环测试并进行分析,如图4。3.6V电压下循环的电池恢复了部分容量,与高温老化前相比,整体损失小于0.5%,在较低电压下循环的电池也可观察到类似的情况与这种行为相反,更高温度下的电池在循环过程中表现出更大的电阻增加(较大的电位)。最后,研究者们对循环后的样品进行了一系列表征和分析。如图6和7测试了在80°C温度下循环后并在室温下进行了额外循环的电池阳极表面和截面的SEM图像,EIS测试分析了电荷转移电阻,XPS测试分析了电极表面的产物。
综上一系列实验结果表明,随着电池电压的增加,电容衰减和电阻增大的幅度逐渐增大,当电池在80°C下循环时,电阻的增大是电池失效的主要原因,并与NMC二次粒子的解体有关,在电压≥3.9V下储存电池时,观察到了电解质分解,这种行为在本研究的循环实验中没有观察到。在相同温度和高压下循环老化时,PES 211基电解质能够抑制阴极相关电阻的增加,而电阻的增加主要与两个电极上气体的产生和生长分解层有关。与其他电解质混合物相比,PES 211基电解质的改进与电极表面的稳定钝化有关,从而抑制了进一步的溶剂氧化和其它反应。另外,在25°C循环高温老化电池时,标准电解质电池的电阻增加,这一结果很可能是因为CO2的消耗从而在阳极SEI处形成进一步的分解产物;与这种行为相反的是,首本研究次发现含有PES 211电解质的电池在进一步循环后,电阻会出现下降,但其原因尚未阐明,需进行进一步的研究分析。
【 图文详情 】
图一 80℃下测试不同电解质电池和不同开路电压电压的电压分布图
电解质不同时电池的电压降表现出不同,但是在80°C温度下循环的前10天,所有电解质的电压降过程相似,OCV的差值小于30 mV。但是在此之后,加有添加剂的电池与加入标准电解液的电池相比具有更明显的电压降,储存在工业电解液中的电池的附加电压降很可能与添加剂混合物中的不同溶剂有关,因为使用的添加剂与工业电解也的配方类似。
图二 不同电解质电池的体积膨胀测试
显然,在80°C温度下循环的前几天,电池体积快速膨胀,经过大约15天后,含有标准电解质的电池开始在阿基米德测试孔内漂浮。在同一时间间隔内,填充标准电解质和1%VC的电池与不添加添加剂的电池相比,体积膨胀约为其五分之一。
图三 不同电解质电池的能奎斯特曲线和电容衰减图
结果表明,在较高的循环电压下,SEI电阻逐渐增大,但在3.6V以下的电压下几乎保持一致;这与理论保持一致,即阴极中的氧化物种可以转移到阳极,在阳极上还原,增加SEI层厚度。电容测试结果表明,最大的容量损失发生在高开路电压条件下,同时也伴随着电荷转移电阻值的增加。总之,加入标准电解质的电池表现出最低的电荷转移电阻,具有清晰的高频半圆,其它配方的添加剂在SEI形成过程中优先减少,从而形成不同化学成分的表面膜。
图四 外加室温循环后的不同电解质电池的电容衰减和电阻变化测试
3.6V电压下循环的电池恢复了部分容量,与高温老化前相比,整体损失小于0.5%,在较低电压下循环的电池也可观察到类似的情况。最初3.2V和2.9V电压的电池容量损失略大,且存储电压降低。猜测这种情况的出现可能与阳极SEI某些组分的分解有关。当循环电池的电压在3.6V以下时,每个循环电阻的增加与没有在高温下循环的电池相似;与这种行为相反,更高温度下的电池在循环过程中表现出更大的电阻增加(较大的电位),这种效应很可能是因为消耗了在高温储存过程中产生的气体,此外,在循环过程中,这些气体在阳极处会减少,会进一步增加分解层的厚度。改变电解质性质,如导电盐的浓度、HF浓度或其他分解产物,很可能导致其它组分的分解,这也与容量在进一步循环期间的衰减有关。例如,改变电解液配方可能导致较低电压的电池发生氧化反应,在另外的常温循环中,可以观察到电解质配方之间电荷转移电阻发生变化的显著差异。在填充标准电解质的电池中,电阻增加的幅度最大,这与在高温循环过程中的电池体积膨胀是一致的,因为大量的二氧化碳也会导致阳极氧化膜的快速生长。
