登录注册
请使用微信扫一扫
关注公众号完成登录
1)储能成为电力系统“发-输-配-用”之外的第5环节。
2030年以前,大容量、低成本、长寿命、高安全储能电池技术和低成本、高效率压缩空气储能将初步实现;储能系统容量支撑电网消纳非水可再生能源发电电量的比例达到10%,发-输-配-用-储的运行模式在电力系统得到广泛实现,储能资源的广泛存在和灵活高效的特性大大改善电网系统的调度和管理能力,使电力供需从现在的瞬时平衡变成广域时空下的长期平衡。
2)储能应用向用户侧紧凑型和系统级大型应用发展。
随着能源互联体系的逐步建立,包含可再生能源的多种能源的互联互补不仅改变电网的调度运营模式,也将改变用户的用电模式。在现有应用于可再生能源的接入和消纳之外,紧凑型储能还将广泛应用于用户侧参与需求响应,提高用户能效,满足用户多元化需求;同时,系统级大型储能也将在电力网络调峰、调频服务中发挥重要作用,从系统规划和调度管理层面实现资源利用最大化。
3)分布式储能的规模化汇聚效应凸显。
伴随用户侧分布式储能的广泛应用以及电动汽车比例的持续快速增长,分布式储能作为能源互联网络体系构建的必要环节,其规模化汇聚效应逐步显现,通过统筹部署、协同管理充分挖掘其平衡能力,同时跟进切实有效的商业运行模式,促进多种能源的开放互联和供需各方的柔性互动。
2.2.2 突破模式
结合国内外的基础性前瞻性储能本体技术发展趋势,在突破模式下,预测2050年前,锂空气电池等高能量密度储能应用关键材料及本体制备技术实现实质性突破;相变储能技术实现低成本、高稳定性和高能量密度等核心技术的突破;攻克新型氢能储能及应用关键材料及器件制备技术。储能技术作为关键因素推动能源革命,掌握电网、气网和热力网等能源高效转化及多时空协同控制技术,实现以电为中心的不同能源网络柔性互联、调剂和联合调控。
1)电动汽车等高密度分布式储能使电网形态发生根本改变。
根据巴黎协定2050年全球温升不超过2℃,国际能源署预测2050年电动汽车保有量须达10亿辆。按照每辆车80kW•h计算,储能容量将达800亿kW•h,基本满足2050年预期储能需求(预计风光等可再生能源发电量约1万亿kW•h,需配置不到10%的储能,即1000亿kW•h满足消纳需求)。锂空气电池等高密度储能关键技术突破将使电动汽车占比超过90%,电动汽车续驶里程和充电速度将实现燃油车完全替代,静态和移动分布式储能接入使集中式的电网结构向分布式结构转变,运行管理方式随之变化,传统电网的形态发生根本改变。
2)相变储能技术普及使能源互联得以实现。
据统计,40%能源消费用于温度调节,蓄冷/热储能与能源转化技术是能源体系中的重要环节。热相变储能技术的突破和普及,将使能源互联的实现成为可能。高温储热系统释能控制及调节技术得到突破,复合型高温相变储热材料及大容量规模化储热装置装备在建筑物的温度调节和能源系统得到普及,实现高温储热技术在太阳能光热电站的技术应用;基于化学储热的储热关键技术实现突破和普及,高效高储能密度的储热装置在用户侧得到普及,实现化学储热技术应用于可再生能源制热-储热电站。
3)氢储能的普及将实现多类型能源的广泛利用和灵活转变。
氢储能技术的发展完善将带来氢能利用比例在能源存储与转换系统中实现普及,不同能源形式下各种储能方式共存,用能需求多样化。能源转换和控制运行由单一功能向融合多能源+新型用电等多元复合功能过渡,呈现分散自治和集中协调相结合的模式。电网通过氢储能和P2G技术实现多种能源方式的转换与存储,改善调控手段等方式促进可再生能源的利用;可再生能源发电配合储氢装置,成为可调度、可预测、可控制的电源;实现终端用户供用电关系转换、用能设备的能量缓冲、灵活互动以及智能交互;广泛存在氢动力电动汽车资源为氢能接入提供重要的支持。
3 关键技术的实现路径
3.1 关键技术
在储能系统应用基础理论方面,研究广域布局的储能系统与常规电源、新能源发电的协同调度方法;掌握多个百MW级储能在新能源发-输-配各环节中的规划布局方法;研究新型技术与供电商业模式下储能的选型配置方法和经济性;分布式储能系统的汇聚效应及在虚拟电厂中的运行模式和管理策略。研究储能技术实现市场化应用的政策和制度需求,包括促进储能发展的电价机制、准入制度及电力市场机制;研究多种类电力市场交易下储能与其他能源的协调运作机制。
在储能本体技术研究方面,研究针对现有体系下锂离子、铅炭、液流等储能电池的关键材料改性、本体改进、低成本化制备、能效提升和产业化技术,研究基于离子液体、固态电解质的高安全性电池材料体系和液流电池低成本高可靠膜制备技术;研究空气压缩机和膨胀机技术,研究储冷储热和储气技术,提高转换效率,降低成本。针对下一代储能技术,研究锂硫、锂空气等新型高比能量电池技术;研制高效制氢及氢发电装备,突破低成本、高效率和规模化储氢技术;研发大容量高温高能量密度储热储冷技术装备,突破热相变储能关键技术。
在储能系统集成及工程化技术研究方面,研究适用于百MW级储能电站集成与控制技术研究及工程示范;开发储能系统的虚拟电厂汇聚效应控制技术;探索多个百MW级储能在新能源发-输-配各环节中的广域规划布局方法;基于新型器件、拓扑及控制方法的储能变流器研制;研究规模化梯次利用电池的重组、集成和热疏导等安全管理技术;研究储氢系统的集成及工程应用技术;掌握相变储能系统的集成及工程应用技术;研究飞轮储能系统的集成及工程应用技术;海水抽水蓄能的集成及工程应用技术;研究深冷储能系统集成与试验技术。
3.2 实现路径
储能技术发展及推广应用可分3个阶段。第1阶段(2017—2030年)是关键技术突破及商业应用阶段。突破现有体系下的储能本体制造、能量转换及规模化集成等关键技术,研制具有自主知识产权的GW级储能系统,实现多个GW级储能系统在用户侧和间歇式可再生发电接入电网中的示范应用,提出大规模储能系统并网接入技术规范。
第2阶段(2030—2040年)是大规模推广和下一代技术攻关阶段。完善GW级储能装置的研制,并推广GW级储能装置在电力调峰、可再生能源大规模接入、提高供电可靠性和电能质量等场合的应用。突破锂空气、储氢、热相变等下一代储能关键技术,并逐步开展示范应用。
第3阶段(2040—2050年)是全面推广应用阶段。电化学储能、压缩空气、热相变和储氢等不同类型的大容量电网储能技术得到推广应用。高比能电动汽车移动式锂空气储能、家庭分散储能装置等实现“即插即用”。实现多种储能方式的协调互补和统一规划调控。大规模储能关键技术突破的总体思路见图3。
在充分评估该技术领域我国现有水平和国内相关科研工作的基础上,参考国外储能技术相关技术路线图[30],依据国家电网发展和建设对大规模储能技术的迫切需求[31-32],应该以集中式储能系统在可再生能源接入中的应用、分布式储能系统在用户侧峰值负荷转移和提高电能质量中的应用为目标和突破口,集中力量解决制约大规模储能技术在关键部件、容量、寿命、可靠性等方面的制约瓶颈,实现示范应用。同时通过标准体系建设和完善,规范引导本体技术研发,为储能技术长期健康发展奠定基础,满足电网发展和建设对大规模储能技术和装置的迫切要求。
3.3 技术路线图
3.3.1 常规模式下技术路线
作为一个战略性新兴技术领域,常规模式下的储能技术路线研究核心在于各种储能本体技术,包含关键材料、本体制造、特性分析、产业化转移等多个技术环节,涉及材料、固体物理、电化学、化工、自动控制等多个学科,是一个典型的前沿性交叉技术学科。通过资源整合和体系化平台,直面关键科学问题和技术难点,推动原始创新,加快集中攻关步伐。
如图4所示,常规模式技术路线下,全面掌握战略布局的先进储能技术,重点攻关化学储能、压缩空气储能、高温储热的材料制备和核心装置制造技术[33]。突破储能系统集成和能量管理等关键技术,实现不同场景不同规模的示范验证和推广应用。构建完备的储能技术标准体系,形成相对完善的产业链结构。
3.3.2 突破模式下技术路线