图五 不同电解质电池外加室温循环后的体积变化
如图5显示了标准电池和含有PES 211电解质的电池在另外常温循环中的体积变化,在这两种配方的电池中都可以观察到体积的减少,这与阳极的CO2还原理论是一致的。标准电解液的电池在增加50个循环的过程中表现出体积减少的线性趋势,目前还不清楚气体是随着时间的推移而消耗的,还是由于电化学循环造成的。在80℃高温循环后,含有PES 211电解质的电池与未循环电池相比,体积分布有很小的位移,平台区域也不那么明显。位移可以解释为阳极电阻的增加,会导致电极内均质石墨锂的减少,并且在低SoC下形成Li1C6。此外,体积的整体膨胀和收缩仍保持一致,因为只有少量容量的损失。然而,用标准电解质老化电池的变化更为显著,由于锂离子的消耗量较大,导致容量的损失较大,使得电池的整体周期性体积变化较低;还可以进一步看出,电池在充电结束时已经开始体积减少。
图六 不同电解质电池循环后的截面SEM/EDS测试
电极表面覆盖着一层粗大的晶状层,难以区分石墨颗粒,电极的横截面SEM和EDS图像还表明,颗粒间的大部分孔洞都充满了含氟产物;相比之下,含有PES 211电解液的电池老化后的阳极表面光滑,颗粒边界清晰,横截面SEM以及EDS图像显示具有多孔网络,这是锂离子通过电极具有良好导电性所必需的条件。在低放大率下,两种电极之间没有差别,但在较大的放大倍率下,很明显NMC颗粒表面覆盖着一层薄而不均匀的表面膜,含PES211电解质老化阴极颗粒表面粗糙度却不明显,表面看起来是均匀平滑的,表明电解液分解产物的数量较少。
图七 对称纽扣电池的EIS测试和XPS图
然而,如图7可以看出对称电阻值,可以观察到不同电解质老化的阳极在相同的范围内的电荷转移电阻。在组装对称纽扣电池之前使用DMC洗涤的过程和添加新电解质的过程会导致两个电极内分解产物的部分溶解。选用标准电解质老化的电池的阴极电阻比添加PES211电解质的电池高出五倍,因此得出结论,三元添加剂体系有利于形成更稳定的表面层,因而可以防止进一步氧化反应。XPS分析可以看出,在阴极表面发现少量与硫有关的产物,类似于磷化合物,Madec等人在室温下对电解液组成相同的电池进行了类似的观察,并通过XPS测试确定了Li2SO3和R-SO3等相关产物的存在。在另一项研究中,有课题组同样报道了在75℃循环含硫添加剂PS(丙烷磺酸钠)的电池后,有R-SO3基产物生成,然而,与这里显示的结果相比,它们不能证实任何与S相关化合物的存在。在这两项研究中所使用的添加剂之间的主要区别之一是PES内部的双键,这可能对附加的反应路径起主要作用的一点。第二种解释也可能是与电解质溶剂的氧化电位有关,为了研究这种可能性,在三电极体系中测定了标准电解质和含PES 211电解质电池的氧化稳定性,测试的循环伏安图如图8所示。
图八 不同电解质电池的电流密度响应图
在25°C常温下测试时,两种电解质电池在铂电极上表现出相似的氧化行为,直到电压为5.5 V,含有PES 211电解质的电池表现出大约0.5 V的延迟启动。也因此进一步说明,氧化电流在大约4V时已经开始逐渐增加,这也与阴极表面存在一个薄电解质分解层有关,甚至在阴极表面也是如此。在80℃温度下测试时,可以清楚地看到两种混合物的氧化范围都已转移到较低的电位。
【 原文信息 】
Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes (Journal of Power Sources, 2018, DOI: https://doi.org/10.1016/j.jpowsour.2018.03.050)