突破模式下的整体技术路线应突破现有格局的限制,转而构建包括基础理论、材料制备和表征、本体制造、中试级产业化转移和综合性能评估分析等覆盖全产业链的体系化研究实验平台,并建立相应的高水平研发实验能力,通过贯通材料设计、装置开发、工程示范和综合评估等全部环节,创新体系化研究模式,方能夯实研究基础,以顶层设计思维充分发挥顶端引领作用,加速推进技术与需求对接。
突破模式下的技术路线应该积极探索新材料、新方法,实现具有优势的先进储能技术储备,在液体电池、镁基电池等新概念化学电池获得突破;研究热化学储热等前瞻性储热技术,探索高储热密度、低成本、循环特性良好的新型材料配对机制;应用V2G虚拟储能前瞻理论,研究服务与支撑电动汽车推广应用技术。
开展10~100MW•h级示范工程,示范验证10~100MW•h级面向分布式供能的储热(冷)系统和10MW级以上太阳能光热电站用高温储热系统;研究可再生能源发电与质子交换膜/固体氧化物电池电解水制氢一体化技术[31],突破高效催化剂、聚合物膜、膜电极和双极板等材料与部件核心技术,掌握适应可再生能源快速变载的高效中压电解制氢电解池技术,研发成本低、循环稳定性好、使用温度接近燃料电池操作温度的氮基、硼基、铝基、镁基和碳基等轻质元素储氢材料,技术路线如图5所示。
4 结论
我国储能技术在基础性研究方向,尤其是储能基础理论、新型材料研究方面尚有欠缺,在基础性、前瞻性交叉技术领域的个别环节较为薄弱,储能装置技术水平与巨大需求之间存在较大差距,在产业化转移能力建设方面有待加强,尚未建成完整的体系化研究闭环,还不能发挥战略作用,亟待补充和强化。
在2050年技术攻关重点和顶层设计中,以需求引导为驱动,建立以基础理论为指导、先进储能材料及本体技术为创新根本、关键装备技术为抓手的全新研发模式,完善储能领域创新研究体系。
目标是突破大规模储能技术局限,满足电网接纳大比例新能源并网消纳及调峰需求。针对未来电网与热力网、氢-天然气网等不同能源网络之间互联互通的需求,突破低成本相变储热(蓄冷)技术、高转换效率、长寿命储氢技术,实现以电为中心的不同能源网络间柔性互联、调剂和联合调控,促进清洁能源大规模转化、网络化存储和多形态消纳。突破高比能量锂空气储能电池技术,满足电动汽车续航里程的要求,并在电动汽车领域的大规模、大范围推广应用,实现V2G运行模式,开创适用于电网新形态的电网运行管理新模式。
(张明霞 闫涛 来小康 陈继忠 牛萌 徐少华)
参考文献
[1] 田世明,栾文鹏,张东霞,等.能源互联网技术形态与关键技术[J].中国电机工程学报,2015,35(15):3482-3494. Tian Shiming,Luan Wenpeng,Zhang Dongxia,et al.Technical forms and key technologies of energy internet[J].Proceedings of the CSEE,2015,35(15):3482-3494(in Chinese).
[2] 李建林,田立亭,来小康.能源互联网背景下的电力储能技术展望[J].电力系统自动化,2015,39(23):15-25. Li Jianlin,Tian Liting,Lai Xiaokang.Prospect of energy storage technology under energy internet[J].Automation of Electric Power Systems,2015,39(23):15-25(in Chinese).
[3] 余贻鑫,秦超.智能电网基本理念阐释[J].中国科学:信息科学,2014,44(6):694-701. Yu Yixin,Qin Chao.Expatiation on the basic ideas of smartgrid[J].Science China: Information Science,2014,44(6):694-701(in Chinese).
[4] Cao J W,Yang M B.Energy internet-towards smart grid2[C]// Fourth International Conference on Networking and Distributed Computing.LosAngeles,USA:Fourth International Conference on Networking and Distributed Computing,2013:105-110.
[5] 张军,戴炜轶.国际储能技术路线图研究综述[J].储能科学与技术,2015,4(3):260-266. Zhang Jun,Dai Weiyi.Overview of international roadmap studies on energy storage technologies[J].Energy Storage Science and Technology,2015,4(3):260-266(in Chinese).
[6] 中关村储能产业联盟.储能产业研究白皮书2017[R].北京:中关村储能产业联盟,2017.
[7] 封红丽. 2016年全球储能技术发展现状与展望[J].电器工业,2016(10):23-29.Feng Hongli.Conditions and outlook of global energy-storing technological development in2016[J].China Electrical Equipment Industry,2016(10),23-29(in Chinese).
[8] 吴贤章,尚晓丽.可再生能源发电及智能电网储能技术比较[J].储能科学与技术,2013,2(3):316-320. Wu Xianzhang,Shang Xiaoli.A review of electrical energy storage technologies for renewable power generation and smart grids[J].Energy Storage Science and Technology,2013,2(3):316-320(in Chinese).
[9] 杜晨,陶维青,孙雯.微网中储能技术比较及应用[J].电源技术,2013,37(4):703-706. Du Chen,Tao Weiqing,Sun Wen.Discussion on energy storage technologies in micro grids and its application[J].Chinese Journal of Power Sources,2013,37(4):703-706(in Chinese).
[10] Díaz-Gonzáleza F,Sumpera A,Gomis-Bellmunta O,et al.A review of energy storage technologies for wind power applications[J].Renewable and Sustainable Energy Reviews,2012,16(4):2154-2171.
[11] 陈海生,刘畅,齐智屏.分布式储能的发展现状与趋势[J].中国科学院院刊,2016,31(2):224-231. Chen Haisheng,Liu Chang,Qi Zhiping.Developing trend and present status of distributed energy storage[J].Bulletin of the Chinese Academy of Sciences,2016,31(2):224-231(in Chinese).
[12] 杨裕生,程杰,曹高萍.规模储能装置经济效益的判据[J].电池,2011,41(1):19-21. Yang Yusheng,Cheng Jie,Cao Gaoping.A gauge for direct economic benefits of energy storage devices[J].Battery Bimonthly,2011,41(1):19-21(in Chinese).
[13] 张川,杨雷,牛童阳,等.平抑风电出力波动储能技术比较及分析[J].电力系统保护与控制,2015,43(7):149-154. Zhang Chuan,Yang Lei,Niu Tongyang,et al.Comparison and analysis of energy storage technology to balance fluctuation of wind power output[J].Power System Protection and Control,2015,43(7):149-154(in Chinese).
[14] 闫金定,锂离子电池发展现状及其前景分析[J].航空学报,2014,35(10):2767-2774. Yan Jinding.Current status and development analysis of lithium-ion batteries[J].Acta Aeronautica ET Astronautica Sinica,2014,35(10):2767-2774(in Chinese).
[15] 李泓. 锂离子电池基础科学问题(XV)——总结和展望[J].储能科学与技术,2015,4(3):306-317. Li Hong.Fundamental scientific aspects of lithium ion batteries(XV)--Summary and outlook[J].Energy Storage Science and Technology,2015,4(3):306-317(in Chinese).
[16] Zu C X,Li H.Thermodynamic analysis on energy densities of batteries[J].Energy & Environmental Science,2011,22(4):2614-2624.
[17] 荆平,徐桂芝,赵波,等.面向全球能源互联网的大容量储能技术[J].智能电网,2015,3(6):486-492. Jing Ping,Xu Guizhi,Zhao Bo,et al.Large-scale energy storage technology for global energy internet[J].Smart Grid,2015,3(6):486-492(in Chinese).