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
据外媒报道,美国储能系统和可再生能源服务提供商Fluence公司在5月8日发布了其2025财年第二季度财务业绩报告(即1月1日至3月31日这三个月的业绩)。该公司在其发布公告中指出,贸易关税不确定性导致Fluence公司降低了该公司2025财年收入和息税折旧摊销前利润(EBITDA)业绩预期,尽管如此,该公司首席
作者:彭鹏1王成东2陈满1王青松2雷旗开1金凯强2单位:1.南方电网调峰调频发电有限公司储能科研院2.中国科学技术大学火灾科学国家重点实验室引用本文:彭鹏,王成东,陈满,等.某钛酸锂电池储能电站热失控致灾危害评价[J].储能科学与技术,2025,14(4):1617-1630.DOI:10.19799/j.cnki.2095-4239.2024.1006本
北极星储能网获悉,6月3日消息,福建省科学技术厅等四部门关于组织申报2025年高校产学研联合创新项目的通知,新材料方向包括,锂离子电池、燃料电池等关键材料及工程化技术;电池梯级利用与绿色回收技术;乏燃料后处理技术;先进锂离子电池、动力锂离子电池凝胶聚合物电解质、高离子电导率和高稳定的无
5月29日17时06分,江苏吴中区太湖街道雷山路与东太湖路交叉口处往西60米一货车运载的磷酸锂电池组起火。消防员立刻同步调派叉车转移起火电池组至安全区域,结合锂电池起火的特殊性最终决定使用“围堰淹没处置战法”快速控制火情,有效避免次生灾害。约半小时后,火势已被控制,一小时后明火已完全扑灭
北极星储能网获悉,6月3日,1批汽车用钠离子动力电池组,经福州海关所属宁德海关关员现场实施危包使用鉴定合格,并取得危险货物包装使用鉴定证书后顺利出口。据悉,这是全国首批钠离子汽车动力电池出口。钠离子电池是一种新型二次电池,其工作原理与锂离子电池类似,通过钠离子在正负极间的往复移动实
北极星储能网获悉,6月2日消息,为加强锂离子电池全生命周期安全与质量管理,市场监管总局(国家标准委)近日批准发布《锂离子电池编码规则》(GB/T45565—2025),并将于2025年11月1日起实施。该标准由中华人民共和国工业和信息化部提出,归口于中国电子技术标准化研究院,由比亚迪、宁德时代、亿纬锂
北极星储能网获悉,近日,住房和城乡建设部应用锂离子储能系统的光伏高层建筑火灾风险评估及验证、光伏高层建筑火灾辅助逃生设施及简易自动喷水灭火系统的应用可靠性及关键技术验证发布了中标公告。中国建筑科学研究院有限公司以80.00万元中得。住房和城乡建设部应用锂离子储能系统的光伏高层建筑火灾
北极星储能网获悉,截至5月26日,云南省新型储能累计并网投产总装机突破300万千瓦,达303.5万千瓦/607万千瓦时,提前超额完成“十四五”规划目标。新型储能是指除抽水蓄能以外的储能技术,包括锂离子电池、液流电池、飞轮储能、压缩空气储能、氢储能等。
北极星储能网获悉,5月30日,珠海冠宇发布投资项目建设内容变更的公告。2022年,珠海冠宇子公司浙江冠宇电池有限公司(以下简称“浙江冠宇”)拟在重庆市万盛经济技术开发区(以下简称“万盛经开区”)内依法投资设立项目公司投资建设高性能新型锂离子电池项目,项目预计总投资人民币40亿元(最终项目
北极星储能网获悉,5月28日,广东东莞发布2024年度新型储能高质量发展专项资金申报工作。面向锂离子电池、钠离子电池、液流电池、固态电池等先进新型储能技术路线的原材料、元器件、工艺装备、电芯模组、电池管理系统(BMS)、能量管理系统(EMS)、储能变流器(PCS)、系统集成等领域建设的增资扩产项