[18] 陈来军,梅生伟,王俊杰,等.面向智能电网的大规模压缩空气储能技术[J].电工电能新技术,2014,33(6):1-6. Chen Laijun,Mei Shengwei,Wang Junjie,et al.Smart grid oriented large-scale compressed air energy storage technology[J].Advanced Technology of Electrical Engineering and Energy,2014,33(6):1-6(in Chinese).
[19] 王晓丽,张宇,张华民.全钒液流电池储能技术开发与应用进展[J].电化学,2015,21(5):433-440. Wang Xiaoli,Zhang Yu,Zhang Huamin.Latest progresses in vanadium flow battery technologies and applications[J].Journal of Electrochemistry,2015,21(5):433-440(in Chinese).
[20] 霍现旭,王靖,蒋菱,等.氢储能系统关键技术及应用综述[J].储能科学与技术,2016,5(2):197-203. Huo Xianxu,Wang Jing,Jiang Ling,et al.Review on key technologies and applications of hydrogen[J].Energy Storage Science and Technology,2016,5(2):197-203(in Chinese).
[21] 李建林,马会萌,惠东.储能技术融合分布式可再生能源的现状及发展趋势[J].电工技术学报,2016,31(14):1-10. Li Jianlin,Ma Huimeng,Hui Dong.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J].Transactions of China Electrotechnical Society,2016,31(14):1-10(in Chinese).
[22] 张静.电力现货市场的发展助力储能商业化进程[N].中国能源报,2016-08-01(6).
[23] 中关村储能产业联盟.储能产业研究白皮书2015[R].北京:中关村储能产业联盟,2015.
[24] 李建林,靳文涛,惠东,等.大规模储能在可再生能源发电中典型应用及技术走向[J].电器与能效管理技术,2016(14):9-14. Li Jianlin,Jin Wentao,Hui Dong,et al.The typical application and technology trend of large-scale energy storage in renewable energy generation[J].Electrical & Energy Management Technology,2016(14):9-14(in Chinese).
[25] 鲁宗相,李海波,乔颖.高比例可再生能源并网的电力系统灵活性评价与平衡机理[J].中国电机工程学报,2017,37(1):9-19. Lu Zongxiang,Li Haibo,QiaoYing.Flexibility evaluation and supply/demand balance principle of power system with high- penetration renewable electricity[J].Proceedings of the CSEE,2017,37(1):9-19(in Chinese).
[26] 国家电网公司“电网新技术前景研究”项目咨询组.大规模储能技术在电力系统中的应用前景分析[J].电力系统自动化,2013,37(1):3-8. Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems.Analysis of prospects for application of large-scale energy storage technology in power systems[J].Automation of Electric Power Systems,2013,37(1):3-8(in Chinese).
[27] Luo X,Wang J,Dooner M,et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation[J].Applied Energy,2015,137(6):511-536.
[28] 曾鸣,杨雍琦,刘敦楠,等.能源互联网“源-网-荷-储”协调优化运营模式及关键技术[J].电网技术,2016,40(1):114-124. Zeng Ming,Yang Yongqi,Liu Dunnan,et al.“Generation-grid-load-storage” coordinative optimal operation mode of energy internet and key technologies[J].Power System Technology,2016,40(1):114-124(in Chinese).
[29] 杨锡运,张璜,修晓青,等.基于商业园区源/储/荷协同运行的储能系统多目标优化配置[J].电网技术,2017,41(12):3996-4003. Yang Xiyun,Zhang Huang,XiuXiaoqing,et al.Multi-objective optimal configuration of energy storage systems based on coordinated operation of source/storage/load in commercial park[J].Power System Technology,2017,41(12):3996-4003(in Chinese).
[30] IEA.The energy storage road map toward 2050[R].Paris:International Energy Agency,2014.
[31] 国家发改委,国家能源局.能源技术革命创新行动计划(2016—2030年)[R].北京:国家发改委,国家能源局,2016.
[32] 国家电网公司.国家电网公司能源技术革命行动计划-重点任务-基础与共性技术[R].北京:国家电网公司,2016.