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
随着全球储能市场需求持续增长,行业竞争日益激烈,终端降本压力不断加大。在此背景下,储能电芯产品正加速从第一代280Ah、第二代314Ah向500Ah+、600Ah+迭代升级,部分头部企业更是已将技术触角延伸至1000Ah+超大容量领域。然而,在136号文推动行业从政策驱动转向价值驱动的关键阶段,行业需要的不仅是
在碳中和目标驱动下,储能产业迎来技术爆发期。温差控制与电芯安全成为两大核心攻坚点。融捷能源以双轨并行的技术战略,同步发布三大新品:587Ah第三代长时储能电芯、125kW/261kWh浸没式户外柜储能系统以及浸没式锂电UPS电源柜。此次发布的三大储能新品是融捷能源“深耕电芯技术、突破系统瓶颈、开辟增
作者:彭鹏1王成东2陈满1王青松2雷旗开1金凯强2单位:1.南方电网调峰调频发电有限公司储能科研院2.中国科学技术大学火灾科学国家重点实验室引用本文:彭鹏,王成东,陈满,等.某钛酸锂电池储能电站热失控致灾危害评价[J].储能科学与技术,2025,14(4):1617-1630.DOI:10.19799/j.cnki.2095-4239.2024.1006本
北极星储能网获悉,6月3日消息,福建省科学技术厅等四部门关于组织申报2025年高校产学研联合创新项目的通知,新材料方向包括,锂离子电池、燃料电池等关键材料及工程化技术;电池梯级利用与绿色回收技术;乏燃料后处理技术;先进锂离子电池、动力锂离子电池凝胶聚合物电解质、高离子电导率和高稳定的无
在能源转型与技术革新的浪潮中,远航锦锂顺应行业发展需求,凭借深厚的技术积累与创新实力,推出循环再生系列电芯。这一系列创新产品不仅性能卓越,更为可再生能源的高效利用与广泛应用提供了全新的解决方案,有望引领新能源行业迈向更加绿色、高效、智能的新纪元。远航锦锂与上下游开展深度的技术合作
在被视作下一代储能电池——500+Ah储能电芯的竞赛上,远景动力和宁德时代率先发力。5月29日,远景动力沧州超级工厂正式下线500+Ah储能电芯,成为行业率先实现500+Ah电芯量产的企业。无独有偶,本月中旬,宁德时代位于山东济宁的新能源电池工厂一期项目投产。此前,有消息称,宁德时代587Ah储能电芯将于
5月29日,远景动力沧州电池超级工厂正式下线500+Ah储能电芯,成为行业率先实现500+Ah电芯量产的企业,持续领跑储能大容量电芯迭代。远景动力沧州500+Ah储能电芯产线实景据悉,远景动力此次量产的500+Ah电芯将适配当前市场主流6+MWh储能系统方案。相较上一代产品大幅提升了单体储能集装箱能量密度,节约
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
北极星储能网获悉,5月29日消息,近日,四川成都郫都区生态环境局发布公告,拟对1个建设项目环境影响评价文件作出审批意见。该项目名称为“清陶固态电池西南产业基地项目”,项目征地约446.02亩,建设3栋电芯厂房(每栋1条生产线)用于生产电芯,建设1栋模组车间(4条生产线)用于将电芯组装成完整的方
北极星储能网获悉,5月28日,河北建投中航塞罕绿能科技开发有限公司发布全钒液流电池储能系统产业链供应商库比选中选公告,涵盖储液罐、BMS、PCS、电堆、制冷机、电解液等关键部件供应商。同时,此前发布的比选公告中涉及的管路、集装箱箱体、磁力泵、传感器等部件的供应商中选名单尚未公布。中选供应
北极星储能网获悉,6月6日消息,此前,德尔股份与浙江省湖州市吴兴区织里镇人民政府签订了相关《投资合作协议》,计划投资约3亿元投资建设新型锂电池中试及产业化项目和智能电机产业化项目。投资合作协议中的“新型锂电池中试及产业化项目”所称的新型锂电池,指公司研发的固态电池。公司拟将前期在日