[33] 国家发改委,国家能源局.能源技术革命重点创新行动路线图[R].北京:国家发改委,国家能源局,2016.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,彭博新能源财经(BloombergNEF,以下简称“BNEF”)公布了2025年第二季度全球一级光伏逆变器制造商名单,固德威凭借其可靠的产品和解决方案、稳健的国际化步伐以及卓越的品牌口碑成功入选榜单。此次入选BNEFTier1榜单,不仅是对固德威过往成绩的高度认可,也彰显了其在全球光伏逆变器市场的重要
2025年6月10-13日,全球光储行业年度盛会——SNECPVES第十八届(2025)国际太阳能光伏和智慧能源储能及电池技术与装备(上海)大会暨展览会(简称2025SNECPVES国际光伏储能两会)即将震撼开幕!会议时间:2025年6月10-12日会议地点:国家会展中心上海洲际酒店(上海市诸光路1700号)展览时间:2025年6月11-
6月5日,国家电投发布《山东电力工程咨询院有限公司2025年第138批招标国家电投大连市花园口I、II海上风电项目海上主体工程施工中标结果公示》的公告。公告显示,标段1:国家电投大连市花园口I海上风电项目海上主体工程中标人为中国铁建港航局集团有限公司,中标价格为46439.6686万元。标段2:国家电投
近期,多座储能电站获最新进展,北极星储能网特将2025年6月3日-2025年6月6日期间发布的储能项目动态整理如下:180MW/720MWh!国家电投黄河水电最大储能电站并网投产!5月30日,青海海南州塔拉滩上捷报传来,黄河公司建设的贡玛储能电站正式并网,标志着公司目前最大容量集中式储能电站建成投运。至此,
6月6日,蜂巢能源第300000套堡垒越野电池在遂宁基地正式下线,这一里程碑事件彰显了中国动力电池的技术积累与产业化突破。而在落幕不久的2025环塔拉力赛中,堡垒越野电池助力坦克夺得多个分段冠军以及总冠军,正是堡垒越野电池强大的性能与高标准智能化生产的双重验证。蜂巢能源堡垒越野电池基于三大核
2025年1月20日,特朗普正式就任美国第47任总统。上任后特朗普政府大幅调整拜登政府的气候及能源政策,不仅对美国自身能源、环境、经济、社会等诸多层面造成冲击,而且在国际范围产生广泛影响。本文系统梳理本届特朗普政府自上任以来的能源政策动向及全球影响,分析我国应如何有效对冲特朗普政府能源政
北极星储能网讯:6月6日,广东湛江徐闻200MW/400MWh独立共享储能电站项目EPC总承包工程采购发布。本次招标为预招标,项目位于广东省湛江市徐闻县,招标人为湛江天转储能科技有限公司,由中国能建广东院持股90%。项目建设8套高压级联全液冷储能单元,电池采用磷酸铁锂电池,以220kV电压等级拟接入当地电
北极星储能网讯:6月4日,陕西省发展和改革委员会发布关于再次公开征求《关于调整分时电价政策有关事项的通知(征求意见稿)》意见的公告。文件明确10:00-14:00四个小时执行午间低谷电价,在国家法定假日期间执行深谷电价。另外,迎峰度夏(冬)期间工商业用电将实施尖峰电价,夏季7月、8月尖峰时段为
北极星储能网讯:6月4日,浙江省发改委、能源局于近日印发《2025年浙江省迎峰度夏电力需求侧管理工作实施方案》。方案提到,推动工商业用户主动开展削峰填谷,引导广大电动汽车车主推迟晚间充电时间,力争通过分时电价引导实现1GW以上削峰效果,有效降低全省基础用电负荷。鼓励虚拟电厂参与响应,规范
行业痛点直击:政策转变下,你的光储资产如何破局?394号文全面落地,新型储能如何抓住电力交易与辅助服务红利?136号文明确指引,数字化智能化如何成为资产收益核心引擎?行业困局待解:电站巡检运维效率低、光储充用系统数据孤岛严重、项目收益率波动大、绿电消纳与增值服务难落地……当政策机遇与技
“储能市场化”这一美好愿景,终于将照进现实、加速落地。但就当下而言,其实大多数储能企业并没有做好应对市场化的准备,政策的迅猛推进将倒逼储能技术快速迭代,尤其将压力传导给电池管理系统BMS。在此过程中,以协能科技为首的BMS企业,有望成为储能变革新时代的探路先锋!多次“首”创!“三代”BM
近期,多座储能电站获最新进展,北极星储能网特将2025年6月3日-2025年6月6日期间发布的储能项目动态整理如下:180MW/720MWh!国家电投黄河水电最大储能电站并网投产!5月30日,青海海南州塔拉滩上捷报传来,黄河公司建设的贡玛储能电站正式并网,标志着公司目前最大容量集中式储能电站建成投运。至此,
2025年1月20日,特朗普正式就任美国第47任总统。上任后特朗普政府大幅调整拜登政府的气候及能源政策,不仅对美国自身能源、环境、经济、社会等诸多层面造成冲击,而且在国际范围产生广泛影响。本文系统梳理本届特朗普政府自上任以来的能源政策动向及全球影响,分析我国应如何有效对冲特朗普政府能源政
“储能市场化”这一美好愿景,终于将照进现实、加速落地。但就当下而言,其实大多数储能企业并没有做好应对市场化的准备,政策的迅猛推进将倒逼储能技术快速迭代,尤其将压力传导给电池管理系统BMS。在此过程中,以协能科技为首的BMS企业,有望成为储能变革新时代的探路先锋!多次“首”创!“三代”BM
近日,思格新能源携手保加利亚可再生能源企业TrakiaMT,成功完成保加利亚南部MalkoTarnovo镇20MWh大型地面光伏储能项目建设。项目坐落于保加利亚与土耳其交界的群山之间,随着光储项目的建成运行,不仅实现了清洁电力在山区的稳定输出,也为提升区域能源独立性和用能安全奠定了坚实基础。拥有“玫瑰之
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
5月30日,远景能源与印度尼西亚新能源企业SUNTerra在远景上海总部签署战略合作备忘录,双方将在东南亚、印度及澳大利亚等重点海外市场深化储能技术与解决方案合作。远景能源高级副总裁、国际产品线总裁徐刚见证签约。SUNTerra隶属于印尼最具影响力的企业—金光集团(SinarMas),负责端到端新能源开发
北极星储能网获悉,近日,河北石家庄市城管局城市照明管护中心引入储能路灯,此次新上岗的储能路灯配备有“应急充电宝”,遇极端天气可即刻启动储备电源,确保至少8小时持续照明。经现场测试,在模拟水位到达积水阈值情况下,路灯断电后仍可由储能式路灯维持道路照明,保障夜间交通安全。目前,已在友
近日,中国电建EPC总承包的南非红石光热电站项目获得南非国家电网公司签发的商业运行证书,标志着项目正式进入商业运行阶段。该项目是撒哈拉以南非洲首个塔式熔盐光热电站,也是南非北开普省最大的投资项目。项目采用了先进的塔式熔盐储能技术,现场安装41260面定日镜,它们所组成的镜场和以247.55米高
作者:彭鹏1王成东2陈满1王青松2雷旗开1金凯强2单位:1.南方电网调峰调频发电有限公司储能科研院2.中国科学技术大学火灾科学国家重点实验室引用本文:彭鹏,王成东,陈满,等.某钛酸锂电池储能电站热失控致灾危害评价[J].储能科学与技术,2025,14(4):1617-1630.DOI:10.19799/j.cnki.2095-4239.2024.1006本
天眼查显示,5月8日,河间市银龙新能源科技有限公司成立,注册资本500万元,经营范围包含:发电机及发电机组销售;太阳能发电技术服务;太阳能热发电产品销售;储能技术服务等。股东信息显示,该公司由银龙股份间接全资持股。
作为新能源行业年度顶级盛会,2025上海SNEC展会将于6月11日在国家会展中心盛大启幕。这场被誉为行业风向标的年度展会,已吸引全球超3500家企业确认参展,38万#x33A1;展览规模将汇聚全球新能源领域的前沿技术与创新成果,为产业高质量发展注入强劲动能。在这场全球瞩目的行业盛事中,数字能源产品及风光