北极星储能网获悉,6月4日,孚能科技在投资者互动平台上回答公司第二代半固态电池巡航里程的问题。孚能科技表示,新能源汽车续航里程主要由动力电池能量密度及电量决定,与电机效率、车身重量、空气动力学设计等多种因素有关,具体数值因车型差异有所不同。公司第二代半固态电池通过新型氧化物/聚合物
北极星储能网获悉,6月3日消息,福建省科学技术厅等四部门关于组织申报2025年高校产学研联合创新项目的通知,新材料方向包括,锂离子电池、燃料电池等关键材料及工程化技术;电池梯级利用与绿色回收技术;乏燃料后处理技术;先进锂离子电池、动力锂离子电池凝胶聚合物电解质、高离子电导率和高稳定的无
北极星储能网获悉,5月29日,安徽合肥市2025年度第一批科技攻关“揭榜挂帅”先进光伏及新型储能、新能源汽车、新一代信息技术、智能家电(居)主导产业领域榜单发布。其中新型储能共有7家企业的产业项目纳入榜单,总投资5880万元、本次发榜金额3125万元,包括低品味工业余热高效规模化制冰储能系统开发
北极星储能网获悉,雄韬股份5月29日在投资者互动平台表示,60Ah固态电池是公司最新研发的重大成果,通过“原位聚合固态电解质技术”和“电极内部电解质动态成膜固化技术”两大核心技术的突破,彻底消除电池热失控风险,并解决“固-固”界面难题,完美适配数据中心、储能电站、轨道交通等对安全性有严苛
北极星储能网获悉,5月28日,海目星在投资者互动平台上表示,公司深度参与的固态电池技术路线采用氧化物固态电解质和金属锂负极材料,能量密度达450Wh/kg以上,显著高于当前量产的半固态产品,并通过了针刺、高温、低温等极端环境测试,安全性性能得到认证。目前,该固态电池已经运用于亿航智能的载人
北极星储能网获悉,美国麻省理工学院等机构提出了一种具有突破潜力的新技术方案,并通过实验验证了一种新型电池原型装置,其单位重量的能量密度可达当前电动汽车所用锂离子电池的三倍以上。该成果有望推动交通方式向电动化迈进。相关研究成果于27日发表在《焦耳》杂志上。此次的新电池是一种燃料电池。
刚刚过去的CIBF2025中国深圳电池展上,固态电池成为绝对主角,除了多家参展电池企业展出了多款半/全固态电池产品外,相关产业进程更是成为行业关注焦点。除此之外,固态电池概念在资本市场上的热度也持续攀升。如此强劲发展势头下,固态电池产业化进程是否能够提前到来?这一点或许从固态电池发展现状
近日,大连化物所储能技术研究部(DNL17)李先锋研究员团队和中国科学院化学研究所张燕燕副研究员合作,在全钒液流电池(VFBs)正极电解液稳定性研究方面取得新进展。团队通过系统研究VFB正极电解液中五价钒离子的溶剂化结构随温度的转化过程,阐明了正极电解液沉淀析出机理,并据此提出了高稳定性钒电
5月20日,《美国化学会会刊》刊发了一则论文显示,中国科研领域在全固态电池失效机制研究方面取得重要突破。中国科学院金属研究所联合加州大学尔湾分校组成的团队,首次在纳米尺度揭示了无机固态电解质中的软短路—硬短路转变机制及其背后的析锂动力学,破解了固态电池短路难题。来源丨北极星电池网受
美国能源信息署发表文章:中国在全球电池供应链的每个环节都发挥着重要作用,并且主导着矿物的区域间贸易。根据联合国贸易数据库的区域数据,2023年,中国进口了近1200万短吨(美制单位:1短吨#x2248;0.907185吨)的原生和加工电池矿物,占区域间贸易的44%,出口了近1100万短吨的电池材料、电池组和组
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!