2025年6月10-13日,全球光储行业年度盛会——SNECPVES第十八届(2025)国际太阳能光伏和智慧能源储能及电池技术与装备(上海)大会暨展览会(简称2025SNECPVES国际光伏储能两会)即将震撼开幕!会议时间:2025年6月10-12日会议地点:国家会展中心上海洲际酒店(上海市诸光路1700号)展览时间:2025年6月11-
随着近期云南多个新型储能电站密集投产,云南省新型储能装机于5月31日突破400万千瓦,达到465.5万千瓦,超额实现“十四五”规划目标。其中,集中共享储能达435.5万千瓦、占新型储能总装机比例达93.5%,且主要以锂电池技术为主。近年来,随着“双碳”目标与“两型”建设加速推进,云南省聚焦“三个定位
北极星储能网获悉,6月5日,据立新能源披露的投资者关系活动中,提到立新能源现已投入运营的储能电站7座,调节装机48.8万千瓦/162.1万千瓦时,其中配储电站6座,调节装机32.8万千瓦/98.1万千瓦时;独立储能电站1座,调节装机16万千瓦/64万千瓦时。光伏配储基本保持每天1充1放;独立储能视周边新能源发
北极星储能网获悉,6月5日,广东惠州开展2025年惠州市推动新型储能高质量发展(支持制造业方向)资金项目入库工作。原文如下:关于开展2025年惠州市推动新型储能高质量发展(支持制造业方向)资金项目入库工作的通知各县(区)工业和信息化主管部门:根据《惠州市推动新型储能产业高质量发展行动方案》
在碳中和目标驱动下,储能产业迎来技术爆发期。温差控制与电芯安全成为两大核心攻坚点。融捷能源以双轨并行的技术战略,同步发布三大新品:587Ah第三代长时储能电芯、125kW/261kWh浸没式户外柜储能系统以及浸没式锂电UPS电源柜。此次发布的三大储能新品是融捷能源“深耕电芯技术、突破系统瓶颈、开辟增
近日,海辰储能∞Block5MWh储能系统成功完成全球首次开门极限燃烧试验,这一突破性成果为储能系统的安全性验证开拓了新路径,在行业内具有里程碑意义。四大极限挑战近年来储能系统热失控等引发的安全事故时有发生,使得储能安全问题备受瞩目。在此背景下,严苛、规范安全测试成为行业发展的迫切需求,
作者:彭鹏1王成东2陈满1王青松2雷旗开1金凯强2单位:1.南方电网调峰调频发电有限公司储能科研院2.中国科学技术大学火灾科学国家重点实验室引用本文:彭鹏,王成东,陈满,等.某钛酸锂电池储能电站热失控致灾危害评价[J].储能科学与技术,2025,14(4):1617-1630.DOI:10.19799/j.cnki.2095-4239.2024.1006本
海上风电已经成为当前全球应对气候变化的重要依托,也是各国实现能源安全和推动经济社会可持续发展的重要支撑。作为全球最大海上风电市场,中国通过不断推动技术、市场与发展模式创新,凭借全产业链优势,持续引领全球海上风电发展,并将重塑风电产业合作共赢新格局。辽宁省具有丰富的海风资源和良好的
北极星储能网获悉,5月30日,重庆铜梁区发布2025发展机会清单,涉及产业发展、资产运营、基础设施等领域的74个优质项目,总投资规模752亿元。在产业发展领域,铜梁重点布局了新型储能、智能网联新能源汽车零部件和摩托车、电子信息及智能制造等战略性新兴产业,此次发布了27个项目,总投资446亿元。其
云南电力市场新型储能主体实现历史性突破一从2024年11月前的零基础起步,到如今12家储能主体规范参与电力市场交易,总装机容量突破255.5万千瓦,提前超额完成2025年新型储能规划目标,形成以磷酸铁锂为主,全钒液流、钠离子电池为补充的技术格局。这一跨越式发展标志着云南新型储能产业进入市场化、规
北极星储能网讯:5月29日,重庆能源局对代表建议进行答复。其中提出,我局将进一步科学做好新型储能电站项目规划布局和建设,力争到2027年底,全市装机规模达到200万千瓦/400万千瓦时,建设以新型储能等调节电源为核心的多维度平衡性电力资源池,不断增强全市电力系统调节能力。不断创新“新能源+储能
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!